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Abstract—We study the issue of optimal deployment to achieve
four connectivity and full coverage for wireless sensor networks
(WSNs) under different ratios of sensors’ communication range
(denoted by rc) to their sensing range (denoted by rs). We
propose a “Diamond” pattern, which can be viewed as a series
of different evolving patterns. When rc/rs ≥ √

3, the Diamond
pattern coincides with the well-known triangle lattice pattern;
when rc/rs ≤ √

2, it degenerates to a “Square” pattern. We
prove the Diamond pattern to be asymptotically optimal when
rc/rs >

√
2. Our work is the first to propose an asymptotically

optimal deployment pattern to achieve four connectivity and full
coverage for WSNs. We hope our work will provide some insights
on how optimal patterns evolve and how to search for them.

I. INTRODUCTION

Deployment is an important issue in wireless sensor net-
works (WSNs). There are two categories of deployment
methods. One is random deployments; the other, planned
deployments. With planned deployments, sensors are placed
at planned, pre-determined locations. In planning where to
deploy sensors, it is often desirable that the pattern will be
such that the minimum number of sensors are needed. Aside
from the theoretical interest, finding the optimal development
pattern (in terms of number of sensors) has its practical
significance. First, sensor nodes still cost close to $100 a
piece. Deploying the minimum number of sensors needed
certainly is most desirable for the obvious economic reason.
Second, insights obtained from optimal deployment patterns
can be used to guide the development of heuristic algorithms
for topology control [7], as well as to measure the relative
performance of these heuristics as compared to the optimal
one [13].
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However, finding optimal patterns for WSNs is a hard
problem, and very few results on optimal patterns are available
in the literature. For many years, the only result known to
us on this topic had been a theorem proved in 1939, which
states that regular triangular lattice pattern (triangle pattern in
short) is asymptotically optimal in terms of number of circles
needed to entirely cover a given area in the plane [8]. This
result, formulated as one for sensor deployment, was proved
again in [13] using a different method. In many applications
of WSNs, it is not only required that sensors cover an entire
area, but also that the sensors form a connected communication
network. When both coverage and connectivity are required,
the triangle pattern remains optimal when rc/rs ≥ √

3, where
rc and rs are communication range and sensing range of
sensors, respectively. In practice, the value of rc/rs has a wide
range, not necessarily greater than

√
3. For example, while

the reliable communication range of the Extreme Scale Mote
(XSM) platform is 30m, the sensing range of the acoustics
sensor for detecting an All Terrain Vehicle is 55m [1], in which
case, rc/rs = 30/55 � √

3. This has incited researchers’
interests to find an optimal deployment pattern to achieve
both coverage and connectivity for a complete range of rc/rs.
In 2005, a strip-based pattern was proposed that can achieve
both coverage and connectivity, but without any study on its
optimality [12]. That pattern was later independently described
and proved to be near-optimal when rc/rs = 1 [7]. In
2006, the strip-based pattern was proved to be not only near-
optimal but actually asymptotically optimal; and not only for
rc/rs = 1, but for all values of rc/rs [2]. The connectivity
considered in these results is the simple 1-connectivity. Should
connectivity of a higher degree is desired, a variant of the
strip-based pattern was proved to be asymptotically optimal
that achieves two connectivity and full coverage, again for all
values of rc/rs [2].

A two-connected wireless sensor network is definitely more
reliable in communication than a network which is just one-
connected. But unfortunately, the aforementioned strip-based
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pattern suffers a “long communication path” problem and,
besides, two-connectivity is still deemed insufficient in many
applications. The long communication path problem can be
easily explained using a diagram. In Fig. 1, we depict the
communication network of the two-connected strip-based pat-
tern [2]. In the figure, note that even though nodes A and B
are close to each other, they have to communicate, e.g., for
the local data aggregation purpose, through a long multi-hop
path. This results in long delay and waste of energy, which is
a critical and rare resource in WSNs.

Fig. 1. An example to show the long communication path problem in the
two connected strip-based pattern. Node A has to communicate through a
long multi-hop path (in dash line)) to reach Node B although they are close
to each other.

Now, if two-connectivity is not sufficient, how much con-
nectivity is necessary? Intuitively, with sensors deployed over
a region in the plane, we would like each sensor (except
for those near the boundaries) to be able to send messages
directly up, down, left and right to an immediate neighbor,
thereby avoiding the long communication path problem. This
seems to suggest the requirement of four-connectivity. As a
matter of fact, several research projects (e.g., data segmen-
tation [9], routing [5], and storage [4] etc.) have assumed
four-connectivity on their wireless sensor networks, a clear
endorsement to the candidacy of four-connectivity.

