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Estimating treatment effects  
for time-to-treatment antibiotic  
stewardship in sepsis

Ruoqi Liu    1, Katherine M. Hunold2, Jeffrey M. Caterino2 & Ping Zhang    1,3,4 

Sepsis is a life-threatening condition with a high in-hospital mortality 
rate. The timing of antibiotic administration poses a critical problem 
for sepsis management. Existing work studying antibiotic timing either 
ignores the temporality of the observational data or the heterogeneity 
of the treatment effects. Here we propose a novel method (called T4) to 
estimate treatment effects for time-to-treatment antibiotic stewardship in 
sepsis. T4 estimates individual treatment effects by recurrently encoding 
temporal and static variables as potential confounders, and then decoding 
the outcomes under different treatment sequences. We propose mini-batch 
balancing matching that mimics the randomized controlled trial process 
to adjust the confounding. The model achieves interpretability through 
a global-level attention mechanism and a variable-level importance 
examination. Meanwhile, we equip T4 with an uncertainty quantification 
to help prevent overconfident recommendations. We demonstrate that T4 
can identify effective treatment timing with estimated individual treatment 
effects for antibiotic stewardship on two real-world datasets. Moreover, 
comprehensive experiments on a synthetic dataset exhibit the outstanding 
performance of T4 compared with the state-of-the-art models on estimation 
of individual treatment effect.

Sepsis is the body’s overwhelming response to infection, which can 
lead to tissue damage, organ failure, amputations and death. Sepsis 
contributes to 6% of hospitalizations and 35% of in-hospital deaths1, 
and costs more than US$27 billion annually in the USA2. Based on a 
recent study of Medicare beneficiaries, approximately 30% of patients 
with sepsis do not survive for 6 months3. Broad-spectrum antibiotics 
are the first-line medications for sepsis4,5 because bacterial infection 
causes most cases6.

The current sepsis treatment guideline for antibiotic timing is 
a one-size-fits-all approach, and when patients with suspected sep-
sis should receive antibiotics remains controversial7,8. The Surviving 
Sepsis Campaign recommends initiating broad-spectrum antibiotics 

within 1 hour for any patient with suspected sepsis or septic shock9,10. 
Although the recommendation is supported by several large observa-
tional studies11–13, there is substantial concern that striving for 1 hour 
antibiotic delivery for all patients with suspected sepsis may cause seri-
ous harm (for example, antibiotic resistance and Clostridium difficile 
infection)8,14,15. Therfore, determining personalized antibiotic timing 
at the bedside is urgently needed.

Computational algorithms using electronic health records 
(EHRs)12,13,16,17 have been leveraged to examine the optimal antibiotic 
timing for patients with sepsis. EHRs contain irregularly sampled 
temporal data, including patients’ lab results, vital signs and demo-
graphics. The aim is to estimate the treatment effects of different 
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framework, T4, to estimate treatment effects for time-to-treatment 
antibiotic stewardship in sepsis. T4 first estimates the individual 
treatment effects (ITEs) of receiving antibiotics by recurrently 
encoding temporal and static information obtained before the cur-
rent timestamp (baseline period) and then decoding the potential 
outcomes under different treatment sequences after the current 
timestamp (follow-up period). We apply balancing matching for 
each mini-batch via treatment propensity as balancing scores to 
construct a pseudobalanced mini-batch, thus adjusting the influ-
ence of confounders. We also provide model interpretability of 
treatment recommendations by analysing: (1) the contribution of 
each timestamp in the baseline to treatment recommendation with 
attention mechanism and (2) the contribution of each variable to 
treatment recommendation via variable importance examination 
that excludes each variable in evaluating the influence on model 
loss. Meanwhile, we adopt MC Dropout23 to estimate uncertainty 
and quantify the confidence behind the ITE estimation and treat-
ment recommendation.

We evaluate the effectiveness of treatment recommendation on 
two nonoverlapping real-world EHR datasets: Medical Information 

timings of antibiotics on septic outcomes (for example, in-hospital 
mortality). However, most studies have either ignored the temporality 
of EHRs12,13 or the heterogeneity of treatment effects16,17. These two 
issues are crucial for identifying effective and precise therapy for 
patients with sepsis.

Previous studies18–22 of treatment design for sepsis regard the 
problem as an off-policy evaluation using observational data. For 
example, a model21 to learn treatment policy based on patient trajec-
tories (that is, states, actions and observations) by optimizing a reward 
determined by patient survival. However, our method derives optimal 
treatment options by estimating individual potential outcomes for 
future timestamps. Our problem setting is more challenging: (1) we 
need to do counterfactual reasoning based only on observed data and 
(2) we need to adjust time-varying confounding and estimate unbiased 
individual causal effects.

Herein, we study the problem of identifying the most effective 
timing for antibiotic administration in patients with suspected 
sepsis using EHR data. As shown in Fig. 1, the patients’ information is 
extracted and compiled from EHRs and then used to build the model 
for antibiotic administration timing recommendation. We propose a 

Baseline period

6

3
5 4

WBC

127
91

105
86

SysBPTemporal
covariates 
(lab tests,
vital signs)

3 4 4
7

Outcome 

t

When to assign
antibiotics?

Demographic
(age, gender)

65Age FGender

SOFA

TimeFollow-up period

4
3

2

8
9

6
Antibiotic from t + 3 to

t + 4 timestamps

Antibiotic from t + 1 
to t + 3 timestamps  

Treatment
e�ect δt + 2 

Training dataset: 
70% of MIMIC-III

Validation dataset:
10% of MIMIC-III 

AmsterdamUMCdb:
23,106 admissions

Patients with sepsis
cohort: 3,136 patients

Training, validation and testing on MIMIC-III dataset External testing
on AmsterdamUMCdb

Test best model on
external dataset

MIMIC-III dataset:
61,532 admissions

Septic patient cohort: 
10,840 patients

Internal test dataset:
20% of MIMIC-III 

4
3

2

8
9

7
6

8

Fig. 1 | Overall data flow of T4 framework. Data from MIMIC-III are randomly 
split into training (70%), validation (10%) and testing (20%) datasets. The 
validation dataset is used to select the best model parameters and the testing 
dataset is used for internal evaluation. The T4 framework is used to estimate 

ITEs for antibiotic administration timing recommendation. An external dataset 
obtained from AmsterdamUMCdb is used as an external test set. (SysBP: systolic 
blood pressure. WBC: white blood cell).
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Fig. 2 | The T4 framework. T4 consists of three main components: (1) the 
encoder network recurrently encodes the patient’s baseline information, 
including temporal and static covariates, and treatment assignments via the 
LSTM network; (2) the decoder network is initialized with encoder outputs and 

predicts the outcomes under different treatment sequences; (3) the balancing 
matching constructs balanced mini-batches via propensity as balancing scores 
during the training process. The details of balancing matching are shown in Fig. 3.
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Mart for Intensive Care version III (MIMIC-III)24 and Amsterda-
mUMCdb25. The results show that the mortality rate of patients 
who receive the antibiotics at the time we recommend is notably 
lower than the patients who do not, indicating that our model offers 
effective timings of antibiotic administration that help to reduce 
the mortality rate. We demonstrate the application of our model 
on time-to-treatment recommendation using a concrete patient 
example. We also analyse model interpretability by visualizing the 
global and variable-level contributions to treatment recommenda-
tion via a concrete case study. Moreover, we conduct comparison 
experiments on ITE estimation using synthetic and semi-synthetic 
datasets, and our model outperforms the state-of-the-art ITE esti-
mation methods.

The contributions of this paper include the following:

•	 We propose an end-to-end treatment timing recommendation 
framework that seamlessly integrates the treatment effect estima-
tion model, uncertainty quantification and model interpretability 
for making transparent treatment recommendation.

•	 We develop a new ITE estimation method that can model 
time-varying information and adjust the influence of temporal 
confounding variables via balancing matching that mimics the 
randomized controlled trial process.

•	 We incorporate uncertainty quantification and interpretable 
analysis into the ITE estimation to achieve reliable treatment 
recommendation.

•	 We illustrate the usage of the proposed model in two real-world 
EHR datasets. The results show that our model can successfully 
identify effective timing of treatment and thus pave the way for 
personalized and precision medicine. We further conduct compre-
hensive comparison experiments on synthetic and semi-synthetic 
datasets for ITE estimation.

Overall framework
As illustrated in Fig. 2, T4 recurrently encodes the patient’s tem-
poral covariates extracted from the baseline period, then decodes  
the potential outcomes with different treatment sequences  
in the follow-up period. Both encoder and decoder are built based  
on long short-term memory (LSTM)26, a deep recurrent neural net-
work that is widely used for modelling time series data. T4 adjusts the  
influence of confounders via ‘balancing matching’ (Fig. 3) to gener-
ate balanced mini-batches. Each patient in the mini-batch is matched 
with the corresponding counterfactual outcomes using the observed 
outcomes of his or her similar patients in different treatment groups. 
The similarity of patients are estimated using propensity scores27 of 
receiving the current treatment. The training procedure of T4 is shown 
in Algorithm 1.

Algorithm 1. T4 training procedure

Results
Datasets
MIMIC-III24 is a large, freely available database comprising de-identified 
health-related data associated with over 40,000 patients who stayed in 
critical care units of the Beth Israel Deaconess Medical Center between 
2001 and 2012. It contains patients’ demographics, vital signs, lab tests 
and treatment assignments.

AmsterdamUMCdb25 is the first freely accessible European inten-
sive care database. It is endorsed by the European Society of Intensive 
Care Medicine and its data science section. It contains de-identified 
health data related to tens of thousands of intensive care unit admis-
sions, including demographics, vital signs, laboratory tests and 
medications.

