
D2Taint: Differentiated and Dynamic Information
Flow Tracking on Smartphones for Numerous Data

Sources

Boxuan Gu, Xinfeng Li, Gang Li, Adam C. Champion, Zhezhe Chen, Feng Qin and Dong Xuan
Dept. of Computer Science and Engineering

The Ohio State University

{gub, lixinf, lgang, champion, chenzhe, qin, xuan}@cse.ohio-state.edu

Abstract—With smartphones’ meteoric growth in recent years,
leaking sensitive information from them has become an increas-
ingly critical issue. Such sensitive information can originate from
smartphones themselves (e.g., location information) or from many
Internet sources (e.g., bank accounts, emails). While prior work
has demonstrated information flow tracking’s (IFT’s) effectiveness
at detecting information leakage from smartphones, it can only
handle a limited number of sensitive information sources. This
paper presents a novel IFT tagging strategy using differentiated
and dynamic tagging. We partition information sources into
differentiated classes and store them in fixed-length tags. We
adjust tag structure based on time-varying received information
sources. Our tagging strategy enables us to track at runtime
numerous information sources in multiple classes and rapidly
detect information leakage from any of these sources. We design
and implement D2Taint, an IFT system using our tagging strategy
on real-world smartphones. We experimentally evaluate D2Taint’s
effectiveness with 84 real-world applications downloaded from
Google Play. D2Taint reports that over 80% of them leak data to
third-party destinations; 14% leak highly sensitive data. Our ex-
perimental evaluation using a standard benchmark tool illustrates
D2Taint’s effectiveness at handling many information sources on
smartphones with moderate runtime and space overhead.

I. INTRODUCTION

A. Motivation

Smartphones are becoming increasingly popular. According
to Nielsen data from July 2012, 54.9% of U.S. mobile users
own smartphones and two out of three new handset buyers
bought a smartphone in the past three months [1]. This is
mainly due to smartphones’ all-in-one features combining com-
munication and computing functions, enabling a wide variety
of applications (also referred to as apps).

As smartphones become more widespread, their users’ pri-
vacy and security become critical issues. For example, a Wall

Street Journal study of iOS and Android applications revealed
that 46–55% of smartphone applications transmit users’ private
information such as location and device ID over networks
without users’ awareness or consent [2]. Worse, many users
are enticed to download and run smartphone applications

This research was partially supported by China 973 Project 2011CB302800
and the U.S. National Science Foundation (NSF) under grants No. CCF-
0953759 (CAREER), CCF-1218358, CNS-0916584, CNS-1065136 and CNS-
1218876. Any opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect the views of the
funding agencies.

Internal
Data

Leakage

Email
Online banks

Social networks
…

External Data

 External 
Data

Leakage

Fig. 1: Information leakage in smartphones

without carefully understanding the consequences of accepting
permissions prompted before installation. This can easily lead
to installation of malicious applications. In fact, Trend Micro
reports that over 25,000 Android malware samples were found
in June 2012 alone [3].

Private (or sensitive) information on smartphones comes
from various sources, including sources originating from smart-
phones themselves and sources received from the Internet.
Fig. 1 illustrates this sensitive information and its leakage.
On one hand, smartphones themselves generate sensitive infor-
mation such as photos, GPS locations, and device identifiers
(IMEIs/EIDs). On the other hand, smartphones can receive
sensitive information from a plethora of possible sources over
the Internet. For example, users may check their bank accounts
via a browser or a bank-provided application. Similarly, smart-
phones are often used for checking email contents from servers
such as Gmail or Yahoo! Mail. Privacy can be easily invaded if
sensitive data from one source were sent to another irrelevant
destination, let alone an attacker-controlled one.

Prior work such as TaintDroid [4] has demonstrated that
Information Flow Tracking (IFT) mechanisms can be lever-
aged to detect leakage of sensitive information. Specifically,
TaintDroid extended the Dalvik virtual machine (VM) to tag
smartphone data using 32 possible types based on their origins,
to propagate tags during program execution, and to alert users
when leakage of sensitive data is detected. While effective
at tracking a limited number of sensitive data sources, Taint-
Droid’s scheme cannot scale to handle sensitive data received
from many possible external sources such as Citibank, Bank of
America, and Gmail. For example, after “normal” use in which
a malicious browser accesses a bank website, the browser may



send the bank information to a predefined attacker’s server. In
this scenario, TaintDroid tags the account information data as
“network”, indicating it originates from the network, and may
notify the user before the data are sent to another site. However,
with the general tag “network”, rather than the data’s precise
source, it is difficult for users to determine whether sending the
data is legitimate.

Therefore, it is imperative to design an IFT system for
tracking sensitive data from a large number of possible internal
and external sources on smartphones and informing users via
alerts with relevant source and destination information before
data are sent out.

However, our key challenge is tracking a vast number of
information sources given limited resources. Smartphone data
can originate from many sources such as online banks, social
networking websites, etc. Any smartphone based IFT system
needs to track all these sources in each data tag. Yet tag capacity
is limited, e.g., 32 bits. A naı̈ve approach to solve this challenge
is using one bit to track each source. But this requires many
bits to track all sources, far more bits than the tag length. This
approach leads to enormous tag overhead. Also, tracking data
during program execution is not lightweight as every statement
requires tag propagation. The runtime overhead may be even
higher if a compressed tag system (for saving space overhead)
is used. Crucially, our tracking system cannot be so slow as to
exceed users’ expectations on response times.

B. Contributions

This paper proposes D2Taint, a novel IFT tagging strategy
using differentiated and dynamic tracking. We partition infor-
mation sources into disjoint classes that correspond to different
information sensitivities. We design a flexible tag structure that
stores these classes and their information sources in fixed-
length tags. Our tag structure updates itself on-the-fly based on
time-varying received information sources. Our tagging strategy
enables us to track at runtime numerous information sources in
multiple classes and rapidly detect information leakage from
any of these sources.