This motivates us to investigate the problem of finding an
optimal deployment pattern that achieves four connectivity and
full coverage. As it turns out, there is no single pattern which
is optimal for all values of rc/rs. This is in contrast to the case
of two-connectivity (and full coverage), for which the strip-
based pattern as mentioned above is optimal for all values of
rc/rs. Our results are summarized as follows:

• We propose a “Diamond” pattern, which can be viewed
as a series of different evolving patterns. When rc/rs ≥√

3, the Diamond pattern coincides with the well-known
triangle lattice pattern; when rc/rs ≤ √

2, it degenerates
to a “Square” pattern.

• We prove the Diamond pattern to be asymptotically
optimal when rc/rs >

√
2.

• Our search for optimal deployment patterns is not based
on an ad hoc method. Rather, it is systematic, based on
some mathematical theory. Doing so, we hope to shed
some insights on how to search for optimal deployment
patterns for WSNs.

The rest of the paper is organized as follows. In Section

II, we give the definitions and assumptions used throughout
the paper. In Section III, we discuss our exploration on the
optimal deployment pattern to achieve four-connectivity and
full coverage. In Section IV, we discuss the evolution of
deployment patterns. In Section V, we compute the number
of nodes needed when different patterns are used. We discuss
the non-disk sensing and communication models in Section
VI. Section VII concludes the paper.

II. PRELIMINARY

In this section, we present the preliminaries for our optimal
deployment pattern exploration.

We assume that both the sensing and the communication
scopes are disks, even though in reality the sensing and the
communication ranges are likely to be non-isotropic or even
roughly conform to a normal distribution probability model
along each direction [15], [14], [3]. This is because results
obtained with the simple disk model are still useful in many
applications, and it has been adopted in a great amount of
literatures, e.g., in [7], [13], [2]. Furthermore, abstractions
are inevitable in order to achieve enough generality when we
are trying to lay down certain theoretical foundations. More
discussion on non-disk sensing and communication models is
presented in Section VI.

Let rs denote the sensing radius, and rc the communication
radius. The senors are assumed to be homogeneous on their
sensing range and communication range. We also assume that
only one sensor can be deployed at one location.

This paper studies “asymptotically optimal” deployment
patterns to achieve four-connectivity and full coverage. A
deployment pattern is said to be asymptotically optimal if
the pattern is optimal when the deployment area is fixed
and the sensing range approaches zero, or equivalently, when
sensing range is fixed and the deployment area approaches
infinity. Informally, it means that the pattern is optimal if the
deployment area is so large compared to the sensing range
that we can ignore the boundary of the deployment area and
consider only the interior nodes. If boundaries are not ignored,
very few can be said about optimal deployment patterns. A
pattern which is optimal for a region may not be optimal for
another region (of a different shape or different area).

Definition 1: Voronoi Polygon: Let P = {a1, a2, ..., ap} be
a set of p points on an Euclidean plane S. The Voronoi polygon
V (ai) is the set of all points in S which are closer to ai (in
terms of Euclidean distance) than to any other point in P , i.e.

V (ai) := {x ∈ S : ∀aj ∈ P, d(x, ai) ≤ d(x, aj)}.
Definition 2: Interior Node: a node whose Voronoi polygon

has no edge on the boundary of the deployment area.

Definition 3: Four-connected Sensor Network: A sensor
network N is said to be four-connected if for every two interior
nodes of N there are at least four node-disjoint paths joining
them.

Note that in a full-coverage deployment, each Voronoi
polygon corresponding to an interior sensor node is enclosed
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in a sensing disk. Thus, as illustrated in Fig. 2(a), each edge of
the Voronoi polygon resides on a common chord between two
sensing disks. The common chord that contains an edge of a
Voronoi polygon is said to be an edge-chord. For instance, in
Fig. 2(b), the edge a′b′ of the Voronoi polygon resides on the
chord ab. Thus, chord ab is the edge-chord of edge a′b′.

Fig. 2. The solid and dashed circles denote sensing disks. The shaded area
denotes the Voronoi polygon of a sensor, which is shown as a dark dot. (a) In
a full coverage deployment each Voronoi polygon is constructed by common
chords of intersecting sensing disks. (b) Chord ab is the edge-chord of edge
a′b′.

The following terms are defined with respect to given rc

and rs, which satisfy rc < 2rs.

Definition 4: Standard Chord: The common chord between
two intersecting sensing disks is called a standard chord if
the distance between the two sensors is equal to rc, the
communication range.

Definition 5: Long Chord: If the common chord between
two intersecting sensing disks is longer than their standard
chord, it is called a long chord. (The distance between the
two sensors is smaller than rc.)

Definition 6: Connection Chord: A connection chord is
either a long chord or a standard chord. (The distance between
the two sensors is smaller than or equal to rc.)