In both datasets, we included adult patients with sepsis fulfilling 
the international consensus Sepsis-3 criteria28. We extracted data 
for 10,840 patients and 3,136 patients from MIMIC-III and Amsterda-
mUMCdb, respectively, after applying exclusion criteria. The causal 
inference problem we studied is the treatment effects of antibiotic 
therapy among patients with sepsis given the observed confounding 
variables. There are three essential components that should be iden-
tified from the patient data. (1) Treatments: we considered multiple 
kinds of antibiotic therapy during ICU stays. At each timestamp, a 
binary treatment indicator will denote whether the patient is assigned 
antibiotics or not. (2) Confounders: we obtained 22 temporal covariates 
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Fig. 3 | Illustration of the balancing matching. During the training process, 
each patient in the batch is matched with the corresponding counterfactual 
outcomes using the observed outcomes of their nearest neighbours in other 
treatment groups in the training data. A pre-trained T4 is used to estimate the 
propensity scores for computing the patient’s distance. The matched batch and 
original batch are combined together for training.
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(vital signs including temperature and heart rate; and lab tests includ-
ing potassium and sodium levels) and 4 static covariates (age, gender 
and so on) as potential confounders. (3) Outcomes: we compiled the 
24 hour Sepsis-related Organ Failure Assessment (SOFA) 29 score as the 
primary outcome, which is computed based on the degree of dysfunc-
tion of six organ systems. The definition of the Sepsis-3 patient cohort 
is in the study design section of Methods; a list of antibiotics is in Sup-
plementary Table 1, computation of SOFA scores is in Supplementary 
Table 2 and the list of patients’ covariates is in Supplementary Table 3.

Experiment on real-world data
Population-level analysis. PLACEHOLDER TEXT.

As we have no access to the counterfactual outcomes in the 
real-world dataset, we are not able to directly evaluate the model per-
formance in terms of counterfactual prediction. Thus, we evaluate 
the model performance by comparing the treatment effects of rec-
ommended timing of administration (determined by estimated ITE 
according to equation (11)) and the observed timing of administration 
on patients’ mortality rate. Specifically, we first obtain a target group 
of patients whose observed timing of antibiotic administration is 
different from the model recommendation. Then we derive a com-
pared group to the target group by involving the most similar patients 
whose observed timing of antibiotic administration matches the model 
recommendation. We use the variables obtained from the baseline 
period (time window before the follow-up period) to perform patient 
similarity. We use Euclidean distance as the similarity measurement 
(see Supplementary Fig. 2 for patient similarity evaluation). Finally, 
we compare the mortality rate within these two groups and expect 

that the mortality rate of patients whose observed treatments match 
our recommendation would be much lower than the patients whose 
observed treatments are different from the recommendation.

As shown in Fig. 4, we compute and compare 30 days’ mortality 
rate and 60 days’ mortality rate on two datasets. The black dashed lines 
in the two plots denote the average mortality rates among the popula-
tion, which are the baselines for comparison. We find that the mortality 
rate of patients who receive treatments at different timestamps as our 
recommendation is higher than the average mortality rate baseline, 
while the mortality rate of patients who receive the treatments at the 
same timestamps as our recommendation is lower than the baseline. 
We evaluate the model concerning different lengths of the follow-up 
period (that is, ζ ∈ {3, 4, 5, 6, 7}) and the mortality rates for patients with 
the same treatments are consistently lower than the mortality rates for 
patients with different treatments. Results show that our model recom-
mends effective treatment strategies (reflecting on lower mortality 
rate), and provides potential clinical insights for doctors to decide the 
timing of antibiotic administration for patients with sepsis. We also 
observe that the model performs consistently on the external testing 
set from AmsterdamUMCdb, which demonstrates the robustness of 
our model when applied to a different dataset with different feature 
distributions. We further evaluate our model on suspected septic 
patients and report the results in Supplementary Fig. 3.

Individual-level analysis. To further demonstrate how our model 
recommends antibiotics based on the estimated ITEs with uncer-
tainty quantification, we utilize a real-world patient case. As shown in  
Fig. 5a, we use the predicted ITEs (red line) equipped with uncertainty 
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Fig. 4 | Mortality rate comparison of two datasets. a,b, Mortality comparisons 
on the MIMIC-III dataset over 30 days (a) and 60 days (b). c,d, Mortality 
comparisons on the AmsterdamUMCdb dataset over 30 days (c) and 60 days (d). 
Error bars denote 95% confidence intervals with n = 30 bootstrap samples. The 

total mortality rate of two groups of patients is plotted using the black dashed 
line, which serves as the baseline. More data statistics of two groups of patients 
are in Supplementary Table 6.
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estimates (red shadowed area) as the criteria to recommend the timing 
of antibiotic administration at each timestamp (see Supplementary 
Table 7 for average standard deviation of estimated treatment effect in 
each timestamp). Specifically, at each timestamp, we recommend the 
antibiotics if the upper bound of the predicted ITE is lower than zero, 
and we will not recommend them if the lower bound of the predicted 
ITE is higher than zero. Here, zero denotes no difference between 
having a treatment and not. In this example, the upper bound of the 
predicted ITE is lower than zero for all the timestamps in the follow-up 
period. Thus, the optimal antibiotic recommendation provided by our 
model is to continuously take antibiotics during the follow-up period.

We also compare true outcomes under the antibiotics that were 
actually received and predicted outcomes under the recommended 
antibiotics. Here, we use the SOFA score as the outcome, where higher 
values are associated with worse status and higher mortality rate30,31. 
From Fig. 5a, we observe that the patient received antibiotics from 
the fourth timestamp, which results in large SOFA scores during the 
follow-up period. Conversely, our model recommends the patient 
take antibiotics earlier (from the first to the sixth timestamp), and the 
predicted SOFA scores under recommended timing of antibiotics are 
much lower than the true SOFA scores. The results demonstrate that 
our model can identify effective timing of antibiotic administration 
for patients with sepsis to help improve their disease condition and 
reduce the mortality rate.

A case study for model interpretability. We demonstrate the model 
interpretability of treatment recommendation using a concrete case 
study. We visualize both global and variable-level contributions in  
Fig. 5b. We also plot the dynamics of each important variable. Here, 
the vital signs include temperature and respiratory rate (resprate); the 
lab tests include glucose, blood urea nitrogen (BUN), anion gap and 
platelets. We use the dashed black lines to denote the timestamps with 
high contribution to the treatment recommendation. We observe that 
the values of most variables are within or close to the abnormal range 
at those high-contribution timestamps. Our model recommends the 
patient take antibiotics at the end of the baseline period with regard 
to these warning signals. Taking glucose as an example, the normal 
range should be lower than 140 mg dl–1, and a reading of more than 
200 mg dl–1 indicates diabetes32. We observe that the values of glucose 
are far from the normal range, which remains above 200 mg dl–1 and 

even reaches 300 mg dl–1 at the early stage. This case study shows 
that our model achieves a transparent treatment recommendation 
via visualizing important timestamps and variables contributing to 
the recommendation, paving the way for interpretable and precise 
treatment recommendation. More case studies are provided in Sup-
plementary Figs. 5 and 6.

Experiments on synthetic data
Comparison experiments. PLACEHOLDER TEXT.

Several studies have proposed estimating ITEs using 
causal inference techniques on observational data, including 
matching-based methods (for example, propensity score match-
ing27), forest-based methods (for example, causal forest33) and 
representation-learning-based methods (for example, counterfactual 
regression34). These methods are mainly designed for static data and 
are not suitable for estimating ITEs on EHRs, whereas T4 fully considers 
time-variable information and adjusts temporal confounding using 
balancing matching.

To illustrate the model’s performance on ITE estimation and treat-
ment recommendation, we performed experiments on a synthetic 
dataset. We simulated 5,000 patients with 50 timestamps, 20 temporal 
covariates and 5 static covariates. We used the first 40 timestamps as 
the baseline period and the remaining timestamps as the follow-up 
period. We use Precision in Estimation of Heterogeneous Effect (PEHE) 
and the error of Average Treatment Effect (εATE) to evaluate the mod-
el’s performance. We conducted comparison experiments against 
state-of-the-art methods of ITE estimation: (1) classical methods: lin-
ear regression35, random forest36 and support vector machine37; (2) 
forest-based methods: causal forest33 and Bayesian additive regression 
trees38; (3) representation-learning-based methods: counterfactual 
regression34, GANITE39 and Dragonnet40; (4) time-varying-based meth-
ods: recurrent marginal structural network41, counterfactual recurrent 
network42 and G-Net43. Results in Supplementary Table 10 show that 
our model outperforms state-of-the-art ITE estimation methods. More 
details of data simulation and results analysis can be found in the Sup-
plementary Information.

Ablation study on balancing matching. We evaluate the influence 
of different percentages of balancing matching samples on the model 
performance. We vary the percentages from 0% to 100% and show the 
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performance change in Supplementary Fig. 8. We observe that the 
error of ITE estimation in terms of both PEHE and εATE decreases as 
more matching samples are included in a mini-batch during the train-
ing process. Specifically, performance highly increases when only a 
small number of matching samples (around 20%) are provided, and the 
curve tends to gently slope downward as the percentage of matching 
samples exceeds 30%. The results demonstrate that balancing match-
ing improves the model performance on ITE estimation by substantially 
decreasing the estimation error.

Discussion
In this study, we propose a novel framework to estimate treatment 
effects for treatment recommendation. Our proposed model, T4, first 
estimates ITEs by recurrently encoding historical temporal patient 
information and static information, and then decoding the potential 
outcomes under different treatment sequences. We apply balancing 
matching for each mini-batch to construct a balanced mini-batch and 
adjust the influence of confounders. We also provide the model inter-
pretability of treatment recommendation to analyse both global and 
variable-level contributions via an attention mechanism and variable 
importance analysis, respectively. Meanwhile, the model uncertainty 
quantification helps to avoid overconfident treatment recommenda-
tions. We illustrate the usage of the proposed model in two real-world 
EHR datasets, showing that our model can successfully identify effec-
tive treatment strategies and thus pave the way for personalized and 
precision medicine.

