Computer Security Laboratory

FirmXRay: Detecting Bluetooth Link Layer
Vulnerabilities From Bare-Metal Firmware

Haohuang Wen, Zhigiang Lin, and Yingian Zhang

CCS 2020

THE OHIO STATE UNIVERSITY

Bluetooth Low Energy

Bluetooth

4.0

Low Energy

1/15

Low Technical Barrier for loT Development

2/15

Low Technical Barrier for loT Development

2/15

Low Technical Barrier for loT Development

Azure loT Hub

2/15

Low Technical Barrier for loT Development

Azure loT Hub

2/15

Low Technical Barrier for loT Development

Are they secure?

Azure loT Hub

2/15

BLE Workflow

Peripheral Central

J

3/15

BLE Workflow

Peripheral (1) Broadcast and Connection Central

pmm o m e e ——
|]

@ Broadcast (((l))) E @ Scan

3/15

BLE Workflow

Peripheral (1) Broadcast and Connection Central

pmm o m e e ——

@ Broadcast (((l))) E @ Scan

© Connection Request

@ Connection Established

3/15

BLE Workflow

Peripheral (1) Broadcast and Connection Central

@ Broadcast (((l))) E @ Scan

.

© Connection Request

@ Connection Established

@ Pairing Feature Exchange

(=)

3/15

BLE Workflow

Peripheral (1) Broadcast and Connection Central

b .
é @ Broadcast (((l))) — @ Scan i
: — :
i © Connection Request ;
: @ Connection Established :

@ Pairing Feature Exchange

e STKILTK Generation (Legacy/LESC Pairing)

a Transport Specific Key Distribution

(=)

3/15

BLE Workflow

Peripheral (1) Broadcast and Connection Central

@ Broadcast (((l))) E @ Scan

.

© Connection Request

@ Connection Established

@ Pairing Feature Exchange

a Transport Specific Key Distribution

E e STKILTK Generation (Legacy/LESC Pairing)

3/15

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

B P ((‘l’)) Eescan j Vulnerabilities

@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

© Connection Request

@ Connection Established

9 Pairing Feature Exchange

ﬂ Transport Specific Key Distribution

|
E @ STKILTK Generation (Legacy/LESC Pairing)

4/15

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection

@ Broadcast (((‘))) E @ Scan

© Connection Request

Central

Vulnerabilities

@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Connection Established

@ Active MITM. Just Works is adopted as the

e Pairing Feature Exchange

pairing method.

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

4/15

BLE

Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

@ Broadcast (((‘))) E @ Scan

© Connection Request

@ Connection Established

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

Vulnerabilities
@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Active MITM. Just Works is adopted as the
pairing method.

@ Passive MITM. Legacy pairing is used
during key exchange [ble14].

4/15

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

@ Broadcast (((‘,)) E = Vulnerabilities

@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Active MITM. Just Works is adopted as the
S pairing method.

© Connection Request

@ Connection Established

S sttt SN @ Passive MITM. Legacy pairing is used

: @ Pairing Feature Exchange : during key exchange [ble14].
: @ STKILTK Generation (Legacy/LESC Pairing) ;
E ‘ Identification
i ﬂ Transport Specific Key Distribution :
N N L @ Traffic analysis
(INl) Data Transmission @ Mobile app analysis

4/15

BLE

Peripheral

Link Layer Vulnerabilities

(1) Broadcast and Connection

@ Broadcast (((‘)))

© Connection Request

@ Connection Established

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

Central

Vulnerabilities

@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Active MITM. Just Works is adopted as the
pairing method.

@ Passive MITM. Legacy pairing is used
during key exchange [ble14].

Identification

@ Traffic analysis
@ Mobile app analysis

© Firmware analysis

4/15

An Example of a Just Works Pairing Vulnerability

Read Only Memory
mmm) | 24328 mov , #0x0 Register Values
243aa orr , #0x1
243ac and , #0xel _
243ae add , #0xc rl = 0x0
243b0 and , #0xdf r2 = 0x0
243b2 ldr , [0x260c8]
243b4 str , [r1,#0x0]
25f44 1ldr , [0x260c8]
25£46 mov , #0x0
25£48 sve 0x7£
260c8 0x20003268

5/15

An Example of a Just Works Pairing Vulnerability

Read Only Memory

243a8 mov , #0x0 Register Values

243aa orr , #0x1

243ac and , #0xel _

243ae add , #0xc rl = 0x0
=) 5 24360 and , #oxdf r2 = 0xD

243b2 ldr , [0x260c8]