If two sensing disks have a connection common chord, then
the two sensors can communicate directly with each other, i.e.,
they are connected by an edge in the sensors’ communication
network — thus the name connection chord.

Definition 7: Short Chord: If the common chord between
two intersecting sensing disks is shorter than their standard
chord, it is called a short chord. (The distance between the
two sensors is greater than rc.)

If two sensing disks have a short common chord, then
the two sensors can not communicate directly with each
other; they are not connected by an edge in the sensors’
communication network.

Definition 8: Standard Angle θ: The angles corresponding
to a standard chord at the centers of two sensing disks are
called standard angles. θ = 2arccos(rc/2rs).

Fig. 3 illustrates the above definitions. The polygons re-
ferred to in the following definitions are not necessarily
Voronoi polygons; and again the definition are made relative
to a given rc and rs.

Definition 9: Regular Connection Polygon: a polygon that
can be inscribed in a sensing disk, with all its edges of equal
length and no shorter than a standard chord.

Fig. 3. Let D denote the distance between two sensors and assume rc < 2rs.
(a) ab is a short chord when rc < D < 2rs; (b) ab is a standard chord when
rc = D. θ is the standard angle; (c) ab is a long chord when D < rc. The
common chords ab in (b) and (c) are connection chords.

Definition 10: Semi-regular Connection Polygon: a poly-
gon with k ≥ 4 sides that can be inscribed in a sensing disk,
with four edges each of the length of a standard chord, and
the remaining k − 4 edges being of equal length.

Definition 11: Reference Polygon: It is either a regular
connection polygon or a semi-regular connection polygon.

III. OPTIMAL PATTERN EXPLORATION

In this section, we describe our journey of exploration
for an optimal sensor deployment pattern that provides four-
connectivity and full coverage.

A. Theoretical Foundation

In our journey, we think of a sensor deployment as a
collection of Voronoi polygons, which form a tessellation over
a region. There are several benefits by employing Voronoi
polygons. First, as the Voronoi polygons form a tessellation,
we can regard each Voronoi polygon as the corresponding
sensor’s effective contribution to coverage. If all Voronoi
polygons are of the same size, say A, then the number of
sensors needed to cover a region of area R is approximately
R/A. We can estimate the number of sensors needed by
measuring the average size of each Voronoi polygon. Second,
polygon tessellation has been extensively studied. Thinking in
terms of Voronoi polygons, we are more able to benefit from
the rich literature of polygon tessellations.

Consider a rectangle of area R, over which we wish to
deploy sensors. For a sensor deployment d over R that
achieves four-connectivity and full-coverage, let Gd denote
the set of Voronoi polygons generated by the sensors. Let Gd

be the collection of all possible Gd’s. (Each element in Gd is
a set of Voronoi polygons.) Our goal is to find a Gd ∈ Gd

with the smallest |Gd|, where |Gd| denotes the cardinality of
Gd. We denote the smallest |Gd| by Cmin.

It is difficult to directly search Gd for a certain element, since
we lack knowledge of this set. Therefore, we will construct
another set Gr (to be described soon) satisfying the following
condition: for any Gd ∈ Gd, there exists a Gr ∈ Gr such that
|Gd| = |Gr|. With this set, we have

min{|Gd| : Gd ∈ Gd} ≥ min{|Gr| : Gr ∈ Gr} = Cmin. (1)

If we can find a Gd ∈ Gd such that |Gd| = Cmin, then that
Gd has the smallest cardinality in Gd, and we will have found
an optimal deployment pattern.
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To construct the aforementioned Gr, we first state a basic
result, which can be easily proved using a well-known Euler
formula. In order not to interrupt the presentation of our main
ideas, we defer the lemma’s proof to the Appendix.

Lemma 1: Let Γ denote a tessellation over a fixed region
consisting of F polygons. If each vertex of Γ, expect those at
the corner, is on at least three edges, then the average number
of sides of the polygons of Γ is not larger than six when F
approaches ∞.

Lemma 1 indicates that, when sensors are deployed to
achieve full coverage over a rectangular region, the average
number of edges of the Voronoi polygons generated by them
are asymptotically less than or equal to six. Note that Lemma
1 is not a known result. The known property that average
number of edges of a Voronoi region is less than 6 only holds
for a bounded region, while Lemma 1 in this paper presents the
conclusion that holds asymptotically. Even though the bound
six is only an asymptotical one, when constructing Gr we use
Lemma 1 as a heuristic and confine ourselves to those sets of
polygons whose average numer of edges is no more than six.