In summary, our contributions are as follows:

– We propose a novel IFT strategy using differentiated
and dynamic tagging. With its flexibility, our tag scheme can
handle different numbers of information sources, from a few to
thousands;

– We leverage our tagging strategy to design and implement
D2Taint, an IFT system using differentiated and dynamic
tagging on Nexus One smartphones running Android 2.2;

– We experimentally evaluate D2Taint’s effectiveness with
84 real-world applications downloaded from Google Play [5].
D2Taint reports that 71 out of the 84 evaluated applications leak
either internal or external information to third-party destinations
and 12 out of these 71 applications leak highly sensitive
internal information. D2Taint also detects considerable external
information leakage in 33 out of these 71 applications and
provides detailed information about multiple external sources,
which is much more than TaintDroid can provide. Furthermore,
we evaluate the performance of D2Taint and our dynamic tag

system. Our results show that D2Taint is effective at handling
a large number of sources and it can dynamically adjust its
tag scheme based on users’ behavior during program execution
with moderate space and runtime overheads. For instance,
using the CaffeineMark benchmark, D2Taint’s space overhead
is 4.0%, which is slightly less than TaintDroid’s. D2Taint’s
runtime overhead is 25.9% while TaintDroid’s is 14%. This is
expected, as D2Taint needs more operations for the tag system
and location information table operations.

The rest of the paper is organized as follows. Section II
provides background information on the Android system and
IFT. Section III presents our differentiated and dynamic tagging
strategy. Section IV presents the design and implementation
of D2Taint, respectively. Section V describes our evaluation
methodology. Section VI discusses our experimental results.
Section VII provides related work. Section VIII concludes.

II. BACKGROUND

A. Android System

Android [6] is an open, Linux-based mobile operating system
for which applications are written in Java. They are compiled to
Java bytecode, which is translated to custom Dalvik EXecutable
(DEX) bytecode for the Dalvik virtual machine (VM). Dalvik is
a register-based VM that interprets Android applications’ DEX
bytecode. Applications communicate with each other using
Binder IPC, which enables message passing via parcels.

B. Information Flow Tracking Basics

Information flow tracking (IFT) is a promising and effec-
tive technique for detecting leakage of sensitive data [7]–[9]
and system-compromising security attacks [10]–[12]. It can
be implemented in three different ways, including compiler
analysis on programs written in special type-safe programming
languages [7], [8], [13]–[15], software instrumentation at the
source code, bytecode, or binary level [4], [11], [16], and
architectural support for IFT [9], [12], [17].

To detect leakage of sensitive data, IFT techniques generally
tag (label) the source data using a pre-defined structure, e.g.,
sensitivity level or source IDs. The source data can come from
I/O devices such as disks, keyboards, and cameras. For exam-
ple, data in the password file can be tagged with the highest
sensitivity or the file’s owner ID (root). During program exe-
cution, data tags are propagated based on certain policies. For
example, a = b+c means a’s tag derives b and c’s tags. One
propagation policy could be a.tag = max(b.tag,c.tag)
if we use the sensitivity level as the tag. Finally, the data tag
is checked against security rules whenever certain data are sent
over channels like networks. If a security rule is violated, an
information leakage alarm is raised. An example of such a rule
could be “The most sensitive data (e.g., passwords) may not be
sent over the network.”

III. DIFFERENTIATED AND DYNAMIC TAGGING

A. Design Rationale

Recall from Section I-B that our key challenge is tracking
a vast number of information sources. Smartphone data can



originate from many sources such as online banks, social
networking websites, etc. Any smartphone based IFT system
needs to track all these sources in each data tag. Yet tag capacity
is limited, e.g., 32 bits. A naı̈ve approach to solve this challenge
is using 1 bit to track each source. However, this requires many
bits to track all sources, far more bits than the tag length. This
approach leads to enormous tag overhead. On the other hand,
we aim to achieve two contradictory goals: source completeness

and accuracy of source information. Source completeness refers
to how many information sources we capture. Clearly, we
want to capture as many sources as possible. Accuracy of
source information refers to the accuracy with which we map
information recorded in the tag to the specific information
source that was recorded. This information recorded in the tag
should uniquely identify this information source. But this may
be infeasible due to the limited tag length. A better solution
must be sought.

In this paper, we propose a so-called differentiated and
dynamic tagging strategy to overcome the above challenge
while balancing these two contradictory goals. Our strategy is
based on the following observations at three different levels:
information sources, applications, and user behaviors.

Source Level: Different information sources may have different
sensitivities in terms of security. For example, information from
online bank websites is far more sensitive than information
from news websites. As such, bank information merits a higher
level of security than news information.

Application Level: The patterns by which applications access
information sources vary for different applications. That is,
these patterns follow a non-uniform distribution over the set
of all applications. Some applications such as online banking
ones access only a few sources whereas others such as news
aggregators access many sources. Additionally, applications
have variables that have different correlations with each other.
For instance, if we execute the statements a := c+d+ · · ·+z

and b := 1, a correlates with variables c, . . . ,z whereas b

correlates with no other variables. Clearly, we need to capture
these heterogeneous variable correlations. Thus, we need dif-
ferent amounts of storage space (bits) to capture heterogeneous
sources and correlations.

User Level: We observe that smartphone users’ behavior pat-
terns vary over time. Consider the following real-world usage
scenario. Suppose a user often reads many news websites like
cnn.com. Once or twice, the user logs in a social networking
website like Facebook to check for messages from friends and
checks a bank account. From this scenario, we can see that
users access different information sources over time. Thus, IFT
needs to adapt to changing information source access patterns.