Controversies in antibiotics for patients with sepsis
The timing of antibiotic treatment is contentious. While many stud-
ies suggest early antibiotic regimens for any patients with suspected 
sepsis or septic shock, there is substantial concern that early antibiotic 
assignments may cause serious harm including higher mortality rates7. 
Several recent cohort studies and randomized controlled trials8,15,44–46 
suggest that the timing of antibiotic treatment should depend on the 
severity of illness (that is, sepsis, severe sepsis or septic shock) and 
the likelihood of true infection. They point out that immediate antibi-
otic regimens benefit patients with severe illness (for example, septic 
shock) while in less critically ill patients, immediate antibiotic regimens 
may lead to overprescribing and potential harm. For example, a recent 
study47 showed that an overdose of antibiotics is associated with a 20% 
increase in the odds of death in patients who received adequate therapy. 
According to the study47, the morbidity of overdose antibiotics may be 
more obvious in less critically ill patients compared with patients with 
septic shock as the morbidity of other acute severe illness surpasses 
the possible morbidity comes from an antibiotic overdose. There are 
also some general explanations for the association between antibiotic 
overdose and higher mortality. Besides antibiotic resistance, antibiotics 
themselves also cause harm (for example, organ injury, mitochondrial 
dysfunction, the impact on the microbiome, and overgrowth by fungi 
and C. difficile)48. Specifically, the study47 showed that unnecessar-
ily broad empiric therapy was associated with a 26% increased risk of 
C. difficile infection. Thus determining personalized antibiotic timing 
at the bedside is urgently needed.

Limitations of synthetic patient data
We evaluate the effectiveness of our model through comprehensive 
comparison experiments on synthetic and semi-synthetic datasets 
for treatment effect estimation (Supplementary Tables 9 and 10). The 
results demonstrate that the proposed method achieves a more accu-
rate estimation of treatment effect than the state-of-the-art methods. 
Though outstanding performance has been achieved on the synthetic 
patient data, there are still some potential limitations.

Fully synthetic data. The fully synthetic data generated by statistical 
models from scratch is flexible as the entire data generation process 

and specify the data scale (for example, the number of patients or the 
number of features) can be predefined according to the experimental 
design. However, such a predefined data generation process is merely 
to mimic the real data generation and may not fully represent the com-
plex and heterogeneous patient EHR data49. Additionally, rare cases and 
outliers that are present in the real patient data may not be accurately 
captured by the fully synthetic data.

Semi-synthetic data. Semi-synthetic data is simulated based on real 
patient data where we obtain the real patient covariates and simulate 
the treatment assignments and outcomes based on the covariates. 
Thus, compared with fully synthetic data, semi-synthetic data contain 
more realistic patients and thus can better capture rare cases and outli-
ers. Whereas, semi-synthetic data are highly constrained by the original 
data. If the original data are limited or of poor quality, it is challenging 
to generate high-quality semi-synthetic data.

Thus, we further conduct comprehensive experiments on two 
real-world patient datasets that contain more diverse and realistic 
patient trajectories than the synthetic data.

Limitations of real-world patient data
Unavailability of counterfactual outcomes. PLACEHOLDER TEXT.

The ground truth counterfactual outcomes are not available in 
real-world patient data thus we can not directly evaluate the perfor-
mance of treatment effect estimation on real-world data. Instead, we 
demonstrate in Supplementary Table 8 that the proposed method 
performs better than the state-of-the-art methods in factual outcome 
prediction of SOFA scores. Moreover, we evaluate the effectiveness of 
learned optimal timing of treatment and demonstrate in Fig. 4 that the 
mortality rate of the patients with recommended timing of treatment 
is lower than the patients with the observed timing of treatment.

Type of antibiotic treatment. The type of antibiotic treatment choice 
is based on suspected infection sites according to empirical antibiotic 
studies and guidelines50,51. However, the sites of suspected infection are 
not available in our public clinical datasets (MIMIC-III and Amsterda-
mUMCdb), especially during the first 48 hours since ICU admission as 
the determination of true infection sites is complicated and takes time 
to obtain the results. In the future, we will incorporate suspected infec-
tion sites to provide recommendations for a specific type of antibiotic, 
orthogonal and so on.

Blood cultures. Blood cultures are deemed the gold standard for 
antibiotic treatment regimens (for example, initiation or de-escalation 
of antibiotics). However, in our public datasets, most blood cultures 
are taken 12 hours before or after the ICU admission and usually the 
results are available after 2–3 days. According to the proposed frame-
work as illustrated in Fig. 2, we only leverage the first 48 hours of data 
since ICU admission; therefore the results of blood cultures may not 
be available in this period.

In future work, we can develop a more practical and precise anti-
biotic recommendation system that combines the model’s general 
recommendations with real patient conditions (for example, suspected 
infection sites, blood cultures and other concomitant therapies) if 
available.

Methods
In this section, we first introduce the study design, then we present the 
proposed model for estimating treatment effects.

Study design
We evaluated the proposed treatment recommendation framework 
through a retrospective study on two large real-world EHR datasets 
(MIMIC-III and AmsterdamUMCdb) with recorded patients’ demo-
graphics, vital signs, lab tests, medications and diagnosis.
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Definition of sepsis in two datasets. We defined the patients with 
sepsis according to the recent Sepsis-3 criteria28 with respect to (1) 
tsusp: time of clinical suspicion of infection (that is, earlier timestamp 
of antibiotics and blood cultures within a specified duration) and (2) 
tSOFA: two-point deterioration in SOFA score29 within a 6 hour period. The 
patient is diagnosed with sepsis when these two events happen close 
to each other. Specifically, tSOFA happens 24 hours earlier than tsusp or 
12 hours later than tsusp. We excluded patients under 18 years old at the 
time of ICU admission. We also exclude patients whose ICU stay is less 
than 9 hours or longer than 20 days.

We extract 22 temporal covariates (that is, vital signs and lab 
tests) and 4 static covariates (Supplementary Table 3). We encode the 
patients’ time series data into discrete 3 hour time steps. The covariates 
with multiple records within a single time step were averaged. The miss-
ing data were imputed using values obtained from the last time step.

Preliminary
We extract patient information from longitudinal observational data. 
For each patient, let AT 𝒟 𝒟a1,a2, ...,aT} ∈ 𝒩𝒩T  be the treatment assign-
ments with aT = 1 if the patient receive the treatment at t-th timestamp 
and aT = 0 otherwise. Let XT 𝒟 𝒟x1, x2, ..., xT} ∈ ℛT×Kx  be the temporal 
covariates and YT 𝒟 𝒟y1, y2, ..., yT} ∈ ℛT be the outcomes of T timestamps. 
The patient has static covariates d ∈ ℛKd, such as gender and age. The 
observational data for the patient can be represented as 
𝒟𝒟 𝒟 𝒟AT,XT,d,YT}.

Our goal is to estimate the treatment effects with temporal and 
static covariates by predicting the potential outcomes under different 
treatment sequences. We adopt the potential outcomes framework52,53 
to examine the causal effects under the treatments. The potential 
outcome is the outcome that would have been observed if the patient 
had received treatment. We extend the potential outcome framework 
in our application scenario. Given the observational data up to t-th 
timestamp and treatment assignments At+1,t+ζ, the patient has potential 

outcomes 𝔼𝔼𝔼Y(At+1,t+ζ)] 𝒟 𝒟𝔼𝔼𝔼Y(Aj|Xt,At,d)]}
j=t+ζ

j=t+1  in the following ζ time 

period. Specifically, At+1,t+ζ = {at+1, at+2, ..., at+ζ} denotes any treatment 
assignments from t + 1 to t + ζ timestamp. For each timestamp j, there 
are two potential outcomes 𝔼𝔼𝔼Y(Aa=1

j |Xt,At,d)], 𝔼𝔼𝔼Y(Aa=0
j |Xt,At,d)], which 

correspond to different treatment assignments.
To estimate the treatment effect of a given treatment assignment 

during the following ζ time period, we define the ITE, δj on (t + j)-th 
timestamp as follows,

δj 𝒟 𝔼𝔼 [Y (Aa=1
j |Xt,At, ̂A(t+1,t+j−1),d)]

−𝔼𝔼 [Y (Aa=0
j |Xt,At, ̂A(t+1,t+j−1),d)]

(1)

where ̂A(t+1,t+j−1) is the learned optimal treatments between timestamp 
t + 1 and t + j − 1. The treatment effects of ζ  time period is 
Δ = [δt+1, . . . , δt+ζ]. In this paper, we use SOFA scores29 (that is, range from 
0 to 24, with larger values associated with more severe disease status 
and higher mortality) as outcomes. The computation of SOFA scores 
can be found in Supplementary Table 2. The recommended treatment 
assignments are as follows,

π∗ 𝒟 𝔼 (δt+1 < 0),… , (δt+ζ < 0)] (2)

where (⋅) equals 1 if the inside expression is true otherwise 0.

Assumptions
Our ITE estimation is based on the standard causal assumptions54,55 
as follows,
Assumption 1. Consistency. The potential outcome under treatment 
history At equals the observed outcome if the actual treatment  
history is At.

Assumption 2. Positivity. Given the observational data of the history, 
if the probability P(At 𝒟 1|Xt,At−1,d) ≠ 0, then the probability of receiving 
treatment 0 or 1 is positive, that is, 0 < P(At 𝒟 1|Xt,At−1,d) < 1, for all At.
Assumption 3. Sequential strong ignorability. Given the observational 
data of the history, the treatment assigned for time t is independent of 
the potential outcome of time t, that is, Y(At) ⟂⟂ At|Xt,At−1,d, for all treat-
ment sequences At.

Treatment effect estimation with T4
T4 recurrently encodes the patient’s temporal covariates via LSTM26, 
then decodes the potential outcomes with different treatment 
sequences. T4 adjusts the influence of confounders via balancing 
matching to generate balanced mini-batches. Figure  2 illustrates the 
framework of the proposed method.