Based on Lemma 1 and the deployment requirement of full-
coverage and four-connectivity, we denote by Gr any set of
polygons that satisfies the following conditions: (1) the aver-
age edge number of polygons is not larger than six; (2) each
polygon is a reference polygon; (3)

∑
P∈Gr

area(P ) ≥ R,
where area(P ) denote the area of polygon P . (Note that the
polygons in Gr are not necessarily the Voronoi polygons of a
sensor deployment. As a matter of fact, they don’t even have
to form a tessellation.)

Let Gr denote the set of all such Gr’s. The following lemma
indicates that when rc/rs >

√
2 it is possible to “embed”

Gd in Gr, so that (1) holds. We will present the proof in the
Appendix. (Unfortunately, we are unable to prove the same
result for the case where rc/rs ≤ √

2. We will discuss this
case in Section IV.)

Lemma 2: If rc/rs >
√

2, then for any Gd ∈ Gd there
exists a Gr ∈ Gr such that |Gr| = |Gd|.

We next establish a lower bound on |Gr| for any Gr ∈ Gr.
This bound must also be a lower bound on |Gd| for any Gd

in Gd, owing to Lemma 2.

Lemma 3: If rc/rs >
√

2, then for any set Gr ∈ Gr,

|Gr| ≥ R/(2 sin ϕ + sin(2ϕ))r2
s ,

where ϕ = max(π/3, θ) and θ is the standard angle.

Once again we defer the proof for Lemma 3 to the Ap-
pendix.

We comment that the lower bound on |Gr| is obtained from
R divided by the maximum average coverage contribution
of each individual sensor. This lower bound does not tell
us a specific deployment. Nevertheless, we can use it to
judge if a given deployment is optimal or not. If there is a
deployment that provides four-connectivity and full-coverage,
and the number of sensors used is equal to this lower bound,
this deployment is optimal.

B. The Diamond Pattern

In the following, we present an optimal deployment pattern
called the Diamond pattern when rc/rs >

√
2.

Fig. 4. The Diamond pattern to achieve full coverage and four connectivity
where rc/rs >

√
2. The coverage contribution of each individual sensor is

denoted by shaded hexagon.

The Diamond pattern is shown in Fig. 4. The Voronoi
polygon generated by each sensor, shown in Fig. 4(a), is six-
sided reference polygon. As rc/rs increases from

√
2, the

length of long chords will decrease while the length of short
chords will increase. When rc/rs =

√
3 this polygon becomes

a regular hexagon. The shape will not change as rc/rs further
increases. Fig. 4(b) illustrates the relative positions of sensors
in this pattern,

d1 = 2rs cos
ϕ

2

√
2(1 − cos ϕ), (2)

and d2 = 2rs cos
ϕ

2

√
2(1 + cos ϕ), (3)

where ϕ = max(2 arccos(rc/2rs), π/3). In this pattern, the
coverage contribution of each individual sensor is d1d2/2.

Note we use d1 and d2 to describe the positions of sensors
in this deployment to provide convenience in practical sense.
Though the Diamond pattern may look complicated, we can
ease our real deployment by taking two steps. We first deploy
sensors at the end-points of each grid using d1 and d2, and
finally deploy a sensor at the center of the each grid.

Theorem 1: The Diamond pattern is the asymptotically
optimal deployment pattern to achieve four connectivity and
full coverage when rc/rs >

√
2.

Proof: From Definition 8, θ = 2arccos(rc/2rs). When√
3 ≥ rc/rs >

√
2, the Voronoi polygon generated by each

sensor in the Diamond pattern is a six-sided semi-regular
connection polygon. And we have π/2 > θ ≥ π/3. Form
(2) and (3), we obtain d1 = 2rs cos(θ/2)

√
2(1 − cos θ) and

d2 = 2rs cos(θ/2)
√

2(1 + cos θ).
Then the area of such a semi-regular hexagon is

A1 = d1d2/2 = 4 cos2(θ/2) sin θr2
s

= 2(1 + cos θ) sin θr2
s

= (2 sin θ + sin(2θ))r2
s .

When the Diamond pattern is used to cover a large area R
where the boundary condition can be ignored, the number of
such six-sided semi-regular connection polygons needed is

N1 = R/A1 = R/(2 sin θ + sin(2θ))r2
s . (4)
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Similarly, when rc/rs ≥ √
3, the Diamond pattern becomes

the regular triangle pattern where the Voronoi polygon gener-
ated by each sensor is a six-sided regular connection polygon.
We have 2 arccos(rc/2rs) ≤ π/3. Form (2) and (3), we obtain
d1 =

√
3rs and d2 = 3rs.