We develop the differentiated and dynamic strategy based
on these levels. By examining the source level and application
level, we develop differentiated classes, which classify informa-
tion sources based on considerations such as their information
sensitivities. Differentiated classes inform us about information
sources’ sensitivity. This information provides guidance for de-
signing the tag scheme given limited tag length. By examining

XX 0011 XXXX XXXX XXXX XXXX XXXX XX XX XX 

Class 1 Class 2 Class 3

16 bits 8 bits 6 bits

Tag Scheme ID

Information Source

…

10011

0000

Index

usbank.com

…

0011

citi.com

10000

…

Tag Structure Class 1 Location Information Table

Fig. 2: Tag structure

the user level, we develop tag dynamics, in which the tag
scheme is updated on-the-fly based on properties of received
information sources and users’ access thereof. Differentiated
classes and tag dynamics enable us to track many information
sources on smartphones in real-time. We discuss differentiated
classes in Section III-B and tag dynamics in Section III-C.

B. Differentiated Tag Structure

Our tag structure is illustrated in Fig. 2. Each tag has the
same fixed length. There may be multiple tag schemes in our tag
system when dynamics are considered (we discuss dynamics
shortly). We assign each tag a tag scheme ID, which is a fixed
length bit string at the beginning of the tag. We partition the
remainder of the tag into segments. Each segment corresponds
to a distinct class. Each segment contains a certain number of
information sources. Intuitively, there are fundamental tradeoffs
among the number of classes in a tag, the number of informa-
tion sources that can be stored in a class, and the number of bits
used to represent an information source in that class. In fact,
the bits representing a source map to the indices of a location
information table. Each class has its own table. For a particular
class, each entry in that class’s table “describes” an information
source in that class. Specifically, each table entry maps the bits
representing an information source to a text string describing
that source. As a concrete example, consider the tag in Fig. 2.
We see the tag is 32 bits long with a 2-bit tag scheme ID. We
notice the remainder of the tag is partitioned into three segments
of lengths 16 bits, 8 bits, and 6 bits. Each segment corresponds
to a distinct class. In the first class, each information source is
represented as a 4-bit string. In particular, the bit string 0011

maps to usbank.com in the location information table. Yet as
more information sources arrive, the table grows and this string
can map to either usbank.com or citi.com. In the second
class, each information source is represented as a 4-bit string,
and in the third class, each information source is represented
as a 2-bit string. (These classes’ tables are omitted for brevity.)
Notice that source representations can have various numbers of
bits in different classes.

Examples: The following examples illustrate our differentiated
tag structure:

– 32 bits, 1 class for each bit: This example assumes there
is only a single tag, so there is no tag scheme ID field. In this
example, each bit in a 32-bit tag can represent one information
source. This is exactly the approach TaintDroid [4] uses. A tag
system using this approach can support 32 distinct sources and
keep 32 live records in the tag.

– 32 bits, 2-bit tag scheme ID, 3 classes, 16/8/6 bits per

class, 4/4/2 bits per source: This example shows the tag



structure in Fig. 2. We have three classes: “highly sensitive”,
“moderately sensitive”, and “insensitive”. We allocate 16 bits
for “highly sensitive”, 8 bits for “moderately sensitive”, and 6
bits for “insensitive”.

– 32 bits, 2-bit tag scheme ID, 2 classes, 24/6 bits per class,

3/2 bits per source: In this example, we allocate 24 bits for the
“highly sensitive” class and 6 bits for the “insensitive” class.
We can store 8 sources in the “highly sensitive” class and three
sources in the “insensitive” class. This example works for the
case where there are more sensitive sources.

Tag Parameter Settings: We can realize differentiated classes
based on information sensitivities. We can change the number
of classes so long as each class stores at least one information
source representation and the tag length is fixed. Clearly, we
face tradeoffs among the class length, number of information
sources represented in each class, and the number of bits for
each source representation in the tag. Our proposed design
incurs the following tradeoffs among the number of classes,
number of information sources, and bits per source.

– If we record too few sources in the tag, some sources will
be absent from the tag. If we use too few bits to represent a
source, collisions can occur among sources. Then there will be
less accurate source information within a class.

– There are two special cases within a class: (1) Many
sources with very few bits per source. This works well when an
application accesses few information sources but its individual
variables are correlated with many other variables; (2) Very few
sources with many bits per source. This works well when an
application accesses many different information sources but its
individual variables are only correlated with a few variables.

– We cannot arbitrarily set the number of classes, number
of sources, and bits per source. The total number of bits is
bounded by the tag space. Also, the number of sources in a
class is at most 2n, where n is the number of bits per source.

C. Tag Dynamics

We realize tag dynamics as follows. Each class can have a
different length at different times. As new information sources
arrive, we classify them based on sensitivity, add them to the
respective location information table, and place their (truncated)
indices in the tag. Based on information source knowledge, we
can adjust the class size for each class. An intuitive way is to
“pre-specify” some classes and change the tag structure once
certain conditions are met, e.g., most tags have less than 50%
space usage. Another way is to perform “on-demand” machine
learning (ML) based on statistical properties of tag space usage
and location information tables’ recent hash values. With this
way, we create an ML process, which collects tag information
from a normal process, and calculates a new tag structure for
the normal process. After a new tag structure is specified, the
ML process sends the new tag structure to the normal process,
which can adjust its tag structure accordingly.

In designing tag dynamics, we need to consider how the tag
structures should be changed. Initially, the tag should record as
many sources per class as possible subject to the constraints
described above. If most variables do not use their entire class

Trustable 
Site List

Information Flow Tracking Component

Tag 
Assigner

Tag 
Propagator

Tag 
Checker

Local files,
network,

SMS, MMS,
voice, Binder,

IPC, etc.

Local files,
network,

SMS, MMS,
voice, etc.