243b4 str , [r1,#0x0]

25f44 1ldr , [0x260c8]

25£46 mov , #0x0

25£48 sve 0x7£

260c8 0x20003268

5/15

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0

) 6 243b2

243b4
25f44

25£46
25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

’
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Random Access Memory

Struct ble_gap_sec_params_t Register Values
20003268 uint8 pairing_feature
rl = 0x20003268
r2 = 0xD

20003269
20003270
20003271
20003275

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

5/15

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2

) 7 243b4

25f44
25£46
25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

’
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

Random Access Memory

Register Values
uint8 pairing_ feature = 0xD

rl = 0x20003268

r2 = 0xD

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

5/15

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44
25£46

mm) 10 25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

’
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

Random Access Memory

Register Values
uint8 pairing_ feature = 0xD

rl = 0x0

r2 = 0x20003268

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

5/15

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44
25£46

mm) 10 25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

’
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Random Access Memory

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

uint8 pairing_ feature = 0xD

[BonD [mmm 1o | ooB |

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

Register Values

rl
r2

0x0
0x20003268

5/15

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling

!

Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD £l = 0x0
243ae add , #0xc -
243b0 and , #0xdf |B°ND | m™ ||° | 008 | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [rl,#0x0]
. 20003269 uint8 min_key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

5/15

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling Recognize data structures

Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD

rl = 0x0

243ae add s #Oxe BOND | mitm [10 [ooB
243b0 and , #0xdf | | | | | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [r1l,#0x0]
) 20003269 uint8 min key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

5/15

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling Recognize data structures Value computation
Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD
rl = 0x0
243ae add s #Oxe BOND | mitm [10 [ooB
243b0 and , #0xdf | | | | | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [rl,#0x0]
) 20003269 uint8 min key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

5/15

FirmMXR

Robust Firmware
Disassembling

IARRAN]
A

P m Disassembler

HIDRA

[X = flrgg:aXN(X) Constraints

Bare-metal v
Firmware -
Precise Data
Structure Recognition
| —— A4

Detection — Configuration
Policies Value Resolution

Vulnerabilities

6/15

Robust Firmware Disassembling

20452 1dr s [PCHOXT72}-- 1fe52 1ldr ; |pct0x146 [-------_ N

20454 blx =>0x22A90 1fe54 ldmia r {r4, ’ }

Correct Base 204c4 [0x22R90]<

0x1B000 ee 7

" Function Foo() ”"KinsaHealth”
push (=3, i, £5, 1}
(1) Absolute Function Pointer (2) Absolute String Pointer

7/15

Robust Firmware Disassembling

05452 1dr , 04e52 1dr , [pctox146
05454 blx =>0x22A90 04e54 ldmia =>0x23058,_:>{ ’ ’ }
Incorrect Base 054c4 [0x22A90]%: 04£98 [0x23058 > X
0x0 . .
Function Foo() 08058 “KinsaHealth”
07a90 push {r3, ’ ’ }
20452 1dr s [PCHOXT72}-- 1fe52 1ldr ; |pct0x146 [-------_ N
20454 blx =>0x22A90 1fe54 ldmia , {rs4, , r6é}
Correct Base 204c4 [0x22890]< 1££98 [0%23058 Je------"
0x1B000 e -
Function Foo() ”"KinsaHealth”
push {r3, r r5, 1r}
(1) Absolute Function Pointer (2) Absolute String Pointer

7/15

Robust Firmware Disassembling

05452 1ldr ; pctO0x72 ----. 04e52 1ldr , pc+0x14§
05454 blx =>0x22A90 04e54 ldmia =>0x23058,’::{ ' ' }
Base 054ca [0x22R90]< 04£98 [0x23058]«
0x0 cee .
Function Foo() 08058 | ”"KinsaHealth”

[07290] push {3, w4, =5, 1r}

7/15

Robust Firmware Disassembling

05452 1ldr ; pctO0x72 ----. 04e52 1ldr , pc+0x14§
05454 blx =>0x22A90 04e54 ldmia =>0x23058,’::{ ' ' }
Base 054ca [0x22R90]< 04£98 [0x23058]«
0x0 cee .
Function Foo() 08058 | ”"KinsaHealth”