In this case, the area of such a regular hexagon is

A2 = d1d2/2 = 3
√

3r2
s/2. (5)

When the Diamond pattern is used to cover a large area R
where the boundary condition can be ignored, the number of
such six-sided regular connection polygons needed is

N2 = R/A2 = 2
√

3R/9r2
s = R/(2 sin

π

3
+ sin

2π

3
)r2

s . (6)

Equations (4) and (6) can be re-written as

R/(2 sin ϕ + sin(2ϕ))r2
s , (7)

where ϕ = max(2 arccos(rc/2rs), π/3), which is the exactly
the lower bound stated in Lemma 3.

IV. PATTERN EVOLUTION

We have shown the Diamond pattern to be asymptotically
optimal when rc/rs >

√
2. In this section, we investigate

the case where rc/rs ≤ √
2. As will become clear shortly,

the Square pattern can be viewed as a degenerated Diamond
pattern.

The Square pattern can be easily described using a diagram.
Fig. 5 shows such a diagram, where d1 = d2 =

√
2rc. By

rotating the diagram in Fig. 5 for 45 degrees, we obtain Fig. 6,
in which it is easy to see that each Voronoi polygon is a
square, with d′1 = d′2 = rc. The effective contribution of each
individual sensor to coverage is therefore

AS = d′1d
′
2 = r2

c . (8)

Fig. 5. The Square pattern to achieve full coverage and four connectivity
when rc/rs ≤ √

2. The coverage contribution of each individual sensor is
denoted by a shaded square.

We display the Diamond pattern and the Square pattern
together in Fig. 7, in an attempt to see their relationship. The
figure actually shows the Voronoi polygons corresponding to
various patterns rather than the patterns themselves. To see
how these Voronoi polygons evolve as rc/rs changes value,
let us assume that the sensing range rs is fixed, and the
communication range rc goes from large to small. When rc is
sufficiently large so that rc/rs ≥ √

3, the regular Diamond pat-
tern, whose Voronoi polygons are regular connection hexagons

Fig. 6. Another view of the Square pattern.

Fig. 7. The Voronoi polygon generated in different deployment patterns is
shown with dashed line segments. The amount of coverage contribution of
each individual sensor is denoted by the shaded area.

(as defined in Definition 9), is optimal. As rc gets smaller,
in order to maintain four-connectivity of the network, some
sensors need to get closer to each other. As we have proved
in Theorem 1 and depicted in Fig. 7, the semi-regular Diamond
pattern, whose Voronoi polygons are semi-regular connection
hexagons (as defined in Definition 10), is still optimal for the
case where

√
3 > rc/rs >

√
2.

If we let the semi-regular connection hexagon continue to
shrink, it becomes a square when rc/rs =

√
2. The square

gets smaller and smaller as rc/rs continues to decrease. An
interesting question arises: Is the Square pattern optimal for
rc/rs ≤ √

2? We conjecture that the answer is positive. Its
proving (or disproving), we believe, is an interesting open
problem. It is part of our future work.

V. NUMERICAL RESULTS

In this section, we compare the numbers of nodes needed for
various patterns to provide both four connectivity and coverage
over a deployment region of size 1000m× 1000m with rs =
30m, and 9m < rc ≤ 54m, i.e., rc/rs varies from 0.3 to 1.8.
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Fig. 8. Numbers of nodes needed to achieve four connectivity and full
coverage. rc/rs varies from 1.3 to 1.8.
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In Fig. 8, we compare the performances of three patterns
— the Diamond pattern, the regular triangle lattice pattern,
and the Square pattern — with rc/rs varying from 1.3 to
1.8 (rc changing from 39m to 54m). We make the following
observations:

1) It is convenient to view the Diamond pattern as a series
of transiting patterns as shown in Fig. 7. As such, the
Diamond pattern coincides with the Square pattern when
rc/rs is small. At rc/rs =

√
2, i.e., 1.4142, the two

patterns diverge. Afterwards, the Diamond pattern stands
alone until rc/rs =

√
3, i.e., 1.7321, when it converges

with the regular triangle lattice pattern.
2) The Diamond pattern outperforms the regular trian-

gle lattice pattern when they are separate (i.e., when
rc/rs <

√
3. For instance, compared with the regular

triangle lattice pattern, the Diamond pattern can save
about 13.7% of nodes when rc/rs = 1.5, and 14.9%
when rc/rs =

√
2.

3) Also, the Diamond pattern outperforms the Square pat-
tern when the two are separate. The Square pattern
costs 11.6% more sensors when rc/rs = 1.5, and
costs 25% more when rc/rs =

√
3, compared with the

Diamond pattern. This difference keeps unchanged as
rc/rs further increases.

VI. REMARKS ON SENSING AND COMMUNICATION

MODELS

In this section, we briefly discuss various sensing and com-
munication models that have been proposed in the literature,
and then comment on the particular model adopted in this
paper.

