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An Example of a Just Works Pairing Vulnerability

Read Only Memory
mmm) | 24328  mov , #0x0 Register Values
243aa orr , #0x1
243ac and , #0xel _
243ae add , #0xc rl = 0x0
243b0  and , #0xdf r2 = 0x0
243b2 ldr , [0x260c8]
243b4  str , [r1,#0x0]
25f44  1ldr , [0x260c8]
25£46 mov , #0x0
25£48  sve 0x7£
260c8  0x20003268
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Robust Firmware Disassembling

20452 1dr s [PCHOXT72}-- 1fe52 1ldr ; |pct0x146 [-------_ N

20454 blx =>0x22A90 1fe54 ldmia r {r4, ’ }

Correct Base  204c4 [0x22R90]<

0x1B000 ee 7

" Function Foo() ”"KinsaHealth”
push (=3, i, £5, 1}
(1) Absolute Function Pointer (2) Absolute String Pointer
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Robust Firmware Disassembling

05452  1dr , 04e52 1dr , [pctox146
05454 blx =>0x22A90 04e54 ldmia =>0x23058,_:>{ ’ ’ }
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0x0 . .
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Robust Firmware Disassembling

05452 1ldr ; pctO0x72 ----. 04e52 1ldr , pc+0x14§
05454 blx =>0x22A90 04e54 ldmia =>0x23058,’::{ ' ' }
Base 054ca [0x22R90]< 04£98 [0x23058]«
0x0 cee .
Function Foo() 08058 | ”"KinsaHealth”

[07290] push {3, w4, =5, 1r}
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Precise Data Structure Recognition

Robust Firmware
Disassembling

Precise Data
Structure Recognition

Configuration
Value Resolution

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44

25f46
25£48

Read Only Memory

mov
orr
and
add
and
1ldr
str

1ldr
mov
sve

’

’
ox7f

#0x0
#0x1
#0xel
#0xc
#0xdf
[0x260c8]
[r1,#0x0]

[0%260c8]
#0x0

SD_BLE_GAP_SEC_PARAMS_REPLY (r0, rl, r2)

260c8

0x20003268

8/15



Configuration Value Resolution
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Configuration Value Resolution
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Configuration Value Resolution

Robust Firmware
Disassembling

Precis

e Data

Structure Recognition

Configuration
Value Resolution

Policy SDK Function Name Reg. Description
Index

SD_BLE_GAP_ADDR_SET 0 Configure the MAC address
SD_BLE_GAP_APPEARANCE_SET 0 Set device description
SD_BLE_GATTS_SERVICE_ADD 0,1 Add a BLE GATT service

(i) SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
SD_BLE_UUID_VS_ADD 0 Specify the UUID base
GAP_ConfigDeviceAddr* 0 Setup the address type
GATTServApp-RegisterService* 0 Register BLE GATT service
SD_BLE_GAP_SEC_PARAMS REPLY 2 Reply peripheral pairing features
SD_BLE_GAP_AUTH 1 Reply central pairing features

(ii) SD_BLE_GAP_AUTH_KEY_REPLY 1,2  Reply with an authentication key
SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
GAPBondMgr_SetParameter* 2 Setup pairing parameters
GATTServApp-RegisterService* 0 Register BLE GATT service

(iii) SD_BLE_GAP_LESC_DHKEY_REPLY 0 Reply with a DH key
GAPBondMgr_SetParameter® 2 Setup pairing parameters
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Firmware Categorization

» Firmware categorization
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Firmware Categorization

» Firmware categorization

» Descriptive APIs (e.g.,
SD_BLE_GAP_APPEAR.ANCE_SET)
» Mobile app descriptions

. . Avg. Size

Category # Firmware # Device (KB)
Nordic-based Firmware
Wearable 204 138 98.2
Others 76 22 223.5
Sensor 67 51 80.9
Tag (Tracker) 58 41 84.2
Robot 41 21 117.7
Medical Devices 41 21 138.6
Tl-based Firmware

Sensor 19 19 132.9
Smart Lock 2 2 46.3
Smart Toy 2 2 47.8
Medical Devices 1 1 70.2
Others 1 1 76.7
Total | 793 538 | 102.7

Table: Top categories of firmware.
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Firmware Categorization