[07290] push {3, =4, =5, lr}

[Absolute Pointers: 0x22A90, 0x23058

[Gadgets: 0x07A90, 0x08058

7/15

Robust Firmware Disassembling

05452 1ldr ; pctO0x72 ----. 04e52 1ldr , pc+0x14§
05454 blx =>0x22A90 04e54 ldmia =>0x23058,’::{ ' ' }
Base 054ca [0x22R90]< 04£98 [0x23058]«
0x0 cee .
Function Foo() 08058 | ”"KinsaHealth”

[07290] push {3, =4, =5, lr}

[Absolute Pointers: 0x22A90, 0x23058

[Gadgets: 0x07A90, 0x08058

!

N(0x1B000) = 2

7/15

Robust Firmware Disassembling

05452 1ldr ; pctO0x72 ----. 04e52 1ldr , pc+0x14§
05454 blx =>0x22A90 04e54 ldmia =>0x23058,’::{ ' ' }
Base 054ca [0x22R90]< 04£98 [0x23058]«
0x0 cee .
Function Foo() 08058 | ”"KinsaHealth”

[07290] push {3, =4, =5, lr}

0x22A90-0x07A90
0x23058-0x08058

[Absolute Pointers: 0x22A90, 0x23058 0x1B000

[Gadgets: 0x07A90, 0x08058

!

N(0x1B000) = 2

7/15

Precise Data Structure Recognition

Robust Firmware
Disassembling

Precise Data
Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

Read Only Memory

mov
orr
and
add
and
1ldr
str

1ldr
mov
sve

’

’
ox7f

#0x0
#0x1
#0xel
#0xc
#0xdf
[0x260c8]
[r1,#0x0]

[0%260c8]
#0x0

SD_BLE_GAP_SEC_PARAMS_REPLY (r0, rl, r2)

260c8

0x20003268

8/15

Configuration Value Resolution

Robust Firmware
Disassembling

Precise Data
Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

260c8

Read Only Memory

mov , #0x0

orr , #0x1

and , #0xel
add , #0xc

and , #0xdf

ldr , [0x260c8]
str ; [r1,#0x0]
ldr , [0x260c8]
mov , #0x0

svc 0x7f
0x20003268

Program Path

9/15

Configuration Value Resolution

Robust Firmware
Disassembling

Precise Data
Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

260c8

Read Only Memory

mov , #0x0

orr , #0x1

and , #0xel
add , #0xc

and , #0xdf

ldr , [0x260c8]
str ; [r1,#0x0]
ldr , [0x260c8]
mov , #0x0

svc 0x7f
0x20003268

Program Path

1dr r2, [0x260c8]
str r2, [rl, #0x0]

9/15

Configuration Value Resolution

Robust Firmware
Disassembling

Precis

e Data

Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

260c8

Read Only Memory

mov , #0x0

orr , #0x1

and , #0xel
add , #0xc

and , #0xdf

ldr , [0x260c8]
str ; [r1,#0x0]
ldr , [0x260c8]
mov , #0x0

svc 0x7f
0x20003268

Program Path

1dr
str
1dr
and
add
and
orr
mov

r2,
r2,
rl,
r2,
r2,
r2,
r2,
r2,

[0x260c8]
[rl, #0x0]
[0x260c8]
#0xdf
#0xc
#0xel
#0x1
#0x0

9/15

Configuration Value Resolution

Robust Firmware
Disassembling

Precis

e Data

Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

260c8

Read Only Memory

mov , #0x0

orr , #0x1

and , #0xel
add , #0xc

and , #0xdf

ldr , [0x260c8]
str ; [r1,#0x0]
ldr , [0x260c8]
mov , #0x0

svc 0x7f
0x20003268

Program Path

1dr
str
1dr
and
add
and
orr
mov

r2 =

r2, [0x260c8]
r2, [rl, #0x0]
rl, [0x260c8]
r2, #0xdf
r2, #0xc
r2, #0xel
r2, #0x1
r2, #0x0

L 4

0x20003268

9/15

Configuration Value Resolution

Robust Firmware
Disassembling

Precis

e Data

Structure Recognition

Configuration
Value Resolution

Policy SDK Function Name Reg. Description
Index

SD_BLE_GAP_ADDR_SET 0 Configure the MAC address
SD_BLE_GAP_APPEARANCE_SET 0 Set device description
SD_BLE_GATTS_SERVICE_ADD 0,1 Add a BLE GATT service