It is suggested that, the capability of sensing could gradually
attenuate with increasing distances. In [10], Megerian et al.
present a model for sensing sensitivity. In their model, the
sensing sensitivity decreases exponentially with increasing
target distance. Cao et al. in [3] suggest the sensing range of
passive infrared (PIR) sensor roughly follows two-dimensional
Gaussian. Zhou and Chakrabarty in [16] propose a probabilis-
tic sensing model containing three different ring-shaped areas.
The target can be detected with probability 1 in the first area,
with probability less than 1 but larger than 0 in the second area,
and with probability 0 in the third area. These models reflect
the fact that sensing disk boundary could not be determined
accurately.

Studies have also suggested that wireless communication
links could be irregular and non-isotropic. In some applica-
tions, disruptive physical phenomena may need to be consid-
ered. Zuniga and Krishnamachari in [17] identify the causes
of the transitional region in low power wireless communica-
tion links, and use the techniques from information theories
to quantify their influence. Based on those, the log-normal
shadowing model is proposed. In [15], Zhou et al. propose
the radio irregularity model (RIM). Based on experimental
data, RIM takes into account both the non-isotropic properties
of the propagation media and the heterogeneous properties of

devices. In [11], Moscibroda et al. propose the SINR model.
In this model, propagation channel properties are so important
such that a node may not be able to receive messages correctly
even if it is close to the sender. Generally, realistic modeling
of communication links between wireless sensing devices is
challenging, and link parameters often vary in different deploy
environments and hardware specifications.

We use the disk model in this paper. Reflecting the ideal
case, the disk model can be considered a clean abstraction
ignoring any uncertain physical disruptiveness. Abstraction is
inevitable to achieve enough generality while aiming to lay
down the certain theoretical foundations. The disk model can
also be considered as a conservative measure. For instance, we
can set a conservative threshold to get rs in the probabilistic
sensing cases, and we can get a conservative rc by taking
the lower bound in the non-isotropic communication cases.
Exploring optimal deployment patterns for the sensors with
non-disc sensing and communication models is valuable. We
believe that the methodology and results presented in this
paper based on the disk model would act as cornerstones for
future research.

VII. CONCLUSIONS

This work is the first to study optimal deployment patterns
for full coverage and four connectivity. We proposed a Dia-
mond pattern, which can be viewed as a series of evolving pat-
terns. When rc/rs ≥ √

3, the Diamond pattern coincides with
the well-known triangle lattice pattern; when rc/rs ≤ √

2, it
degenerates to the Square pattern. We proved the Diamond
pattern to be asymptotically optimal when rc/rs >

√
2. It

is challenging to search for optimal deployment patterns in
wireless sensor networks. We hope our work can shed some
insights on further exploration to this regard.
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APPENDIX

A. Proof of Lemma 1

Proof: The proof technique here is inspired by [8]. Let
V denote the number of vertices and E denote the number
of edges in the tessellation Γ. Let C denote the number of
corners, which is a constant for a fixed region. Since each
vertex except for those at corners is on at least three edges
and each edge is on two vertices, we have

3V − C ≤ 2E. (9)

We also have the Euler relation for Γ:

V − E + F = 1.

Substituting (9) into the Euler relation for Γ, we obtain

E ≤ 3F − 3 + C.

Now let ei (i = 1, 2, · · · , F ) denote the number of edges
on the ith polygon. Let B denote the number of boundary
edges, which are on only one polygon. Since all other edges
are each on two polygons, we have

F∑
i=1

ei ≤
F∑

i=1

ei + B = 2E ≤ 6F − 6 + 2C. (10)

Dividing F into Eq. 10 yields

1
F

F∑
i=1

ei ≤ 6 − 6
F

+
2C

F
,

the right side of which equals 6 as F approaches ∞.
Note that, when F is finite (1/F )

∑F
i=1 ei ≤ 6 may not

hold; it depends on C.

B. Proof for Lemma 2

Proof: We prove this Lemma by carrying out transforma-
tions from any given Gd to a Gr ∈ Gr.

Since each polygon in Gd is a Voronoi polygon generated
by a sensor, each edge of them must reside on one common
chord between two sensing disks as shown in Fig. 2. This
chord is called an edge-chord. The transformation is carried
out on these edge-chords such that the polygons are changed
to desired shapes.

Since we are looking for a Gr ∈ Gr, transformation is only
allowed if the following three constraints are all satisfied. First,
the total area of the polygons in Gr will be larger than or equal
to the total area of Gd; second, the average number of edges of
polygons in Gr is not larger than six; third, each polygon in Gr

has at least four edge-chords that are connection chords. The
above three constraints together guarantee that Gr obtained
after transformation be in the set Gr.