. . Avg. Size
Category # Firmware # Device (KB)
Nordic-based Firmware
» Firmware categorization Wearable 204 138 98.2
Lo Others 76 22 223.5
» Descriptive APIs (e.g., Sensor 67 51 80.9
SD_BLE_GAP_APPEARANCE_SET) Tag (Tracker) 58 4 84.2
X o Robot a1 21 17.7
> Mobile app descriptions Medical Devices 11 21 138.6
» Firmware aggregation Tl-based Firmware
. . Sensor 19 19 132.9
» Aggregate different versions of Smart Lock 5 5 163
firmware of the same device Smart Toy 2 2 478
» The 793 firmware represent 538 Medical Devices 1 1 702
. Others 1 1 76.7
real devices
Total | 793 538 | 102.7

Table: Top categories of firmware.
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Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static
addresses that do not change periodically.
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Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static
addresses that do not change periodically.

Firmware Name Mobile App Category # Device
cogobeacon com.aegismobility.guardian  Car Accessory 4
sd_bl fr.solem.solemwf Agricultural Equip. 2
LRFL_nRF52 fr.solem.solemwf Agricultural Equip. 2
orb one.shade.app Smart Light 1
sd_bl com.rainbird Agricultural Equip. 1

Table: Firmware using private MAC address.
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Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.
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Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.

Item N T Total %
# Total Device 513 25 538 100
# Device w/ active MITM vulnerability 384 1 385 T1.5
# Device w/ Just Works pairing only 317 1 318 59.1

# Device w/ flawed Passkey implementation 37 0 37 6.9

# Device w/ flawed OOB implementation 30 0 30 5.6

# Device w/ secure pairing 6 24 30 38
# Device w/ correct Passkey implementation 3 24 27 34

# Device w/ correct OOB implementation 3 0 3 04

Table: Pairing configurations of devices (N:Nordic, T:TI).
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Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.
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Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.

Firmware Name Mobile App Category # Version
DogBodyBoard com.wowwee.chip Robot 16
BW_Pro com.ecomm.smart_panel Tag 1
Smart_Handle com.exitec.smartlock Smart Lock 1
Sma05 com.smalife.watch Wearable 1
CPRmeter com.laerdal.cprmeter2 Medical Device 4
WiJumpLE com.wesssrl.wijumple Sensor 1
nRF Beacon no.nordicsemi.android.nrfbeacon  Beacon 1
Hoot Bank com.qvivr.hoot Debit Card 1

Table: Firmware that enforce LESC pairing.
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Attack Case Studies

nRF52840 DK Vulnerable BLE Devices
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Attack Case Studies

Device Name Category ﬂ
Al A2 A3

Nuband Activ+ Wearable v v

Kinsa Smart Thermometer v

Chipolo ONE Tag v

SwitchBot Button Pusher Smart Home v

XOSS Cycling Computer  Sensor v v

Al: User Tracking
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A2: Unauthorized Control
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Nuband Activ+ Wearable v v

Kinsa Smart Thermometer v
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A3: Sensitive Data Eavesdropping
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Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.
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Discussion

» Effectiveness. Source of FP/FN: incorrect base address and fundamental
limitations of program analysis.

» Exploitation. Not all the vulnerabilities can be exploited in practice.

» Root Cause. Lack of hardware capabilities and misconfiguration by the
developers are the two major root causes.

» Future Work.

» Extract more embedded firmware from apps (e.g., those downloaded from server).
» Adapt FIRMXRAY to other SDKs and architectures.
» Enable dynamic analysis and firmware emulation [CGS'20] [CWBE16] [FML20].
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Takeaway

CXD)  Dpisassembler

Robust Firmware 2
X= arEEn;aXN(i) Constraints

Disassembling

Bare-metal
Firmware
Precise Data

Structure Recognition

Configuration
Value Resolution

Detection II

Policies

FIRMXRAY

» A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
» A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.

» Vulnerability discovery and attack case studies.
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CXD)  Dpisassembler

Robust Firmware

Disassembling X = argmaxN(x) Constraints
ek

Bare-metal
Firmware
Precise Data

Structure Recognition

Configuration
Value Resolution

Detection II

Policies

Vulnerabilities II

FIRMXRAY

» A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
» A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.

» Vulnerability discovery and attack case studies.

The source code is available at https://github.com/0SUSecLab/FirmXRay.
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