Encoder for baseline period. We convert the initial high-dimensional 
covariates xt ∈ ℛKx  into a lower dimensional and continuous data 
embedding ext ∈ ℛKe

x as,

ext 𝒟 Wext + be (3)

where We ∈ ℛKe
x×Kx is the weight matrix, be ∈ ℛKe

x is the bias vector and Ke
x 

is the dimension of the embedded temporal vectors. That is, we have 
embedding of temporal covariates Ex 𝒟 𝒟ex1 , e

x
2, ..., e

x
t } ∈ ℛt×Ke

x. Similarly, 
we convert the static covariates (demographics) into embedding as 
Ed ∈ ℛKd×Ke

d, where Kd is the number of static covariates and Ke
d is the 

dimension of embedded static vectors.
Given the embedding of temporal and static covariates and the 

treatment assignments at each timestamp, the encoder builds upon 
the LSTM as follows,

h1,h2,… ,ht 𝒟 LSTM(𝔼ex1 , ed], 𝔼ex2 , ed,a1],… , , 𝔼ext , ed,at−1]) (4)

where ht ∈ ℛKh is the hidden state at t-th timestamp and Kh is the dimen-
sion of hidden vectors. The last hidden state ht is used to initialize the 
decoder. We aggregated all the hidden states via an attention mecha-
nism for automatically focusing on important historical timestamps. 
We calculate the attention weight αt,s using a method that concatenates 
each previous hidden state hs with the current state ht, and the product 
of two states. That is,

αt,s 𝒟 score (ht,hs) 𝒟 Φ (W⊤
α 𝔼ht,hs,ht ⊙ hs])

αααt 𝒟 softmax (αt,1,αt,2,… ,αt,t−1)
(5)

where Φ is hyperbolic tangent function, Wα ∈ ℝ3Kh is learnable param-
eter matrix. Using the generated attention energies, we calculate the 
context vector ho for each patient up to t time stamp as ho 𝒟 ∑t−1

s=1 αt,shs.
We predict the potential outcome yt using the attentively aggre-

gated vector ho, current hidden state ht and the treatment at. The predic-
tion serves as the input to the initial state of the decoder,

y′t 𝒟 Wp(𝔼ho,ht,at]) + bp (6)

where Wp ∈ ℛKy×(2Kh+1) and bp ∈ ℛKy are parameters to learn.

Decoder for follow-up period. Initializing with the last hidden state 
of the encoder and true/predicted outcomes, the decoder recurrently 
predicts the potential outcome at each timestamp with different treat-
ment sequences. We obtain the hidden states of the decoder as,

ht+1,… ,hh+ζ 𝒟 LSTM(𝔼at, ed, yt],… , 𝔼at+ζ−1, ed, yt+ζ−1]) (7)

We integrate the encoder outputs and the current hidden state of the 
decoder via an attention layer. We generate the aggregated context 
vector ct+j at each timestamp as,
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βt+j,u 𝒟 Φ (W⊤
β 𝔼ht+j,hu])

βt+j,u 𝒟 softmax (βt+j,1,βt+j,2,… ,βt+j,t)

ct+j 𝒟
t
∑
u=1

βt+j,uhu

(8)

where Φ is hyperbolic tangent function, 𝒟hu}
t
u=1 are the encoder outputs 

and Wβ ∈ ℛ2Kh is the parameter to learn.
We predict the outcomes y′t+j by combining the learned context 

vector with current treatment as

y′t+j 𝒟 Wq𝔼ht+j, ct+j,at+j] + bq for j 𝒟 1, 2,… , ζ (9)

where Wq ∈ ℛKy×(2Kh+1) and bq ∈ ℛKy are parameters to learn. During the 
training, we use the teach-forcing technique with a ratio of 0.5 to train 
the model with ground truth treatments and outcomes. In the infer-
ence/testing, we feed the decoder’s predictions (both outcomes and 
treatments) back to itself for each step. The current predictions are 
based on the previous predictions during the inference, which is con-
sistent with the practical application scenario.

We identify the optimal treatment sequence via a greedy-style strat-
egy instead of checking every possible treatment trajectory. We select 
the best treatment option according to the predicted outcomes at each 
step and use it for the next prediction. Compared with the permutation 
of all possible combinations (up to 2ζ) of treatments, our strategy is 
more time efficient with the increasing of ζ. Then we can compute the 
treatment effect for (t + j)-th timestamp using equation (1) as,

δ′j 𝒟 y′a=1t+j − y′a=0t+j for j 𝒟 1, 2,… , ζ (10)

where y′a=1t+j  is the predicted outcome when receiving the treatment at 
(t + j)-th timestamp, and y′a=0t+j  is the predicted outcome when not receiv-
ing the treatment. Thus we determine the optimal treatment assign-
ments among all ζ time period using equation (2) as,

π′ 𝒟 𝔼 (δ′t+1 < 0),… , (δ′t+ζ < 0)] (11)

Balancing matching. To adjust the inherent treatment selection bias 
in the data, we adopt the idea of balancing scores56 to construct pseudo 
mini-batches that mimic the corresponding randomized controlled 
trial process (that is, the treatment groups are randomly split and 
the patient distribution in each group is balanced). We illustrate the 
process of balancing matching in Fig. 3. Specifically, we match, for 
each patient in the original mini-batch, the unobserved counterfactual 
outcomes (that is, the potential outcomes under other possible treat-
ment options except the observed one), with the observed outcomes 
of nearest neighbours in the training data. There are several methods 
to obtain the nearest neighbour by computing the distance among 
individuals. Here, we estimate the distance via the propensity score27, 
which is defined as the conditional probability receiving the treatments 
m* given historical information up to the current timestamp:

PSm∗ 𝒟 P (Aa=m∗
t+1,t+ζ|Xt,At,d) (12)

Here, m* denotes a possible treatment sequence during ζ. We use a 
pre-trained T4 as a propensity score estimator to calculate the pro-
pensity scores for each patient in the training set.

The distance between patient i with treatments m*, and the patient 
j with treatments n* is defined using absolute distance as,

Δn(i, j) 𝒟 ||PS
m∗
i − PSn∗j || (13)

where PSm∗
i  and PSn∗j  denote the estimated propensity scores for two 

respective patients. We then obtain the nearest neighbours of patient 
i in treatment group n* as,

κn(i) 𝒟 argmin
j

Δn(i, j) (14)

Finally the matched mini-batch is combined with the original mini-batch 
as a whole for the following training process. Our balancing matching 
incorporates the balancing matching with representation learning as a 
whole and thus inherits the advantages of both the matching-based meth-
ods and the representation-learning-based methods. The confounding 
bias will be mitigated within each mini-batch and the proposed model 
achieves better performance than the state-of-the-art methods in treat-
ment effect estimation (see results in Supplementary Tables 9 and 10).

Objective function. We first pre-train our model T4 to estimate the 
propensity scores for balancing matching. We obtain the treatment 
prediction using a linear layer and sigmoid function as,

a′t+j 𝒟 sigmoid (W⊤
a 𝔼ht+j, ct+j] + ba) (15)

where Wa ∈ ℛ2Kh  and ba ∈ ℛ are parameters to learn. We use the 
cross-entropy loss for the treatment prediction as,

ℒa 𝒟 − 1
N

1
ζ

N
∑
i=1

ζ
∑
j=1

(ai
t+j loga

′i
t+j + (1 − ai

t+j) log (1 − a′it+j)) (16)

The training objective function for the outcome prediction is the mean 
squared error between the predicted potential outcomes and factual 
outcomes as,

ℒy 𝒟
1
N

N
∑
i=1

1
ζ

ζ
∑
j=1

(y′it+j − yit+j)
2

(17)

The overall training procedure of T4 is demonstrated in Algorithm 1.

Model interpretability
Interpretability is a very desirable property in treatment effect estima-
tion and treatment timing recommendation problems. In this paper, we 
realize the interpretability of treatment recommendation by analysing 
both global and variable-level contribution.

Global contribution. The global contribution is the contribution of 
each timestamp in the baseline period to the treatment recommenda-
tion given in the follow-up period. The outputs of the encoder are sent 
to the decoder and integrated together with the hidden states of the 
decoder through the attention layer. We obtain the learned attention 
weights βt+j,u as the contribution of u-th timestamp to the treatment rec-
ommendation given at (t + j)-th timestamp according to equation (9).

Variable-level contribution. Each timestamp contains a number of 
temporal variables (for example, lab tests and vital signs), and based 
solely on the contribution at the global level, we are unable to identify 
the impact of each individual variable. We then examine the contribu-
tion of each variable via a variable importance analysis. Specifically, 
given the temporal covariates xu, we first predict outcomes y′

x−i
u

 when 

excluding all the information from the i-th dimension of xt. Here, we 
mask the corresponding information by replacing them with the mean 
value of i-th variable across the dataset. We compute the prediction 
loss ℒy(y′x−i

u
, y) using equation (17) except that the predicted outcomes 

are replaced with y′
x−i
u

. Finally, the contribution of each variable i at u-th 
timestamp is computed as,

ωu,i 𝒟 ℒy(y′x−i
u
, y) − ℒy(y′, y)

ωu,i 𝒟 softmax (ωu,1,ωu,2,… ,ωu,Kx )
(18)

where ℒy(y′, y) is the prediction loss when all features of xt are included 
in the loss computation. We multiply the global-level contribution and 
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the variable-level contribution (βt+j,uωu,i) to obtain the contribution of 
each variable at each timestamp.