Dynamic Tagging Component

Dynamic 
Tagging Core

Tag 
Generator Tag Merger

Fig. 3: D2Taint system architecture
space during tag scheme system execution, we can assign more
bits per source and adjust class length accordingly. For such an
adjustment, we need to consider the following two issues:

– Tag Scheme Switching: Switching among different tag
schemes is crucial for our dynamic tag system design. There
are two problems: (1) determining tag scheme configurations;
and (2) determining when to switch tag schemes. We have
two main approaches: (1) pre-configured; and (2) on-the-fly.
The pre-configured approach lets users configure their own tag
schemes based on their Internet usage behaviors. Recall the last
two examples in Section III-B. The tag structure can switch
between these when users access many highly sensitive infor-
mation sources. For example, they can list important websites
they often visit and classify them into different classes based
on information sensitivities. All other websites and external
sources are classified as “unknown.” When users access more
sensitive websites than unknown sites, the source lengths in
the sensitive class can be increased and the source lengths
in the unknown class can be shortened. Criteria for switching
and the switching process can be configured in advance. The
on-the-fly approach can adjust the tag scheme based on tag
space utilization and newly arriving information sources. It is
suitable for determining when to switch tag schemes as user and
application behaviors are unpredictable. For example, if class
2 sources arrive while class 1’s space is not full, the system
dynamically allocates more space for class 2.

– Tag merging: Tag merging is necessary for tag propaga-
tion. When multiple tags “meet” based on variable operations,
we need to generate a new tag. If both merging tags have
different tag schemes due to tag switching, we first need to
convert old tags to new tags. In a simple case, both tag schemes’
representations have the same length and we can simply merge
them in the new tag scheme. If we cannot fit all information
sources in the new class, we can select source representations
for replacement. But their lengths may differ. If the length
decreases in the new tag system, some most significant bits
need to be removed from the old representations. If the length
increases, we retrieve “old” indices from the table and place
them into the new class segments.

IV. IFT WITH DYNAMIC AND DIFFERENTIATED TAGGING

A. System Overview

Fig. 3 shows our D2Taint system architecture. The system
has two main components: (1) the dynamic tagging component;
and (2) the information flow tracking component.

The dynamic tagging component handles tag management
and determines when to switch tag schemes. It has three parts:



(1) the dynamic tagging core; (2) the tag generator; and (3) the
tag merger. The dynamic tagging core handles configuration of
the dynamic tag system and decides which tag scheme can be
used. The tag generator fetches or generates a tag for incoming
data. The tag merger merges two tags and generates a new tag.

The information flow tracking component tracks a data flow
from its sources until the related data are sent out or written
to files. It has three parts: (1) the tag assigner; (2) the tag

propagator; and (3) the tag checker. The tag assigner intercepts
incoming data via I/O channels such as networks and assigns
the initial tag to the data based on the results from the dynamic
tagging component. The tag propagator propagates data tags
for each operation during program execution. The tag checker
checks the data tags for compliance with security policies when
data are going to be sent over I/O channels. Our system also
maintains a trustable site list containing a list of websites to
which data can be sent without raising any alerts. Users can
modify the list based on the IFT results.

A typical D2Taint workflow is as follows. When an ap-
plication starts, the dynamic tagging component first loads
two configuration files: one stores tag structure definitions;
the other stores user-defined classes and known data sources
in each class. Then the dynamic tagging component performs
two tasks. First, this component checks the data source list
for each incoming data source passed by the tag assigner. If
found, the tag is retrieved and returned to the tag assigner.
Otherwise, a new entry for the data source is created and the
new tag is returned. Second, the dynamic tagging component
tracks incoming sources’ statistics and determines whether it
should switch D2Taint to a different tag scheme.

The tag assigner intercepts I/O channels to capture incoming
data. For each incoming data source, the tag assigner consults
the dynamic tagging component to get the tag and then assigns
the tag to the new data.

For each instruction being executed, the tag propagator is
in charge of propagating tags for a data flow. If it needs to
merge multiple tags to generate a new tag, it gets a new tag
from the dynamic tagging component. The dynamic tagging
component merges the tags from different source data and
assigns the merged tag to the destination data. For example, a
binary operation a = b+c triggers tag propagation a.tag =
b.tag ⊕ c.tag, where ⊕ is the merge operation. The
dynamic tagging component handles tag merging differently
for two cases: (1) where the tag scheme is not switched; and
(2) where b.tag and c.tag use different tag schemes.

When data are going to be sent over I/O channels, the tag
checker is activated. It uses the list of trustable sites to check
if the data are allowed to be sent to their destinations. If this
data sending event is not allowed, the tag checker raises an
exception to the user, who is asked if the data can be sent.

We implement a prototype of D2Taint on Nexus One smart-
phones running Android 2.2. However, we see no particular
difficulty applying our ideas to other smartphone architectures.
To reduce overhead incurred by tag storage and propagation,
our D2Taint system tracks data flows for Java code at the

variable level, as TaintDroid [4] does. By instrumenting the
Dalvik VM during interpretation of Java bytecode, we can fully
utilize Java objects’ semantics to store taint tags and propagate
them among objects. This helps reduce IFT’s overhead.

In the following, we detail these two components. First, we
introduce the dynamic tagging component, then we describe
the information flow tracking component.

B. Dynamic Tagging Component

The dynamic tagging component realizes management of tag
schemes, tag assignment, and tag merging. These functions are
performed by three sub-components: the dynamic tagging core,
the tag assigner, and the tag merger, respectively. We discuss
them in the following.

1) Dynamic Tagging Core: The dynamic tagging core main-
tains two configuration files. The first configuration file stores
the tag system settings, which are read and parsed into memory
during D2Taint’s initialization phase. In memory, we maintain
a global array that stores settings for each tag scheme. Each
tag scheme setting includes the scheme number, the number of
bits per tag, the number of classes, and a pointer to the class
list. In a class structure, we record the number of classes in
the tag system, the number of bits per hashcode, the number of
reserved slots for the class, and a text description of the class.
In our current implementation, we use 32 bits for a tag and
5 bits for a hashcode by default. The first 2 bits are used to
indicate the number of the tag scheme. There are 6 available
hashcode slots in a tag.