Considering one k-sided polygon in Gd, if 2π/k ≥ θ
where θ is the standard angle as defined in Definition 8, we
transform this polygon to a k-sided regular connection polygon
as defined in Definition 9 by letting each edge be overlapped
totally with its edge-chord and of the same length. After
transformation, the area will not decrease since the regular
polygon has the maximum area when k is given, which can
be proved using Lagrangian multipliers [6]. At the same time,
four connectivity will not be violated. Since the number of
edges is not changed, the average edge number of polygons
will not change.

Now we consider the case where 2π/k < θ. First, if among
k edge-chords there are more than four connection chords,
we randomly delete some of them to let only four be left,
and add one short chord when necessary. Fig. 9 illustrates this
transformation. Then, if among the four connection chords

Fig. 9. The large circle denotes the sensing disk. The solid lines denote the
connection chords. The dashed lines denote the short chords. (a) The polygon
in Gd before transformation; (b) If we remove the connection chord cd, no
short chord needed to add; (c) If we remove the connection chord ab, a short
chord a′b′ is needed to connect the “open side” that results from the removing
in the circumference.

there are some long chords, we change them into standard
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chords. The transformation is made by fixing one end point of
these long chords and rotating them toward outside until they
become standard chords. Fig. 10 illustrates this step. Next, we

Fig. 10. The large circle denotes the sensing disk. The solid lines denote
the connection chords. The dashed lines denote the short chords. (a) The
polygon before transformation; (b) Rotate long chord ab towards outside
until it becomes a standard chord ab′. We let short chord meet ab at the
circumference when necessary.

shift standard chords along the circumference until not any two
standard chords intersect each other within the sensing disk.
Then use k−4 short chords together with four standard chords
to construct a polygon with vertices all on the circumference.
The purpose of this step is to make the overlapped area
among any three sensing disks to be as small as possible. This
transformation is always feasible since rc/rs >

√
2. Fig. 11

illustrates this transformation. Finally, we transform polygons

Fig. 11. The large circle denotes the sensing disk. The solid lines denote
the connection chords. The dashed lines denote the short chords. (a) The
polygon before transformation; (b) Shift standard chords such that there are
no standard chords intersecting each other within the sensing disk. Connect
their ends with three short chords.

into semi-regular connection polygon as defined in Definition
10 by shifting standard chords along the circumference and
letting short chords equally share the remaining arc. Since
rc/rs >

√
2, the angle made at the center of the sensing disk

by the remaining arc is always larger than 0. Fig. 12 illustrates
this final transformation.

Fig. 12. The large circle denotes the sensing disk. The solid lines denote the
connection chords. The dashed lines denote the short chords. (a) The polygon
before transformation; (b) Shift standard chords such that all standard chords
are together. Let three short chords equally share the left arc.

Now we denote the set of polygons after transformation as
Gr. Gr consists of only reference polygons and Gr = Gd.

As we can see from the transformation procedure, trans-
formations do not decrease total area of polygons. Also they
do not increase the edge number since only deleting chords
are allowed. They further do not violate the condition that at
least four edge-chords of each polygon are connection chords.
Hence, Gr ∈ Gr.

C. Proof for Lemma 3

Let Mk (k ≥ 5) denote the area of a polygon in Gr, which
is the set of reference polygons after the transformations in
Lemma 2. We have

Mk = 2r2
s sin ϕ +

(k − 4)r2
s

2
sin

2π − 4ϕ

k − 4
, (11)

where ϕ = max(2π/k, θ). Recall that θ is the standard angle
as defined in Definition 8, θ = 2arccos(rc/2rs).

To prove Lemma 3, we need to first prove the following
lemma.

Lemma 4: For k ≥ 5,

0 < Mk+1 − Mk < Mk − Mk−1. (12)

Proof: It can be proved by extensively using Taylor’s
expansion for sin x.

Let f(k) is defined as f(k) = Mk+1 −Mk. The proof can
be divided into the following four cases.

Case 1: When ϕ ≤ 2π/(k + 1), Mk+1, Mk and Mk−1 are
the areas of the regular connection polygons. Therefore, at this
time, the claim that “f(k) > 0 and f(k) is decreasing as k
increases” follows directly from Lemma 2 of [8] (Lemma 2 in
[8] states that, the area of regular polygons will increase as the
number of edges increases. But the amount of area increment
will decrease as the number of edges increases).

Case 2: When ϕ ≥ 2π/(k−1), Mk+1, Mk and Mk−1 are the
areas of the the semi-regular connection polygons. This case
essentially has no difference from case 1, since the polygons
are of the same type. Hence, exactly the same technique used
in proof of Lemma 2 in [8] can show the claim holds at this
time.