Uncertainty quantification
The uncertainty quantification of the estimated treatment effects is 
also important for treatment recommendation. In this paper, we adopt 
MC Dropout23,57 to quantify the model uncertainty by applying dropout 
during both the training and testing process. Specifically, with the 
dropout enabled during the testing, the model generates a different 
output for every forward pass for the same input. Suppose we have K 
iterations, and for iteration k, we obtain the estimated effect δ′j,k. Then 
the model uncertainty η(δ′j ) is computed as,

η(δ′j ) 𝒟
1
K

K
∑
k=1

(δ′j,k)
2 − ( 1

K

K
∑
k=1
(δ′j,k))

2

(19)

In this way, each ITE δ′j is equipped with according uncertainty estimates 
η(δ′j ). We use the estimated uncertainty for (1) quantifying the confi-
dence associated with the estimated ITEs and provided recommenda-
tion. If the estimated uncertainty exceeds a certain threshold (that is, 
η(δ′j ) > η0), our model will alert the doctors that the provided recom-
mendation is not reliable. (2) Determining whether to assign a treat-
ment at each timestamp. We derive the standard deviation from the 
variance and then calculate the 95% confidence intervals of the ITE 
estimator. Our treatment recommendation strategy is that, at each 
timestamp in the follow-up period, the treatment will be assigned to 
the patient if the upper bound of δ′j is less than zero, and the treatment 
will not be assigned if the lower bound of δ′j is larger than or equal to 
zero. The estimated uncertainty here is to enhance the robustness of 
prediction and guarantee the effectiveness of treatment recommenda-
tion. Our experiments show that the adopted uncertainty quantifica-
tion method is more efficient in monitoring estimation error when 
compared to propensity calibration and random exclusion (see Sup-
plementary Fig. 7).

Implementation details
The proposed model is implemented using Python 3.6 and PyTorch 
1.4 and trained on Ubuntu 20.04 with NVIDIA GeForce RTX 2080 Ti. 
We train our model using the adaptive moment estimation (Adam) 
algorithm. Dropout23 is enabled during the training and testing 
for uncertainty estimation. The data is randomly split into train-
ing, validation and test sets (70%, 10%, 20%, repectively) and the 
validation set is used to improve the models and select the best 
model hyper-parameters (see Supplementary Tables 4 and 5 for 
hyper-parameter tuning of the proposed model and baseline models, 
respectively). The maximum length of the baseline period is 48-hour 
(additional analysis of the maximum length of the baseline period 
is in Supplementary Fig. 4). We report the performance on the test 
sets for all methods. The final results are averaged on five random 
realizations. The values of both temporal and static covariates are 
normalized as follows,

xt,i 𝒟
xt,i −mean(xt,i)

std(xt,i)
(20)

where mean(xt,i) and std(xt,i) are the mean and standard deviation of i-th 
variable in xt over the entire dataset. The detailed model configuration 
is in Supplementary Fig. 1.

Data availability
The MIMIC-III dataset is publicly available from PhysioNet (https://
mimic.physionet.org/). AmsterdamUMCdb is publicly available from 
the Amsterdam Medical Data Science website (https://amsterdam-
medicaldatascience.nl/).

Code availability
The source code for this paper can be downloaded from the GitHub 
repository at https://github.com/ruoqi-liu/T4 or the Zenodo reposi-
tory at https://doi.org/10.5281/zenodo.7683025.

References
1. Rhee, C. et al. Incidence and trends of sepsis in us hospitals using 

clinical vs claims data, 2009-2014. JAMA 318, 1241–1249 (2017).
2. Arefian, H. et al. Hospital-related cost of sepsis: a systematic 

review. J. Infect. 74, 107–117 (2017).
3. Buchman, T. G. et al. Sepsis among medicare beneficiaries:  

1. the burdens of sepsis, 2012–2018. Crit. Care Med. 48,  
276 (2020).

4. Treatment for sepsis. Sepsis Alliance https://www.sepsis.org/
sepsis-basics/treatment/ (2021).

5. Dellinger, R. P. et al. Surviving Sepsis Campaign: international 
guidelines for management of severe sepsis and septic shock, 
2012. Intensive Care Med. 39, 165–228 (2013).

6. Bacterial-infections in sepsis. Sepsis Alliance https://www.sepsis.
org/sepsisand/bacterial-infections/ (2021).

7. Moss, S. R. & Prescott, H. C. Current controversies in sepsis 
management. Semin. Respir. Crit. Care Med. 40, 594–603 (2019).

8. Klompas, M. & Rhee, C. Current sepsis mandates are overly 
prescriptive, and some aspects may be harmful. Crit. Care Med. 
48, 890–893 (2020).

9. Rhodes, A. et al. Surviving Sepsis Campaign: International 
Guidelines for Management of Sepsis and Septic Shock: 2016. 
Intensive care medicine. 43, 304–377 (2017).

10. Levy, M. M., Evans, L. E. & Rhodes, A. The Surviving Sepsis 
Campaign bundle: 2018 update. Intensive Care Med. 44, 925–928 
(2018).

11. Kalil, A. C., Johnson, D. W., Lisco, S. J. & Sun, J. Early goal-directed 
therapy for sepsis: a novel solution for discordant survival 
outcomes in clinical trials. Crit. Care Med. 45, 607–614 (2017).

12. Liu, V. X. et al. The timing of early antibiotics and hospital 
mortality in sepsis. Am. J. Resp. Crit. Care Med. 196, 856–863 
(2017).

13. Seymour, C. W. et al. Time to treatment and mortality during 
mandated emergency care for sepsis. N. Engl. J. Med. 376, 
2235–2244 (2017).

14. IDSA Sepsis Task Force. Infectious Diseases Society of America 
(IDSA) position statement: why IDSA did not endorse the 
Surviving Sepsis Campaign guidelines. Clin. Infect. Dis. 66, 
1631–1635 (2018).

15. Rhee, C., Strich, J. R., Klompas, M., Yealy, D. M. & Masur, H. SEP-1 
has brought much needed attention to improving sepsis care… 
but now is the time to improve SEP-1. Crit. Care Med. 48, 779–782 
(2020).

16. Zhang, D., Micek, S. T. & Kollef, M. H. Time to appropriate antibiotic 
therapy is an independent determinant of postinfection ICU and 
hospital lengths of stay in patients with sepsis. Crit. Care Med. 43, 
2133–2140 (2015).

17. Shashikumar, S. P., Josef, C., Sharma, A. & Nemati, S. DeepAISE-an 
interpretable and recurrent neural survival model for early 
prediction of sepsis. Artificial intelligence in medicine 113, 102036 
(2019).

18. Tsoukalas, A., Albertson, T. & Tagkopoulos, I. From data to optimal 
decision making: a data-driven, probabilistic machine learning 
approach to decision support for patients with sepsis. JMIR Med. 
Inform. 3, e3445 (2015).

19. Raghu, A. et al. Deep reinforcement learning for sepsis treatment. 
Preprint at https://doi.org/10.48550/arXiv.1711.09602 (2017).

20. Raghu, A., Komorowski, M. & Singh, S. Model-based 
reinforcement learning for sepsis treatment. Preprint at  
https://doi.org/10.48550/arXiv.1811.09602 (2018).

http://www.nature.com/natmachintell
https://mimic.physionet.org/
https://mimic.physionet.org/
https://amsterdammedicaldatascience.nl/
https://amsterdammedicaldatascience.nl/
https://github.com/ruoqi-liu/T4
https://doi.org/10.5281/zenodo.7683025
https://www.sepsis.org/sepsis-basics/treatment/
https://www.sepsis.org/sepsis-basics/treatment/
https://www.sepsis.org/sepsisand/bacterial-infections/
https://www.sepsis.org/sepsisand/bacterial-infections/
https://doi.org/10.48550/arXiv.1711.09602
https://doi.org/10.48550/arXiv.1811.09602


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00638-0

21. Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. 
A. The artificial intelligence clinician learns optimal treatment 
strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 
(2018).

22. Utomo, C. P., Li, X. & Chen, W. Treatment recommendation in 
critical care: a scalable and interpretable approach in partially 
observable health states. In Int. Conf. Information Systems (2018).

23. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: 
representing model uncertainty in deep learning. In Int. Conf. 
Machine Learning ’16 (2016).

24. Johnson, A. E. et al. MIMIC-III, a freely accessible critical care 
database. Sci. Data 3, 160035 (2016).

25. Thoral, P. J. et al. Sharing ICU patient data responsibly under the 
Society of Critical Care Medicine/European Society of Intensive 
Care Medicine Joint Data Science Collaboration: the Amsterdam 
University Medical Centers database (AmsterdamUMCdb) 
example. Crit. Care Med. 49, e563 (2021).

26. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural 
Comput. 9, 1735–1780 (1997).

27. Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity 
score in observational studies for causal effects. Biometrika 70, 
41–55 (1983).

28. Singer, M. et al. The third international consensus definitions for 
sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

29. Vincent, J.-L. et al. The SOFA (Sepsis-related Organ Failure 
Assessment) score to describe organ dysfunction/failure. 22, 
707–710 (1996).

30. Vincent, J.-L. et al. Use of the SOFA score to assess the incidence 
of organ dysfunction/failure in intensive care units: results of a 
multicenter, prospective study. Crit. Care Med. 26, 1793–1800 
(1998).

31. Ferreira, F. L., Bota, D. P., Bross, A., Mélot, C. & Vincent, J.-L. Serial 
evaluation of the SOFA score to predict outcome in critically ill 
patients. JAMA 286, 1754–1758 (2001).

32. Diabetes-diagnosis and treatment. Mayo Clinic https://
www.mayoclinic.org/diseases-conditions/diabetes/
diagnosis-treatment/drc-20371451 (2021).

33. Wager, S. & Athey, S. Estimation and inference of heterogeneous 
treatment effects using random forests. J. Am. Stat. Assoc. 113, 
1228–1242 (2018).

34. Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual 
treatment effect: generalization bounds and algorithms. In Int. 
Conf. Machine Learning 3076–3085 (PMLR, 2017).

35. Seber, G. A. & Lee, A. J. Linear Regression Analysis Vol. 329 (John 
Wiley and Sons, 2012).

36. Liaw, A. & Wiener, M. et al. Classification and regression by 
randomforest. R News 2, 18–22 (2002).

37. Wang, L. (ed.) Support Vector Machines: Theory and Applications 
(Springer, 2005).

38. Hill, J. L. Bayesian nonparametric modeling for causal inference.  
J. Comput. Graph. Stat. 20, 217–240 (2011).

39. Yoon, J., Jordon, J. & van der Schaar, M. GANITE: estimation of 
individualized treatment effects using generative adversarial nets. 
In Int. Conf. Learning Representations (2018).