The second configuration file stores user-defined classes and
each class’s known data sources. After reading the data from
the configuration file, we use a global location information
table list to record all source information. Each information
table corresponds to one class. Each source has an entry in one
particular table. Note that we only store the domain name for
a source, e.g., google.com, nsf.gov, etc. If an IP address
has no corresponding domain name or hostname, we store the
first 16 bits of the address, e.g., 192.168.0.0. This helps
decrease the total number of entries in the location information
tables. A domain name or an IP address suffices for a user to
determine the information source. To save space, each table is
dynamically allocated as its number of entries increase.

The dynamic tagging core also collects statistics for incom-
ing sources and determines whether the tag scheme should be
switched. In particular, after a certain number of new sources
(i.e., 50) are added into an location information table, D2Taint
decides whether to switch the tag scheme based on these
new sources. D2Taint counts the source distributions for each
class, finds the best matched scheme with this distribution, and
updates the current tag scheme number. This implementation
incurs a low overhead as it only makes the “switch” decision
periodically after enough new sources arrive.

2) Tag Generator: The tag generator uses the location
information list to respond to the tag assigner’s query when new
data arrive. The tag generator checks the location information
list for each new data source. If the source is in the list, the tag



is retrieved and returned to the tag assigner. Otherwise, a new
entry for the data source is created and a new tag is returned.

3) Tag Merger: The tag merger performs tag merging, which
is necessary for tag propagation. When multiple tags “meet”
in a corresponding bytecode instruction, a new tag has to be
generated based on the source data tags. For example, a = b+c
triggers a.tag = b.tag ⊕ c.tag. To merge tags b.tag

and c.tag, we need to handle two cases: (1) when these two
tags use the same tag scheme; and (2) when they use different
tag schemes. Merging multiple tags can be seen as multiple
instances of merging two tags.

For the first case, a new tag can be formed by collecting
the hashcodes in the corresponding class segments when each
class has enough room to host all hashcodes from b.tag and
c.tag. Sometimes, the classes in b.tag and c.tag contain
more sources that one class segment in a.tag can hold. To
handle this case, we can either randomly drop sources or select
source tags based on their access recency or frequency.

For the second case, we have to convert an old tag to a
new tag based on the current tag scheme. In a simple case, the
old tag scheme has the same hashcode length as the current
tag scheme. If so, we simply place the hashcode into its
class segment in the new tag. When there are more hashcodes
than available slots for a class, we can either randomly select
some hashcodes or keep the latest ones (i.e., those with larger
values). But the hashcode lengths may differ among different
tag schemes. If the length decreases in the current tag scheme,
certain significant bits need to be truncated from the old
hashcodes. If the length increases, we first retrieve the hashcode
indices in the location information table, hash these indices
into new hashcodes, and finally fit the hashcodes into the class
segments.

C. Information Flow Tracking Component

The information flow tracking component tracks information
flows from sources to destinations in an Android application at
runtime. It includes three sub-components: (1) the tag assigner;
(2) the tag propagator; and (3) the tag checker, which perform
tag assignment, tag propagation, and tag checking, respectively.
We first discuss how D2Taint stores tags for different data, then
we discuss each sub-component. In the following, we call the
memory block that is used to store tags a taint map.

1) Taint Map: In the Dalvik VM, five types of variables need
taint maps to store their tags: method local variables, method
arguments, class instance fields, class static fields, and arrays.
Among these data types, method local variables and method
arguments are stored in methods’ stack frames. We store tags
of class static fields and arrays into their representative objects.
TaintDroid [4] does likewise. However, for the other three
variable types, our taint maps differ from TaintDroid’s. We do
not store variables’ tags adjacent to them in memory. Instead,
we use specific taint maps for these variable types, as our
system’s tag lengths tend to change. Further details follow:
Method local variables and method arguments. We use a
stack taint map to store tags for a method’s local variables and
arguments. A stack taint map differs from a method’s stack

frame. When the Dalvik VM allocates a stack frame for a
method, our system allocates a stack taint map for it. The last
element of the stack taint map is for the method’s return value.
Class instance fields. Tags for class instance fields are stored
in objects’ taint maps. An object’s taint map is stored in the
memory area immediately after that allocated for the object.

2) Tag Assigner: The tag assigner labels data tags according
to their origins. While the data are read, the tag assigner tries
to determine the data’s origin and uses such information to
query the dynamic tagging component. After it receives the
tag, the tag assigner labels the data with the tag. If the origin
information contains multiple sources, then the tag can be used
to locate multiple sources. To taint data effectively, we insert
our tag assigner logic into file I/O, network I/O, sensor, and
other library functions that read private information, e.g., device
identifiers, call histories, etc. TaintDroid [4] also does so.

3) Tag Propagator: As an IFT system, D2Taint needs to
instrument program execution to track data flows. Based on this,
we use the same propagation logic as TaintDroid to propagate
tags in interpreted code and native code [4]. Our system also
propagates tags from one process to another via Binder IPC,
and writes the data’s source information into the file system
if the data are written to local files. The biggest difference is
TaintDroid’s use of bitwise OR to merge two or more tags,
whereas we use the method in Section IV-B3 to merge two
tags. Also, when a message is sent via Binder IPC, our system
extracts source information from the related tags and sends it
with the message via IPC. After the receiver gets the message
from IPC, it extracts the message’s source information and uses
it to get a tag for tainting the received data.

4) Tag Checker: The tag checker is activated when data
are going to be sent via networks. First, the tag checker
leverages the list of trustable sites to determine the destination’s
trustworthiness. If the destination is trustable, the data can be
sent without raising any alerts. If the destination is not in the
trustable list, our system extracts source information from the
data’s tag and then delivers it to the user, who decides if the
data can be sent to the destination. If the user does not want
the data to be sent to the destination, the tag checker blocks
data sending and stops program execution; otherwise, the data
are sent and execution continues.

V. EVALUATION METHODOLOGY

We evaluate our D2Taint system in three ways: (1) a real-
world application study; (2) system performance evaluation;
and (3) dynamic tagging system evaluation.