(i) SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
SD_BLE_UUID_VS_ADD 0 Specify the UUID base
GAP_ConfigDeviceAddr* 0 Setup the address type
GATTServApp-RegisterService* 0 Register BLE GATT service
SD_BLE_GAP_SEC_PARAMS REPLY 2 Reply peripheral pairing features
SD_BLE_GAP_AUTH 1 Reply central pairing features

(ii) SD_BLE_GAP_AUTH_KEY_REPLY 1,2 Reply with an authentication key
SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
GAPBondMgr_SetParameter* 2 Setup pairing parameters
GATTServApp-RegisterService* 0 Register BLE GATT service

(iii) SD_BLE_GAP_LESC_DHKEY_REPLY 0 Reply with a DH key
GAPBondMgr_SetParameter® 2 Setup pairing parameters

9/15

Firmware Collection

10/15

Firmware Collection

y
|

lﬁl
APK

2M Free Apps

10/15

Firmware Collection

y
|

o] Filter ‘ l@l
APK I APK

2M Free Apps 13K BLE Apps

10/15

Firmware Collection

y
|

l@l Filter l@l Unpack
> _
APK APK Extract

2M Free Apps 13K BLE Apps 793 Firmware

10/15

Firmware Collection

>

N

l 768 Nordic
l@l Filter l@l Unpack =
> B =
APK APK Extract =

2M Free Apps 13K BLE Apps 793 Firmware

3

25Tl

10/15

Firmware Categorization

» Firmware categorization

11/15

Firmware Categorization

» Firmware categorization

» Descriptive APIs (e.g.,
SD_BLE_GAP_APPEARANCE_SET)

11/15

Firmware Categorization

» Firmware categorization

» Descriptive APIs (e.g.,
SD_BLE_GAP_APPEAR.ANCE_SET)
» Mobile app descriptions

11/15

Firmware Categorization

» Firmware categorization

» Descriptive APIs (e.g.,
SD_BLE_GAP_APPEAR.ANCE_SET)
» Mobile app descriptions

. . Avg. Size

Category # Firmware # Device (KB)
Nordic-based Firmware
Wearable 204 138 98.2
Others 76 22 223.5
Sensor 67 51 80.9
Tag (Tracker) 58 41 84.2
Robot 41 21 117.7
Medical Devices 41 21 138.6
Tl-based Firmware

Sensor 19 19 132.9
Smart Lock 2 2 46.3
Smart Toy 2 2 47.8
Medical Devices 1 1 70.2
Others 1 1 76.7
Total | 793 538 | 102.7

Table: Top categories of firmware.

11/15

Firmware Categorization

. . Avg. Size
Category # Firmware # Device (KB)
Nordic-based Firmware
» Firmware categorization Wearable 204 138 98.2
Lo Others 76 22 223.5
» Descriptive APIs (e.g., Sensor 67 51 80.9
SD_BLE_GAP_APPEARANCE_SET) Tag (Tracker) 58 4 84.2
X o Robot a1 21 17.7
> Mobile app descriptions Medical Devices 11 21 138.6
» Firmware aggregation Tl-based Firmware
. . Sensor 19 19 132.9
» Aggregate different versions of Smart Lock 5 5 163
firmware of the same device Smart Toy 2 2 478
» The 793 firmware represent 538 Medical Devices 1 1 702
. Others 1 1 76.7
real devices
Total | 793 538 | 102.7

Table: Top categories of firmware.

11/15

Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static
addresses that do not change periodically.

12/15

Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static
addresses that do not change periodically.

Firmware Name Mobile App Category # Device
cogobeacon com.aegismobility.guardian Car Accessory 4
sd_bl fr.solem.solemwf Agricultural Equip. 2
LRFL_nRF52 fr.solem.solemwf Agricultural Equip. 2
orb one.shade.app Smart Light 1
sd_bl com.rainbird Agricultural Equip. 1

Table: Firmware using private MAC address.

12/15

Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.

12/15

Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.

Item N T Total %
Total Device 513 25 538 100
Device w/ active MITM vulnerability 384 1 385 T1.5
Device w/ Just Works pairing only 317 1 318 59.1

Device w/ flawed Passkey implementation 37 0 37 6.9

Device w/ flawed OOB implementation 30 0 30 5.6

Device w/ secure pairing 6 24 30 38
Device w/ correct Passkey implementation 3 24 27 34

Device w/ correct OOB implementation 3 0 3 04

Table: Pairing configurations of devices (N:Nordic, T:TI).