40. Shi, C., Blei, D. & Veitch, V. Adapting neural networks for the 
estimation of treatment effects. In NeurIPS’19 2503–2513 (2019).

41. Lim, B. Forecasting treatment responses over time using recurrent 
marginal structural networks. In NeurIPS’18 7483–7493 (2018).

42. Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating 
counterfactual treatment outcomes over time through 
adversarially balanced representations. In Int. Conf. Learning 
Representations (2020).

43. Li, R. et al. G-Net: a recurrent network approach to g-computation 
for counterfactual prediction under a dynamic treatment regime. 
In Machine Learning for Health 282–299 (PMLR, 2021).

44. Dupuis, C. & Timsit, J.-F. Antibiotics in the first hour: is there new 
evidence? Expert Rev. Anti Infect. Ther. 19, 45–54 (2021).

45. Im, Y. et al. Time-to-antibiotics and clinical outcomes in 
patients with sepsis and septic shock: a prospective nationwide 
multicenter cohort study. Crit. Care 26, 19 (2022).

46. Alam, N. et al. Prehospital antibiotics in the ambulance for sepsis: 
a multicentre, open label, randomised trial. Lancet Resp. Med. 6, 
40–50 (2018).

47. Rhee, C. et al. Prevalence of antibiotic-resistant pathogens in 
culture-proven sepsis and outcomes associated with inadequate 
and broad-spectrum empiric antibiotic use. JAMA Netw. Open 3, 
e202899 (2020).

48. Singer, M. Antibiotics for sepsis: does each hour really count, or 
is it incestuous amplification? Am. J. Respir. Crit. Care Med. 196, 
800–802 (2017).

49. Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. & Mahmood, F. 
Synthetic data in machine learning for medicine and healthcare. 
Nat. Biomed. Eng. 5, 493–497 (2021).

50. Strich, J. R., Heil, E. L. & Masur, H. Considerations for empiric 
antimicrobial therapy in sepsis and septic shock in an  
era of antimicrobial resistance. J. Infect. Dis. 222, S119–S131 
(2020).

51. Severe Sepsis and Septic Shock Antibiotic Guide (Stanford Health, 
2017).

52. Rubin, D. B. Causal inference using potential outcomes:  
design, modeling, decisions. J. Am. Stat. Assoc. 100, 322–331 
(2005).

53. Robins, J. M. & Hernán, M. A. in Longitudinal Data Analysis  
(eds. Fitzmaurice, G. et al.) 553–599 (Chapman and Hall, 2009).

54. Robins, J. M., Hernán, M. A. & Brumback, B. Marginal structural 
models and causal inference in epidemiology. Epidemiology 11, 
550–560 (2000).

55. Hernán, M. A. & Robins, J. M. Causal Inference (2010).
56. Schwab, P., Linhardt, L. & Karlen, W. Perfect match: a simple 

method for learning representations for counterfactual inference 
with neural networks. Preprint at https://doi.org/10.48550/
arXiv.1810.00656 (2018).

57. Jesson, A., Mindermann, S., Shalit, U. & Gal, Y. Identifying 
causal-effect inference failure with uncertainty-aware models. 
Adv. Neural Inf. Process. Syst. 33, 11637–11649 (2020).

Acknowledgements
This work was funded in part by the National Science Foundation 
under award number IIS-2145625 and by the National Institutes of 
Health under award number UL1TR002733. The content is solely 
the responsibility of the authors and does not necessarily represent 
the official views of the National Science Foundation or the National 
Institutes of Health.

Author contributions
P.Z. conceived the project. R.L. and P.Z. developed the method. R.L. 
conducted the experiments. R.L. and P.Z. analysed the results. R.L., 
K.M.H., J.M.C. and P.Z. wrote the manuscript. All authors read and 
approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s42256-023-00638-0.

Correspondence and requests for materials should be addressed to 
Ping Zhang.

http://www.nature.com/natmachintell
https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
https://doi.org/10.48550/arXiv.1810.00656
https://doi.org/10.48550/arXiv.1810.00656
https://doi.org/10.1038/s42256-023-00638-0


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00638-0

Peer review information Nature Machine Intelligence thanks Deepti 
Gurdasani and the other, anonymous, reviewer(s) for their contribution 
to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)  
holds exclusive rights to this article under a publishing agreement 
with the author(s) or other rightsholder(s); author self-archiving  
of the accepted manuscript version of this article is solely  
governed by the terms of such publishing agreement and  
applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2023

http://www.nature.com/natmachintell
http://www.nature.com/reprints


nature machine intelligence

https://doi.org/10.1038/s42256-023-00638-0Article

Estimating treatment effects for time-to-
treatment antibiotic stewardship in sepsis

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s42256-023-00638-0


Supplementary Material
Additional related work
On-policy learning Existing work of on-policy learning with reinforcement learning is proposed to first represent the actual
environment by using a generative model and then learn optimal policies based on the generative environment. Bangaru
et al.,13 introduce an adaptive exploration signal as a pseudo-reward from a deep generative model in order to deduce the
Markov Decision Process (MDP). Xiao et al.,14 propose to apply generative adversarial networks (GAN) to learn the dynamics
of the environment for model-based reinforcement learning. Andersen et al.,15 propose to create a generative environment
using variational autoencoder (VAE) and learn optimal policies based on the generated samples. Baucum et al.,16 propose
transitional variational autoencoders (tVAE), a generative model that produces realistic patient trajectories with few distributional
assumptions, and can learn effective treatment policies.

Time-varying ITE More recently, transformers have become state-of-the-art in modeling sequential data and achieve better per-
formance than LSTMs. A recent work17 proposes a transformer-based model for time-varying ITE with a novel counterfactual
domain confusion loss to address confounding bias.

Additional details on experimental setup
Real-world data

Supplementary Table 1. The list of antibiotics in MIMIC-III Dataset. There are 18 kinds of antibiotics in total.

Category Name

Antibiotic

Cefazolin, Cefepime, Ceftazidime,
Ciprofloxacin, Clindamycin, Erythromycin,
Gentamicin, Levofloxacin, Metronidazole,
Moxifloxacin, Piperacillin, Rifampin,
Tobramycin, Vancomycin, Amikacin,
Ampicillin, Azithromycin, Aztreonam

Supplementary Table 2. The definition of SOFA score and its components across six organ systems. Each SOFA
component score ranges from 0 (normal) to 4 (most abnormal). The total SOFA score ranges from 0 (normal) to 24 (most
abnormal).

SOFA score 1 2 3 4

Respiration PaO2/FiO2, mmHg < 400 < 300 < 200 < 100

Coagulation Platelets ×103 /mm3 < 150 < 100 < 50 < 20

Liver Bilirubin, mg/dl 1.2 - 1.9 2.0 - 5.9 6.0 - 11.9 > 12.0
(µmol/l) (20 - 32) (33 - 101) (102 - 204) (> 204)

Cardiovascular Hypotension MAP < 70 mmHg Dopamine ≤ 5 Dopamine > 5 Dopamine > 15
or dobutamine (any dose) or epinephrine ≤ 0.1 or epinephrine > 0.1

or norepinephrine ≤ 0.1 or norepinephrine > 0.1

Central nervous system (CNS)
Glasgow Coma Score (GCS) 13 - 14 10 - 12 6 - 9 <6

Renal Creatinine, mg/dl 1.2 - 1.9 2.0 - 3.4 3.5-4.9 > 5.0
(µmol/l) or urine (110 - 170) (171 - 299) (300 - 440) (> 440)
output or < 500 ml/day or <200 ml/day
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Supplementary Table 3. The list of variables in MIMIC-III and AdmsterdamDB. There are 22 temporal covariates and 4
demographics and static variables. PT: Prothrombin Time; BUN: Blood Urea Nitrogen; WBC: White Blood Cells count;

Category MIMIC-III AmsterdamDB
Mean Std. Mean Std.

Demographics Age 65.55 16.44 61.30 17.90
Gender 43% Female - 42% Female -
Weight 81.67 25.50 79.83 13.61
Height 169.30 11.17 175.15 8.44

Lab test Anion gap 13.35 3.80 8.70 4.62
Bicarbonate 25.65 5.27 25.63 6.35
Bilirubin 3.36 6.41 3.15 6.85
Creatinine 1.50 1.46 1.28 1.03
Chloride 104.00 6.60 108.60 46.31
Glucose 134.00 66.83 133.9 45.74
Hematocrit 29.96 5.13 38.98 1.67
Hemoglobin 10.09 1.79 12.57 1.64
Lactate 2.44 2.14 2.40 2.95
Platelet 235.05 155.28 220.82 171.65
Potassium 4.08 0.63 5.58 602.56
PT 17.76 8.95 1.59 10.12
Sodium 138.84 5.32 140.88 43.45
BUN 29.85 23.54 14.15 9.80
WBC 11.23 7.64 14.56 11.80

Vital signs

Heart Rate 87.81 18.30 92.70 23.65
SysBP 120.92 23.28 126.05 139.59
DiasBP 61.41 14.55 60.77 31.11
Meanbp 78.70 16.88 82.12 47.34
Respratory 20.48 5.90 21.99 7.71
Temperature 36.96 0.85 36.73 21.14
SpO2 97.00 3.27 96.09 7.43

Supplementary Figure 1. Model configuration.
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Supplementary Table 4. Hyperparameter search range and optimal hyperparameters for T4.