In the real-world application study, we select 84 “top free”
applications from Google Play [5] in July 2012. We be-
lieve these applications represent a cross-section of those in
widespread use on Android smartphones. Since many appli-
cations are ad-supported, we believe they may potentially leak
sensitive information to third parties, as prior work suggests [4],
[18]. We download these applications, install them on Nexus
One smartphones running our D2Taint system, and exercise
application functionalities. We monitor application installation
and execution to check if these applications leak information.



We collect system logs, IPC messages, and network traces
from the phones using adb logcat. We verify the results
using tcpdump on the Nexus One’s WiFi interface. No Nexus
One had a SIM card and Bluetooth was disabled; all network
traffic went through WiFi. When applications read data from
the Internet, we record the data’s sources via tags as well as
the destinations to which the data are sent. We inspect the
relevant hostnames and corresponding IP addresses to remove
false positives, e.g., two different IP addresses belonging to the
same organization. For comparison purposes, we perform the
same experiments on smartphones running TaintDroid 2.3.

In the system performance evaluation, we demonstrate that
D2Taint’s overhead is reasonable. We use an unmodified An-
droid ROM as the basis of performance comparison. First, we
test D2Taint’s impact on user experience, especially execution
time. We test other common smartphone operations, including
system and networking ones. Second, we use a standard bench-
mark tool, CaffeineMark [19], to measure D2Taint’s overhead.
CaffeineMark reports scores of various features based on Java
execution time. Memory overhead is measured via Caffeine-
Mark’s increased memory footprint on the D2Taint system.

Lastly, we evaluate the performance of our dynamic tag
system design and show the benefit of such a design. We
develop a test application to emulate two different usage
patterns: sequential and random. We measure the number of
sources recorded in the tags when the data are sent via network
sockets, which shows a tag’s effective space utilization. We
demonstrate the performance improvement of our dynamic tag
design in comparison to a static tag system.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results following
the above evaluation methodology.
A. Real-world Application Study

D2Taint finds that 71 out of the 84 applications leak infor-
mation to third-party destinations. D2Taint reveals the paths
by which the information is leaked, whereas TaintDroid only
reveals the final leakage destinations. In our experiments, we
found 33 applications that transmit data among many various
external sources, especially cloud computing services (e.g.,
Amazon Web Services). To reduce false positives, D2Taint
uses the following rule: information flows whose sources and
destinations are the same are treated as legal. In addition,
D2Taint provides detailed information about multiple sources
when reporting to the user. By contrast, TaintDroid cannot
record any source information for external data since it only
uses 1 bit to tag the data. There are two consequences: (1)
TaintDroid triggers false positives whenever data flows from
an external source to that same source, which we observed
frequently during experiments; and (2) TaintDroid cannot keep
track of data from multiple sources at once. Our experiments
validate the real-world problem of external data leakage and
show that D2Taint can be used to detect information leakage
related to many external sources.

In addition, D2Taint detects that some applications send
highly sensitive internal data such as IMEIs/EIDs to third

TABLE I: Macrobenchmarks

Stock Android D2Taint

App Load 53.19 ms 58.12 ms
Download (32.3 MB) 35.73 s 38.34 s

Web Load (google.com) 735 ms 856 ms
Web Load (nytimes.com) 1081 ms 1116 ms

HttpGet 658 ms 746 ms
Write File 7.96 ms 8.02 ms
Read File 1.21 ms 1.51 ms

Socket Send 5.24 ms 6.37 ms

parties, particularly ad and market research companies (e.g.,
admob.com and flurry.com). More specifically, D2Taint
finds 12 applications leaking devices’ IMEIs/EIDs: The
Weather Channel, ESPN ScoreCenter, NavFree GPS, SWAT
Army, Bible, Fruit Ninja Free, Coin Dozer, Yellow Pages,
Scramble with Friends, Words with Friends, Funny Facts Free,
and IQ Test. From this aspect, TaintDroid also reports these
applications leaking sensitive information.

B. System Performance Evaluation

1) Macrobenchmarks: Macrobenchmark results are shown
in Table I. Each value is averaged over 30 runs.
Application load time: We measure the time needed to load
a new Android application and display the UI. D2Taint’s
overhead with respect to stock Android is 9%.
Download time: We measure the time needed to download a
32.3 MB file from google.com. D2Taint’s overhead is 7.3%.
Webpage load time: We measure webpage load time us-
ing a toy “Web view” application. Specifically, the time be-
tween a UI button press and the webpage completely loading
is measured. Two types of webpages are tested: light text
(google.com) and heavy text (nytimes.com). Table I
shows D2Taint’s overheads are 16% for google.com and
3% for nytimes.com. This can be explained as follows.
google.com automatically redirects to a “mobile-friendly”
webpage, leading to more webpage data caching operations, as
recorded in D2Taint logs. Since D2Taint also outputs tags into
the file when writing data, google.com’s overhead is larger
than nytimes.com’s.
Input and output: Besides basic system and networking
operations, we develop an application that reads data from the
“top 100” websites hosted in the U.S. [20], writes the data to
a file, reads 1,000 bytes from this file, and transmits the 1,000
bytes to a remote machine via a socket connection. Table I
shows the results. Each value is averaged over the top 100
websites’ data with 10 runs.

The networking input and output overheads are 13%
(HttpGet) and 21% (socket transmission), respectively. The
input overhead stems from the location information table query
to assign a new tag to the input data. For the output overhead,
D2Taint needs to access the location information tables to look
up source information as well as the trustable list to determine
if data sending is allowed. The filesystem I/O overhead is
negligible: 0.5 ms for reads and writes.

