
Computer Security Laboratory

THE OHIO STATE UNIVERSITY

Automated Cross-Platform Reverse Engineering of CAN

Bus Commands From Mobile Apps

Haohuang Wen1, Qingchuan Zhao1, Qi Alfred Chen2, and Zhiqiang Lin1

1Ohio State University
2University of California, Irvine

NDSS 2020

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

In-vehicle Network and CAN Bus

Control Area Network (CAN) bus.

Identifier
S
O
F

R
T
R

I
D
E

D
L
C

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Data Field C
R
C

A
C
K

E
O
F

CAN bus command.

2 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

In-vehicle Network and CAN Bus

Control Area Network (CAN) bus.

Identifier
S
O
F

R
T
R

I
D
E

D
L
C

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Data Field C
R
C

A
C
K

E
O
F

CAN bus command.

2 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

In-vehicle Network and CAN Bus

Control Area Network (CAN) bus.

Identifier
S
O
F

R
T
R

I
D
E

D
L
C

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Data Field C
R
C

A
C
K

E
O
F

CAN bus command.

2 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Applications of CAN Bus Commands

Driver Behavior Monitoring

An On Board Diagnostic (OBD-II) dongle,

used by insurance company Progressive to

monitor driver behavior

Vehicle Control

An In-Vehicle Infotainment (IVI) system.

3 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Applications of CAN Bus Commands

Driver Behavior Monitoring

An On Board Diagnostic (OBD-II) dongle,

used by insurance company Progressive to

monitor driver behavior

Vehicle Control

An In-Vehicle Infotainment (IVI) system.

3 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Applications of CAN Bus Commands: recently on Autonomous Driving

4 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Applications of CAN Bus Commands: Security

Vehicle Hacking

The Jeep Cherokee hacking [MV15].

Vehicle Security Monitoring

CAN Bus Firewall [HKD11] [MA11].

5 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Applications of CAN Bus Commands: Security

Vehicle Hacking

The Jeep Cherokee hacking [MV15].

Vehicle Security Monitoring

CAN Bus Firewall [HKD11] [MA11].

5 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Reverse Engineering of CAN Bus Commands

State-of-the-art
1 Fuzzing with random CAN bus commands [KCR+10] [LCC+15].

2 Manually triggering physical actions and observing the CAN bus [car] [wir].

Shortcoming

1 Limited scalability. CAN bus commands are highly customized and diversified.

2 Excessive cost. Significant manual effort and real automobiles are required.

6 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Reverse Engineering of CAN Bus Commands

State-of-the-art
1 Fuzzing with random CAN bus commands [KCR+10] [LCC+15].

2 Manually triggering physical actions and observing the CAN bus [car] [wir].

Shortcoming

1 Limited scalability. CAN bus commands are highly customized and diversified.

2 Excessive cost. Significant manual effort and real automobiles are required.

6 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

center
IVI App

center
OBD-II Dongle App

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

IVI App

center
OBD-II Dongle App

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

IVI App

OBD-II Dongle App

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Observation

Direct / Indirect
CAN Bus Commands

7 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Our Contributions

1 Novel Approach. We propose a cost-effective and automatic approach for
reverse engineering CAN bus commands through analyzing mobile apps.

2 Effective Techniques. We design a suite of effective techniques to uncover CAN
bus command syntactics (structure and format) and semantics (meaning and
functionality).

3 Implementation and Evaluation. We implemented CANHunter on both
Android and iOS platforms, and evaluated it with 236 car mobile apps. It
discovered 182, 619 unique CAN bus commands in which 86.1% of them are
recovered with semantics.

8 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Challenges and Insights

Challenges

1 Precisely identify CAN bus command execution path

2 Command syntactics recovery

3 Command semantics recovery

Solutions
1 Identify execution path with backward program slicing

2 Syntactics recovery with dynamic forced execution

3 Semantics recovery with UI correlation and function argument association

9 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Challenges and Insights

Challenges

1 Precisely identify CAN bus command execution path

2 Command syntactics recovery

3 Command semantics recovery

Solutions
1 Identify execution path with backward program slicing

2 Syntactics recovery with dynamic forced execution

3 Semantics recovery with UI correlation and function argument association

9 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Overview of CANHunter

Apps

10 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Overview of CANHunter

Apps

Backward Slicing Execution
Path

Static Analysis

10 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Overview of CANHunter

Syntactics

Apps

Backward Slicing Semantics
Execution

Path

Static Analysis Dynamic Forced Execution

Syntactics
Recovery

Semantics Recovery

UI Correlation Function Argument
Association

10 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Backward Slicing

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

11 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Backward Slicing

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

11 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Backward Slicing

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

11 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Syntactics Recovery

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0” // “0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID // “0x7E0”
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

12 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Syntactics Recovery

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0” // “0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID // “0x7E0”
...
18 v8 = v7.substring(2,5) // “7E0”
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)
 // “7E0 30 00 02” Command Syntactics
...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

12 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Semantics Recovery

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

13 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Semantics Recovery

MD_AllECUsToyota.initECUs()
4 v12.initWithRequestId(“0x7E0”,”Engine Controls”)
5 v12.frageID = ”0x7E0”
...
13 v22 = BaseFahrzeug.initWithName(“Corolla VIII”)
14 v22.ECU = v12
...
25 v25 = v24.createWorkableECUKategorie(v22)

WorkableModell.createWorkableECUKategorie(a3)
...
12 v6 = a3
13 v7 = v6.ECU.frageID
...
18 v8 = v7.substring(2,5)
19 v9 = NSString.stringWithForamt(“%@ 30 00 02”,v8)

...
42 v5.writeValue(v9,v14,1) // Target API

Screen_Info_Diag.viewDidLoad()
13 v4 = UIButton()
14 v4.setText(“Engine Controls”)
...
27 v4.addTarget(v4,”initECUs”)
 // register button trigger function

13 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2

3

4

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2

3

4

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2

3

4

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2 182, 619 CAN bus commands are discovered

3

4

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2 182, 619 CAN bus commands are discovered

3 107 apps expose direct CAN bus commands

4

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2 182, 619 CAN bus commands are discovered

3 107 apps expose direct CAN bus commands

4 109 apps expose indirect commands

5

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Total # Dongle # IVI

Android 122 74 48
iOS 114 72 42

Total
236 146 90

(Android ∪ iOS)
Overlapped apps

79 38 41
(Android ∩ iOS)

Table: Distribution of collected apps.