Hyperparameter range Optimal hyperparameters
Augmentation ratio 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1.0 0.4
Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5 5e-5
Embedding size 16, 32, 64, 128 32
Hidden layer size 32, 64, 128, 256 128
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.3
Batch size 8, 16, 32, 64 32
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Synthetic Data

To illustrate the model performance on ITE estimation and treatment recommendation, we design experiments on a synthetic
dataset. We first simulate temporal covariates xt as a weighted sum of historical covariates xt−1 and treatment assignments at−1
as follows,

xt |xt−1,at−1 ∼
1

∑
t−1
j=1 w j

t−1

∑
j=1

w j(x j +λa j) (21)

where the weight w j = w j−1 ∗ 2 forms a geometric sequence with ratio 2, λ ∼ N (0,0.1) controls the influence of
historical treatment assignments. The initial covariates are simulated by a multi-variable Gaussian distribution as x1 ∼
N (0kt ,0.1 ·(Σ ·Σ⊤)), where Σ ∼U ((−1,1)kt×kt ) is simulated by a uniform distribution and kt is the dimension of the temporal
covariates. We also simulate static covariates c with the same distribution. We then simulate the treatment assignment at at
each timestamp as,

at |xt ,c ∼ Bernoulli(σ(s⊤[xt ,c]+m)) (22)

where s ∼ N (0k,0.1 · I), k is the dimension of all covariates, I is the identity matrix, and m ∼ N (0,0.1). σ(·) is the sigmoid
function and [·] concatenates two vectors as a whole. The outcome is simulated as a function of temporal covariates, static
covariates and treatments as follows,

yt |xt ,at ∼ q⊤[xt ,c,βat ]+ ε (23)

where q ∼ N (0k+1,0.05 · (Σ ·Σ⊤)), Σ ∼ U ((−1,1)(k+1)×(k+1)), β ∼ N (0,0.5) controls the influence of treatments, and
ε ∼ N (0,0.1).

In this paper, we simulate 5000 patients with 50 timestamps, kt = 20 temporal covariates and 5 static covariates. We use the
first 40 timestamps as the baseline period and the remaining as the follow-up period. Note that the timestamp here corresponds
to the hour in the physical time unit without any time interval aggregation as in real-world data. The synthetic dataset and codes
for simulation are available at https://github.com/ruoqi-liu/T4.

Semi-synthetic data based on MIMIC-III

To further evaluate our model on real patient trajectories while having available counterfactual ground truth for evaluation, we
generate a semi-synthetic dataset based on MIMIC-III data. Specifically, we simulate treatment assignment at and potential
outcome yt given real patient covariates (i.e., 22 time-varying covariates and 4 static covariates). The treatment assignment
is simulated by at |xt ,c ∼ Bernoulli(σ(s⊤[xt ,c] +m)), where s ∼ N (0k,0.1 · I), k is the dimension of all covariates, I
is the identity matrix, and m ∼ N (0,0.1). σ(·) is the sigmoid function and [·] concatenates two vectors as a whole. The
outcome is simulated as a function of temporal covariates, static covariates and treatments as yt |xt ,at ∼ q⊤[xt ,c,βat ] + ε ,
where q ∼ N (0k+1,0.05 · (Σ ·Σ⊤)), Σ ∼ U ((−1,1)(k+1)×(k+1)), β ∼ N (0,0.5) controls the influence of treatments, and
ε ∼ N (0,0.1).

Baseline Methods

We conduct comparison experiments against the state-of-the-art methods of ITE estimation in the following categories: (1)
Classical methods: Linear Regression (LR)4, Random Forest (RF)5 and support vector machine (SVM)6 are included as the
basic machine learning models for comparison. They directly regard the treatment assignment as an additional feature and
predict potential outcomes based on the patient’s covariates under different treatments; (2) Forest-based methods: Causal
Forest (CF)2 and Bayesian Additive Regression Trees (BART)7 are two commonly used tree-based models for causal effect
estimation. CF extends the classical model RF in that instead of minimizing prediction error, it split the data for maximizing
the difference of treatment effects across splits. BART is a non-parametric Bayesian regression tree model that each tree is
a learner constrained by a regularization prior; (3) Representation learning-based methods: Counterfactual Regression
(CFR)3 construct balanced representations in the hidden space via deep neural network. We compare two variants of CFR:
one is equipped with Wasserstein (WASS) as distance metrics for distribution balance and the other is the vanilla version
without any distribution balance (TARNET). GANITE8 estimates the ITEs via a generative adversarial network by generating
and discriminating counterfactuals. Dragonnet9 jointly optimize propensity prediction and potential outcome prediction for
ITE estimation. (4) Time-varying based methods: Recurrent Marginal structural Network (RMSM)10 adopts recurrent
marginal structural network for predicting the patient’s potential response to a series of treatments. Counterfactual Recurrent
Network (CRN)11 adopts adversarial training techniques to balance the historical confounding variables. G-Net12 is a g-
computation based deep sequential modeling framework that provides estimates of treatment effects under dynamic and
time-varying treatment strategies. We further adapt existing time-varying methods in our setting by estimating treatment effects
and obtaining optimal treatment policies at each timestamp.
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Hyperparameter tuning for time-varying based ITE models.

Supplementary Table 5. Ranges for hyperparameter tuning for time-varying based ITE models.

Model Module Hyperparameter Search range

RMSN

Propensity networks

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size 32, 64, 128, 256
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 50

Encoder

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size 32, 64, 128, 256
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 50

Decoder

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size 32, 64, 128, 256
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 20

CRN

Encoder

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size 32, 64, 128, 256
Balancing representation size (dr) 32, 64, 128, 256
FC hidden units 0.5dr, 1dr, 2dr
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 50

Decoder

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size Balancing representation size of encoder
Balancing representation size (dr) 32, 64, 128, 256
FC hidden units 0.5dr, 1dr, 2dr
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 30

G-Net -

Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Embedding size 16, 32, 64, 128
Hidden layer size 32, 64, 128, 256
Output size (dr) 32, 64, 128, 256
FC hidden units 0.5dr, 1dr, 2dr
Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch size 8, 16, 32, 64
Random search iterations 50

Performance Measurement

We use Precision in Estimation of Heterogeneous Effect (PEHE) to evaluate the model performance on ITE estimation.
Specifically, PEHE computes the mean squared error (MSE) between the values of ground truth ITE δ i

j and estimated ITE δ ′i
j

as follows,
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PEHE =
1
ζ

1
N

ζ

∑
j=1

N

∑
i=1

(δ i
j −δ

′i
j )

2 (24)

Besides the individual-level evaluation, we are also interested in the causal effect over the entire population. We use the error of
Average Treatment Effect (εATE) to evaluate the model performance, which is computed as the mean absolute error (MAE)
between the ground truth and estimated ATE as,

εATE =
1
ζ

ζ

∑
j=1

| 1
N

N

∑
i=1

δ
i
j −

1
N

N

∑
i=1

δ
′i
j | (25)

Two metrics are all averaged on ζ follow-up timestamps and PEHE is regarded as the primary evaluation metric.

Additional experimental results
Real-world data

Additional results of the population-level analysis. In addition to the population-level analysis in Fig. 4, we further
calculate the percentage of patients in the target group (i.e., the patients under actual treatments that are different from the
model’s recommendation) among all the patients in Supplementary Table 6.

Supplementary Table 6. The percentage of patients who received treatments different from the model’s recommendation
(median, %).

30-day mortality 60-day mortality
Follow-up period 3 4 5 6 7 3 4 5 6 7
MIMIC-III 50.10 53.40 48.81 36.37 23.90 50.41 53.24 50.38 36.39 23.69
AmsterdamUMCdb 54.55 64.28 67.46 64.72 59.33 54.76 64.34 68.17 63.00 58.58

To demonstrate the similarity between two groups of patients for mortality comparison, we show the distribution of the
length of ICU stays before the follow-up period and SOFA scores in Supplementary Fig. 2. We randomly select 20 patients
under actual treatments and their matched patients under model-recommended treatments. We observe that the length of the
ICU stays and the SOFA scores are similar within each matched pair (i.e., most blue circles and yellow triangles are overlapped
or close to each other).
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Supplementary Figure 2. Similarity evaluation of 20 randomly selected patients. Fig.2(a) shows the length of the ICU stays
of matched pairs. Fig. 2(b) shows the SOFA scores of matched pairs.
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Besides experiments on septic patients, we also evaluate our model on patients with suspected sepsis who will or will
not develop sepsis eventually. We conduct experiments on the suspected sepsis cohort obtained from the MIMIC-III dataset.
As shown in Supplementary Fig. 3, the mortality rate of patients with treatments received at different timestamps as our
recommendation (under actual treatments) is higher than the average mortality rate baseline, while the mortality rate of patients
with treatments received at the same timestamps as our recommendation is lower than the baseline. This demonstrates that the
model can also provide effective treatment strategies for suspected septic patients.
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Supplementary Figure 3. Mortality rate comparison of suspected septic patients obtained from MIMIC-III dataset. Within
the bar-chart, the error bars denote 95% confidence interval with n=30 bootstrap samples. Blue and red bars denote patients
under actual treatments and patients under model-recommended treatments, respectively. The total mortality rate of two groups
of patients is plotted using a black dashed line, which serves as the baseline.

Quantitative analysis of the width of confidence intervals. In Supplementary Table 7, we show a quantitative analysis of
the relationship between the standard deviations and the length of the follow-up period. We calculate the average standard
deviation of all the patients in the test set for each follow-up step. We observe that the standard deviation increases with the
increase of the follow-up period.

Supplementary Table 7. The average standard deviation of estimated treatment effect δ in the follow-up period.

ζ 1 2 3 4 5 6

Standard deviation of δ 0.03843 0.03950 0.03975 0.03996 0.03992 0.04011

Influence of the length of the baseline period. We set the maximum length of the baseline period as 16 timestamps.
Here, we aggregate 3-hour as 1 timestamp as the real-world EHR data is commonly sparse and irregularly sampled. Thus 16
timestamps denote 48-hour in physical time. We aim to use the early data collected during the follow-up period for capturing the
personalized characteristics of septic patients and then recommend optimal timing for ATBs in the follow-up period. We also
explore the influence of the length of the baseline period and follow-up period using the MIMIC-III dataset. We evaluate the
performance of factual prediction on SOFA scores over different lengths of the baseline period (8 to 16 timestamps). As shown
in Supplementary Fig. 4, the model achieves the best performance with the length of baseline period equals 16 timestamps.