12/15

Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.

12/15

Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.

Firmware Name Mobile App Category # Version
DogBodyBoard com.wowwee.chip Robot 16
BW_Pro com.ecomm.smart_panel Tag 1
Smart_Handle com.exitec.smartlock Smart Lock 1
Sma05 com.smalife.watch Wearable 1
CPRmeter com.laerdal.cprmeter2 Medical Device 4
WiJumpLE com.wesssrl.wijumple Sensor 1
nRF Beacon no.nordicsemi.android.nrfbeacon Beacon 1
Hoot Bank com.qvivr.hoot Debit Card 1

Table: Firmware that enforce LESC pairing.

12/15

Attack Case Studies

nRF52840 DK Vulnerable BLE Devices

13/15

Attack Case Studies

Device Name Category ﬂ
Al A2 A3

Nuband Activ+ Wearable v v

Kinsa Smart Thermometer v

Chipolo ONE Tag v

SwitchBot Button Pusher Smart Home v

XOSS Cycling Computer Sensor v v

Al: User Tracking

13/15

Attack Case Studies

Device Name Category ﬂ
Al A2 A3

Nuband Activ+ Wearable v v

Kinsa Smart Thermometer v

Chipolo ONE Tag v

SwitchBot Button Pusher Smart Home v

XOSS Cycling Computer Sensor v v

A2: Unauthorized Control

13/15

Attack Case Studies

Device Name Category ﬂ
Al A2 A3

Nuband Activ+ Wearable v v

Kinsa Smart Thermometer v

Chipolo ONE Tag v

SwitchBot Button Pusher Smart Home v

XOSS Cycling Computer Sensor v v

A3: Sensitive Data Eavesdropping

13/15

Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.

14/15

Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.

» Exploitation. Not all the vulnerabilities can be exploited in practice.

14/15

Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.

» Exploitation. Not all the vulnerabilities can be exploited in practice.

» Root Cause. Lack of hardware capabilities and misconfiguration by the
developers are the two major root causes.

14/15

Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.

» Exploitation. Not all the vulnerabilities can be exploited in practice.

» Root Cause. Lack of hardware capabilities and misconfiguration by the
developers are the two major root causes.

» Future Work.

» Extract more embedded firmware from apps (e.g., those downloaded from server).
» Adapt FIRMXRAY to other SDKs and architectures.
» Enable dynamic analysis and firmware emulation [CGS'20] [CWBE16] [FML20].

14/15

Takeaway

CXD) Dpisassembler

Robust Firmware 2
X= arEEn;aXN(i) Constraints

Disassembling

Bare-metal
Firmware
Precise Data

Structure Recognition

Configuration
Value Resolution

Detection II

Policies

FIRMXRAY

» A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
» A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.

» Vulnerability discovery and attack case studies.

15/15

https://github.com/OSUSecLab/FirmXRay

Takeaway

CXD) Dpisassembler

Robust Firmware

Disassembling X = argmaxN(x) Constraints
ek

Bare-metal
Firmware
Precise Data

Structure Recognition

Configuration
Value Resolution

Detection II

Policies

Vulnerabilities II

FIRMXRAY

» A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
» A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.

» Vulnerability discovery and attack case studies.

The source code is available at https://github.com/0SUSecLab/FirmXRay.

15/15

https://github.com/OSUSecLab/FirmXRay

[
B
B
B
[

Bluetooth specification version 4.2, https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439, 2014.

Abraham Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and

Mathias Payer, Halucinator: Firmware re-hosting through abstraction layer emulation, Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20), USENIX Association, 2020.

Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele, Towards automated dynamic analysis for linux-based embedded
firmware., 2016 Network and Distributed Systems Security Symposium (NDSS), vol. 16, 2016, pp. 1-16.

Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra, Uncovering privacy leakage in ble network traffic of wearable fitness
trackers, Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications, ACM, 2016, pp. 99-104.

Bo Feng, Alejandro Mera, and Long Lu, P2im: Scalable and hardware-independent firmware testing via automatic peripheral interface
modeling, Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), USENIX Association, 2020.

15/15

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439

	Introduction
	

	Motivating Example
	

	FirmXRay
	

	Evaluation
	

	Discussion
	

	Takeaway
	

	References
	