2) Java Microbenchmark: The CaffeineMark scores are
shown in Fig. 4. The scores roughly correspond to the num-
ber of Java instructions executed per second. D2Taint and



Sieve Loop Logic String Float Method Overall
0

500

1000

1500

2000

2500

3000

CaffeineMark Benchmark

C
af

fe
in

eM
ar

k 
Sc

or
e

 

 
Android
D2Taint

Fig. 4: Microbenchmark: Java overhead

unmodified Android have scores 581 and 784, respectively,
so D2Taint’s overhead is 25.9%. In contrast, TaintDroid and
unmodified Android have scores 967 and 1121, respectively,
and TaintDroid’s overhead is 14%. Though D2Taint’s overhead
is higher than TaintDroid’s, D2Taint’s absolute impaired score
(203) does not significantly differ from that of TaintDroid (154).
D2Taint’s extra overhead is expected since D2Taint needs more
operations for the tag system and location information table
operations. In contrast, TaintDroid uses only the OR operation
to merge tags since its sources are fixed and hard-coded.

We also measured CaffeineMark’s memory footprint to de-
termine D2Taint’s space overhead. Since the memory footprint
value varies with the time after CaffeineMark is launched, we
obtained the value immediately after rebooting a system. Caf-
feineMark consumes 21664 KB and 22528 KB in a unmodified
Android system and our D2Taint system, respectively: a 4.0%
overhead. This overhead is slightly lower than TaintDroid’s,
which is 4.4% [4]. Both D2Taint and TaintDroid use the
same tag length: 32 bits. The other primary memory used by
D2Taint is for the location information table. Note the location
information table dynamically increases as more information
sources arrive. This overhead is ignored here as CaffeineMark
does not access the Internet; hence no entries would be added
to the tables.

C. Dynamic Tag System Performance

We evaluate the performance of a dynamic tag system under
different situations. To do so, we measure the number of sources
recorded in a tag.

In the experiments, we pre-configure four tag schemes for
three classes: (1) 2/2/2 hashcode slots for classes 1/2/3 (de-
fault); (2) 4/1/1 hashcode slots for classes 1/2/3; (3) 1/4/1
hashcode slots for classes 1/2/3; (4) 1/1/4 hashcode slots for
classes 1/2/3. Each hashcode’s length is fixed at 5 bits. The
tag scheme switching is triggered after 10 new entries are
added into the location information tables. We select the “best
matched” tag scheme based on the class distributions among
these entries.

We write an application to visit the top 100 websites hosted
in the U.S. Websites 1–30 are classified into class 1, 31–60 are
classified into class 2, 61–90 are classified into class 3, and the
remaining 10 are unclassified. The application visits websites
1–100 sequentially or randomly. To emulate tag propagation,
we combine several previously downloaded webpages into the

final “stolen” data for socket transmission. Thus, the most
recent webpage has a higher probability to be selected for
combination. We run the experiments 50 times.

The results are shown in Figs. 5 and 6. For sequential
websites, a static tag system can record at most two sources
before the class 2 websites are visited. The peak appears after
class 3 websites are visited as all 6 available hashcode slots
can be used. In our D2Taint, we found tag scheme switching
happened at websites 11, 41, and 71. There are some troughs
among the class transition period as the tag system has not
adjusted yet. Shortly thereafter, the average source number
increases to about four sources per tag. The final trough is
caused by the unclassified websites as they do not appear in
the tag. In general, a dynamic tag system’s performance is much
better than a static tag system’s performance as the former fits
the currently visited website classes well.

For random websites, tag scheme switching occurs about
five times (on average) with D2Taint. The number of sources
remains stable with the number for the static tag system. The
dynamic tag system’s performance is a bit worse than the static
tag system’s, as the default tag system is “best” for random
websites. Thus, the dynamic tag system is not a good candidate
for a totally random situation. But we argue that patterns tend
to arise as users visit websites and run applications.

VII. RELATED WORK

Information leakage in smartphone systems has attracted
considerable attention. In numerous instances, third-party ap-
plications have leaked personal information to remote servers
[2], [21], [22]. Most recently, Carrier IQ [23] has gathered
voluminous data from smartphones, apparently without their
owners’ knowledge. Smartphones’ sensors can also leak infor-
mation such as workers’ activity [24] to remote servers. Many
systems have been proposed to combat information leakage.
TaintDroid [4] tracks information flow from single third-party
applications. Vision [25] extends TaintDroid to detect implicit
information flows. AppFence [26] augments TaintDroid with
privacy enforcement mechanisms. Kirin [27] and Saint [28]
provide rule-based security mechanisms for Android that re-
strict application access to sensitive information. SxC [29] adds
provable security contracts to Windows Mobile for the same
purpose. Other systems [7], [14], [18], [30] leverage static
analysis to discern information leaking in Android and iOS
applications. D2Taint has two key differences from existing
IFT systems for smartphones. First, D2Taint accommodates a
large number of sources, including multiple applications, and
classifies them into multiple groups. Second, D2Taint’s tag
structure accommodates varying types of sources with dynamic
granularity. If many untrusted sources enter the system, each
source’s hashcode occupies less space, and vice versa.

Most IFT systems store static taint tags using shadow mem-
ory [4], [31], [32] or tag maps [33]. Usually, each data byte
or word corresponds to a byte or word in shadow memory.
TaintDroid [4] propagates a static taint tag through the entire
Android system; this tag’s value does not change. By contrast,
D2Taint’s tag structure is partitioned into classes, providing



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#visited website

#s
ou

rc
e 

in
 ta

g

 

 
Class 1
Class 2
Class 3

(a) Dynamic

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#visited website

#s
ou

rc
e 

in
 ta

g

 

 

Class 1
Class 2
Class 3

(b) Static

Fig. 5: Sequential websites

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#visited website

#s
ou

rc
e 

in
 ta

g

 

 

Class 1
Class 2
Class 3

(a) Dynamic

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

#visited website

#s
ou

rc
e 

in
 ta

g

 

 
Class 1
Class 2
Class 3

(b) Static

Fig. 6: Random websites

finer granularity than static tags.