Comparison experiments on factual prediction. We conduct comprehensive comparison experiments for the factual
prediction of SOFA scores on the MIMIC-III dataset. In Supplementary Table 8, we report the mean and standard deviation of
mean squared error (MSE) of each method among different lengths of the follow-up period. The results show that our method
consistently outperforms all the baselines in the factual prediction of SOFA scores.

Additional individual-level analysis. We showcase the situation that our recommended treatment timing is later than the
factual treatment timing (Supplementary Fig. 5), indicating that the recommended timing of antibiotics depends on the
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Supplementary Figure 4. The influence of the different lengths of baseline period to factual prediction performance on
MIMIC-III dataset.

Supplementary Table 8. Performance comparison of factual prediction of SOFA scores on MIMIC-III dataset. Here, we
report the estimated mean squared error (MSE) of each method among five different lengths of the follow-up period.

Method ζ = 3 ζ = 4 ζ = 5 ζ = 6 ζ = 7

Base model
LR 0.739±0.094 0.749±0.099 0.768±0.122 0.803±0.171 0.841±0.233
RF 0.613±0.030 0.624±0.029 0.634±0.031 0.638±0.032 0.635±0.028
SVM 0.639±0.029 0.646±0.030 0.652±0.031 0.656±0.030 0.660±0.031

CFR WASS3 0.646±0.017 0.657±0.019 0.656±0.015 0.665±0.018 0.674±0.015
Representation TARNET3 0.663±0.012 0.682±0.022 0.697±0.014 0.687±0.017 0.688±0.024
learning based GANITE8 0.877±0.016 0.884±0.019 0.892±0.013 0.896±0.014 0.904±0.013

Dragonnet9 0.642±0.012 0.640±0.009 0.650±0.015 0.665±0.022 0.666±0.017

Forest based Causal Forest2 0.657±0.022 0.666±0.022 0.676±0.020 0.682±0.021 0.681±0.020
BART7 0.579±0.028 0.594±0.024 0.612±0.028 0.617±0.022 0.619±0.024

Time-varying RMSN10 0.247±0.020 0.233±0.007 0.260±0.005 0.321±0.017 0.378±0.017
based CRN11 0.225±0.011 0.235±0.008 0.263±0.007 0.319±0.018 0.391±0.015

G-Net12 0.221±0.010 0.230±0.006 0.261±0.009 0.313±0.008 0.372±0.012

Ours T4 0.173±0.013 0.212±0.011 0.248±0.007 0.275±0.013 0.335±0.019

individual patient’s health status. We also provide the model interpretability results in terms of global-level and variable-level
contributions to treatment recommendation in Supplementary Fig. 6.
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Supplementary Figure 5. An example to illustrate the treatment recommendation process. The predicted values of ITEs
(red line with shadowed area denoting the uncertainty estimates) for antibiotic (ATB) recommendation. An ATB will be
recommended to the patient if the upper bound of predicted ITE is lower than zero and will not be recommended if the lower
bound of predicted ITE is higher than zero, where zero is the threshold for determining whether to recommend ATBs. The
patient takes ATB in the early stage of the follow-up period, while the model recommends taking ATB later. The predicted
SOFA score under recommended ATBs (blue) is much lower than the true SOFA score (black line).
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Supplementary Figure 6. An example to illustrate model interpretability on treatment recommendation. The most
important global baseline timestamps (orange area) and variables contributing to the treatment recommendation are denoted at
the top subplot. An ATB is recommended at the end of the baseline period. T4 provides transparent antibiotics
recommendation based on the time-varying variables in the baseline period.
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Semi-synthetic data

The comparison results on the semi-synthetic dataset are shown in Supplementary Table 9. The proposed model yields the best
performance among all the baselines.

Supplementary Table 9. Performance comparison of treatment effect estimation on semi-synthetic datasets based on
MIMIC-III. Here, we report the PEHE of each method among five different lengths of the follow-up period. The results are the
average and standard deviation over 10 random runs.

Method ζ = 3 ζ = 4 ζ = 5 ζ = 6 ζ = 7

Base model
LR 1.707±0.239 1.723±0.236 1.741±0.237 1.750±0.242 1.772±0.246
RF 1.167±0.217 1.236±0.242 1.227±0.221 1.257±0.21 1.278±0.201
SVM 0.894±0.128 0.930±0.127 0.941±0.119 0.953±0.115 0.966±0.112

CFR WASS3 0.782±0.022 0.791±0.037 0.809±0.031 0.831±0.028 0.864±0.041
Representation TARNET3 0.814±0.033 0.837±0.021 0.839±0.042 0.852±0.031 0.881±0.053
learning based GANITE8 0.821±0.041 0.832±0.026 0.842±0.024 0.867±0.037 0.889±0.039

Dragonnet9 0.758±0.021 0.762±0.018 0.787±0.073 0.795±0.026 0.823±0.016

Forest based Causal Forest2 1.014±0.127 1.034±0.128 1.043±0.126 1.050±0.123 1.087±0.129
BART7 0.732±0.163 0.744±0.228 0.792±0.137 0.829±0.182 0.858±0.205

Time-varying RMSN10 0.483±0.023 0.502±0.012 0.537±0.017 0.561±0.026 0.579±0.023
based CRN11 0.480±0.012 0.506±0.024 0.532±0.021 0.552±0.021 0.571±0.024

G-Net12 0.475±0.013 0.497±0.011 0.534±0.021 0.548±0.023 0.569±0.027

Ours T4 0.320±0.027 0.348±0.012 0.372±0.013 0.384±0.022 0.395±0.024
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Synthetic data

The performance of the proposed T4 and existing baseline models on different lengths of follow-up period is shown in
Supplementary Table 10. We vary ζ = 3 to 7 and observe that T4 demonstrates better performance compared to the baselines
in terms of PEHE and εATE. We first examine the performance of base machine learning models including LR, RF and SVM.
They directly regard the treatment assignment as an additional feature without considering the influence of confounders. Thus,
the overall performance is lower than the other two categories which adjusts the influence of confounders and selection bias.
Among the three base models, SVM performs better than others for different lengths of the follow-up period.

Representation learning based approaches achieve better performance than the base models. They take advantage of deep
neural network to learn the representations of confounders. GANITE, which adopts the Generative Adversarial Nets (GANs)
for estimating ITEs by modeling the counterfactual distributions, performs better than other representation learning models.
TARNET and CFR WASS share the same fundamental framework excepts that CFR WASS is equipped with Wasserstein
(WASS) as distance measurement for balancing the distribution of different treatment groups in the hidden space. Thus,
the performance of CFR WASS is better than TARNET. Dragonnet achieves comparative performance with TARNET. The
performance of forest based models is relatively better than representation learning based models and BART achieves better
scores than the CF. Time-varying based methods (RMSN and CRN) are designed to estimate ITE with time-varying data. They
generally outperform other baselines which are mainly designed for static data.

Our proposed T4 achieves outstanding performance than all baselines. The model fully considers the temporality of data
by modeling the time-varying confounders via a recurrent neural network, and adjusting the influence of confounders by
constructing pseudo balanced training batches via balancing matching operation. To evaluate the effectiveness of balancing
matching, we design two ablations of the original model. 1) T4-w/o BM: we remove the entire balancing matching component
from the model; 2) T4-w/ Rand.: we augment the training batches with a portion of randomly selected samples. From the
Supplementary Table 10, we observe the performance of T4-w/o BM is lower than the complete T4 model, which demonstrates
that balancing matching improves the model performance by constructing balanced batches and adjusting confounders. We
also find that the performance of T4-w/ Rand. is better than T4-w/o BM but far from T4. The results show that random
mini-batch augmentation only yields limited improvement. Our proposed balancing matching is specifically designed to adjust
the influence of confounding via matching the samples based on the computed balancing scores, and therefore fundamentally
facilitates the ITE estimation. Thus, compared to T4-w/o BM and T4-w/ Rand., T4 achieves the best performance for ITE
estimation. We also consider an enhancing MC-dropout with variational dropout for recurrent networks1 as a replacement for
the original dropout layer (i.e., dropout is applied on the embedding layer). The performance of our model with variational
dropout (T4 (Variat. MC)) is comparable to the model with original dropout layer.

Influence of uncertainty quantification to treatment recommendation

We use the estimated uncertainty to quantify the confidence of estimated ITEs and provided treatment recommendation. In
Supplementary Fig. 7, we demonstrate that our model equipped with uncertainty estimates η(δ ′) achieves lower estimation
error when excluding fewer individuals (withholding recommendation) with uncertain estimation compared to other uncertainty
quantification approaches. Here, the percentage of recommendation withheld in the figure denotes the percentage of excluded
individuals with low confidence during the evaluation. The approach of propensity18 computes and rank the propensity scores
(Eq. (12)) for each individual. Then it excludes the individuals with computed propensity scores either close to 0 or 1. These
individuals are likely to violate the overlap assumption19 in causal inference and lead to inaccurate ITE estimation. The random
approach randomly excludes the individuals and serves as the baseline.

We vary the percentage of recommendation withheld and show the PEHE and εATE on the remaining data samples in
the figure. We observe that estimated PEHE and εATE for three approaches all decline with the increasing percentage of
recommendation withheld because samples with high uncertainty and inaccurate ITE estimation are excluded sequentially.
The uncertainty quantification method η(δ ′) we adopt in our model achieves the best performance among others in terms
of fast decreasing estimation error when the percentage of recommendation withheld increases. The results demonstrate
that uncertainty quantification helps treatment recommendation by explicitly examining the confidence associated with ITE
estimation and treatment recommendation.
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Supplementary Figure 7. The estimated PEHE and εATE of different uncertainty quantification approaches when we vary
the percentage of recommendation withheld. The evaluation metrics are reported on the remaining samples with the provided
recommendation.
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