The first inequality in (12) can be easily proved using Tay-
lor’s expansion for sinx. We now prove the second inequality.
we have

f(k) =
(k − 3)r2

s

2
sin

2π − 4ϕ

k − 3

− (k − 4)r2
s

2
sin

2π − 4ϕ

k − 4
.

Taking derivatives of both sides of the above equation, we get

df(k)
dk

=
r2
s

2

[
sin

2π − 4ϕ

k − 3
− 2π − 4ϕ

k − 3
cos

2π − 4ϕ

k − 3

]

− r2
s

2

[
sin

2π − 4ϕ

k − 4
− 2π − 4ϕ

k − 4
cos

2π − 4ϕ

k − 4

]
.

Since sin x − x cos x is an increasing function of x in (0, π)
and (2π−4ϕ)/(k−3), (2π−4ϕ)/(k−4) ∈ (0, π) for k ≥ 5,
df(k)/dk < 0 for k ≥ 5. Hence, f(k) is a decreasing function,
and thus (12) holds when 2π/(k − 1) ≤ ϕ.
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Case 3: When 2π/(k + 1) < ϕ ≤ 2π/k, for k ≥ 4, let

Mr
k =

r2
s

2
k sin

2π

k

and

Ms
k = 2r2

s sin ϕ +
r2
s(k − 4)

2
sin

2π − 4ϕ

k − 4
.

Then, Mk+1 = Ms
k+1, Mk = Mr

k , and Mk−1 = Mr
k−1. To

show at this time f(k) > 0, we have

Ms
k+1 − Mr

k =
(k − 3)r2

s

2
sin

2π − 4ϕ

k − 3

+ r2
s sin ϕ − kr2

s

2
sin

2π

k
,

which is greater than 0 for 2π/(k + 1) < ϕ ≤ 2π/k.

For the claim that f(k) is decreasing as k increases in this
case, we need to proveMs

k+1 − Mr
k < Mr

k − Mr
k−1, which

follows from the conclusion for the case 2 and the fact that
Ms

k+1 < Mr
k+1. The latter inequality holds since Ms

k+1 is the
maximum area possible of any (k+1)-sided polygon inscribed
in a sensing disk.

Case 4: When 2π/k < ϕ < 2π/(k − 1), for the claim that
f(k) > 0, we notice 0 < Ms

k+1 − Ms
k is obvious. For the

claim that f(k) is decreasing as k increases in this case, we
need to prove Ms

k+1 −Ms
k < Ms

k −Mr
k−1, which follows by

note that

(Ms
k − Mr

k−1) − (Ms
k+1 − Ms

k)

= (k − 4)r2
s sin

2π − 4ϕ

k − 4
− r2

s

2
(k − 5) sin

2π

k − 5

− r2
s

2
(k − 3) sin

2π − 4ϕ

k − 3
is greater than 0 when 2π/k < ϕ < 2π/(k − 1) by using
Taylor’s expansion for sin x.

The four cases together prove that f(k) > 0 and f(k) is
decreasing as k increases for all values of ϕ, where f(k) is
defined as f(k) = Mk − Mk−1, where Mk is expressed in
(11) and k ≥ 5.

Now we are ready to prove Lemma 3.

Proof: Let ni (i = 3, 4, · · · ,m) denote the number of
polygons in Gr with i edges, so we have

m∑
i=3

= |Gr|.

Since Gr ∈ G, the average number of sides of the polygons
of Gr is smaller than six, i.e.,

m∑
i=3

ini ≤ 6
m∑

i=3

ni,

which can be rewritten as
m∑

i=7

(i − 6)ni ≤ 5
m∑

i=3

(6 − i)ni.

By Lemma 4 that states f(k) is decreasing as k increases,

we can strengthen the above as

m∑
i=7

(i − 6)(M7 − M6)ni ≤
5∑

i=3

(6 − i)(M6 − M5)ni. (13)

The fact that f(k) is decreasing as k increases implies that
the interval from Mq to Mp consists of (p − q) subintervals
among which the shortest is Mp − Mp−1 and the longest is
Mq+1 − Mq.

We then have for p > q ≥ 5,

(p − q)(Mp − Mp−1) ≤ (Mp − Mq), (14)

and (Mp − Mq) ≤ (p − q)(Mq+1 − Mq). (15)

Hence, by (14) we have

(6 − i)(M6 − M5) ≤ (M6 − Mi), i < 6 (16)

and by (15)

Mi − M6 ≤ (i − 6)(M7 − M6), i > 6. (17)

Then from (13), (16) and (17),
m∑

i=3

Mini ≤ M6

m∑
i=3

ni = |Gr|M6,

where
∑m

i=3 Mini ≥ R.
We then have R ≤ |Gr|M6. This concludes our proof.
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