More generally, dynamic taint analysis [11], [31]–[34] (also
known as “taint tracking”) is an approach for information
leakage detection. Some dynamic taint analysis approaches are
based on whole-system analysis using emulation environments,
[32], [35], hardware extensions [9], [12], [17], and per-process
tracking with dynamic binary translation [31], [33], [34], [36].
However, these kinds of whole-system analysis are far too
heavyweight for resource-constrained smartphones.

VIII. CONCLUSIONS

We proposed a novel IFT tagging strategy using differenti-
ated and dynamic tagging. Our strategy partitioned information
sources into differentiated classes and stored class and source
information in IFT tags. Our strategy enabled dynamic tag
structure adaptation in real-time based on received informa-
tion sources. We designed and implemented D2Taint, an IFT
system using our strategy, on real-world smartphones. Our
experimental evaluation illustrated D2Taint’s potential to detect
information leakage with moderate time and space overhead.

REFERENCES

[1] The Nielsen Co., “Two Thirds of New Mobile Buyers Now Opting For
Smartphones,” 12 Jul. 2012, http://blog.nielsen.com/nielsenwire/online
mobile/two-thirds-of-new-mobile-buyers-now-opting-for-smartphones/.

[2] S. Thurm and Kane, Y. I., “iPhone and Android Apps Breach Privacy,”
17 Dec. 2010, http://online.wsj.com/article/SB10001424052748704-
694004576020083703574602.html.

[3] Trend Micro, “Android Malware: How Worried Should You Be?” 16 Jul.
2012, http://blog.trendmicro.com/android-malware-how-worried-should-
you-be/.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking system for
realtime privacymonitoring on smartphones,” in OSDI, Oct. 2010.

[5] Google Play, http://play.google.com/apps.
[6] Android, http://android.com.
[7] A. C. Myers, “JFlow: Practical Mostly-Static Information Flow Control,”

in POPL, 1999.
[8] A. C. Myers and B. Liskov, “Protecting Privacy Using the Decentralized

Label Model,” ACM Trans. on Softw. Eng. and Methodology, vol. 9, no. 4,
Oct. 2000.

[9] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.
Blome, G. A. Reis, M. Vachharajani, and D. August, “RIFLE: An
architectural framework for user-centric information-flow security,” in
MICRO, Dec 2004.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham, “Vigilante: End-to-End Containment of Internet Worms,” in
SOSP, 2005.

[11] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software,” in NDSS, 2005.

[12] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure Program
Execution via Dynamic Information Flow Tracking,” in ASPLOS, 2004.

[13] D. E. Denning, “A Lattice Model of Secure Information Flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–243, 1976.

[14] D. E. Denning and P. J. Denning, “Certification of Programs for Secure
Information Flow,” Commun. ACM, vol. 20, no. 7, 1977.

[15] N. Heintze and J. G. Riecke, “The SLam Calculus: Programming with
Secrecy and Integrity,” in POPL, 1998, pp. 365–377.

[16] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks,” in USENIX Security,
Aug 2006.

[17] J. R. Crandall and F. T. Chong, “Minos: Control Data Attack Prevention
Orthogonal to Memory Model,” in MICRO, 2004.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of Android
Application Security,” in USENIX Security, 2011.

[19] Pendragon Software Corp., “CaffeineMark 3.0,” http://www.
benchmarkhq.ru/cm30/.

[20] Alexa, http://www.alexa.com/topsites.
[21] D. Moren, “Retrievable iPhone numbers mean potential privacy issues,”

29 Sep. 2009, http://www.macworld.com/article/143047/2009/09/phone
hole.html.

[22] C. Davies, “iPhone spyware debated as app library “phones home”,” 17
Aug. 2009, http://www.slashgear.com/iphone-spyware-debated-as-app-
library-phones-home-1752491/.

[23] J. Brodkin, “Carrier IQ hit with privacy lawsuits as more security
researchers weigh in,” 2 Dec. 2011, http://arstechnica.com/tech-
policy/news/2011/12/carrier-iq-hit-with-privacy-lawsuits-as-more-
security-researchers-weigh-in.ars.

[24] M. Fitzpatrick, “Mobile that allows bosses to snoop
on staff developed,” BBC News, 10 Mar. 2010,
http://news.bbc.co.uk/2/hi/technology/8559683.stm.

[25] P. Gilbert, B. G. Chun, L. P. Cox, and J. Jung, “Vision: Automated
Security Validation of Mobile Apps at App Markets,” in MCS, 2011.

[26] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, ““These
Aren’t the Droids You’re Looking For”: Retrofitting Android to Protect
Data from Imperious Applications,” in CCS, 2011.

[27] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” in CCS, 2009.

[28] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-Centric Security in Android,” in ACSAC, 2009.

[29] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan,
and D. Vanoverberghe, “Security-by-contract on the .NET platform,” Inf.
Security Tech. Rep., vol. 13, no. 1, pp. 25–32, 2008.

[30] M. Egele, C. Kruegel, E. Kirda, , and G. Vigna, “PiOS: Detecting Privacy
Leaks in iOS Applications,” in NDSS, 2011.

[31] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu, “LIFT: A
Low-Overhead Practical Information Flow Tracking System for Detecting
Security Attacks,” in IEEE/ACM MICRO, 2006.

[32] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-wide Information Flow for Malware Detection and
Analysis,” in ACM CCS, 2007.

[33] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Privacy Scope:
A Precise Information Flow Tracking System for Finding Application
Leaks,” Dept. of Computer Science, UC Berkeley, Tech. Rep., 2009.

[34] J. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic Taint Analysis
Framework,” in Int’l. Symp. on Softw. Test. and Anal., 2007.

[35] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
“Understanding Data Lifetime via Whole System Simulation,” in USENIX
Security, 2004.

[36] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “TaintTrace: Efficient Flow
Tracing with Dynamic Binary Rewriting,” in ISCC, 2006.