1 We crawled 236 vehicle apps in April 2019

2 182, 619 CAN bus commands are discovered

3 107 apps expose direct CAN bus commands

4 109 apps expose indirect commands

5 20 apps are obfuscated

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Indirect (i.e., Interpreted) CAN Commands

1 IVI apps usually use interpreted commands for vehicle control

2 Interpreted commands are usually strings or numbers

App Content Sent to Cloud Sent to Vehicle

AcuraLink HORN LIGHT, UNLOCK, LOCATION X
Alpine frontSpeakerPattern, rearSpeakerPattern X
Alpine Tunelt RESUME, PHONE DIAL END, AUDIO FOCUS X
Audi MMI Connect LOCK, UNLOCK, G STAT, FIND CAR X
Carbin Control Climate Control Temperature, Control Fan Speed X
Car-Net Unlock:2, Lock:3, Flash:0, Hornlight:1 X

Table: Interpreted commands from IVI apps.

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by App Categories

Indirect (i.e., Interpreted) CAN Commands

1 IVI apps usually use interpreted commands for vehicle control

2 Interpreted commands are usually strings or numbers

App Content Sent to Cloud Sent to Vehicle

AcuraLink HORN LIGHT, UNLOCK, LOCATION X
Alpine frontSpeakerPattern, rearSpeakerPattern X
Alpine Tunelt RESUME, PHONE DIAL END, AUDIO FOCUS X
Audi MMI Connect LOCK, UNLOCK, G STAT, FIND CAR X
Carbin Control Climate Control Temperature, Control Fan Speed X
Car-Net Unlock:2, Lock:3, Flash:0, Hornlight:1 X

Table: Interpreted commands from IVI apps.

14 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by Car Models

We identify CAN bus commands from over 360 car models across 21 car makers

Car Maker # Commands Car Model

Audi 51,517 A3, A4, A5, A6, A7, A8, Q3, Q5, Q7, S3, S4
Volkswagon 44,504 Cabrio, Corrado, Caddy, Gol, Golf, Jetta,
Skoda 11,009 Citigo, Fabia, Rapid, Superb, Yeti
Toyota 9,030 Auris, Avensis, Camry, Corolla, Prius, RAV4
BMW 8,963 Series 1, 3, 5, M5, X5
Seat 8,277 Ibiza, Leon, Altea, Mii, Toledo, Arosa
Mercedes 7,247 Benz
Lexus 6,087 CT200, ES350, GS350, GX460, RX450, IS460

Table: Distribution of CAN Bus commands over part of car makers.

15 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by Semantics

1 157, 296 (86.1%) CAN bus commands are recovered with semantics

2 The semantics can be categorized into diagnosis and vehicle control

Semantics # Commands Category

Engine speed 460 Diagnosis
Coolant temperature 281 Diagnosis
Throttle angle 256 Diagnosis
Oil temperature 176 Diagnosis

Single door lock remote 60 Control
Blink on unlock key 42 Control
Sound on remote lock volume 40 Control
Auto unlock when moving 27 Control

Table: Distribution of CAN bus commands over part of semantics.

16 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Result Characteristics by Semantics

1 157, 296 (86.1%) CAN bus commands are recovered with semantics

2 The semantics can be categorized into diagnosis and vehicle control

Semantics # Commands Category

Engine speed 460 Diagnosis
Coolant temperature 281 Diagnosis
Throttle angle 256 Diagnosis
Oil temperature 176 Diagnosis

Single door lock remote 60 Control
Blink on unlock key 42 Control
Sound on remote lock volume 40 Control
Auto unlock when moving 27 Control

Table: Distribution of CAN bus commands over part of semantics.

16 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

1 Over 70% of the command syntactics and semantics are validated
2 We tried the following three sources for validation:

1 Public resource
2 Cross validation
3 Real car testing

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Car Model Syntac.
Semantics Semantics

Matched
(Ground Truth) (Our Result)

0x727 Transmission Transmission X
Toyota 0x7A1 Steering Assist Steering Assist X
Prius 0x7A2 Park Assist APGS X

0x7E0 Engine Controls ECT X
0x70C SteeringWheel Steering wheel X

Audi A3 0x714 DashBoard Instrument X
0x7E1 TCMDQ Transmission X

Seat 0x713 Brake1ESP ABS Brakes X
Ibiza 0x714 KombiUDS Instruments X

0x158 Speed EAT TRANS SPEED X
Honda 0x17C Engine RPM ENG STATUS X
Civic 0x1A4 VSA STATUS VSA WARN STATUS ABS X

0x324 Water Tempreature ENG TEMP 7
0x305 SEATBELT STATUS SRS EDR DELTA VMAX 7
0x35E CAMERA MESSAGES FCM WARN STATUS 7

Table: Part of the commands validated with public resources.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Car Model Syntac.
Semantics Semantics

Matched
(Ground Truth) (Our Result)

0x727 Transmission Transmission X
Toyota 0x7A1 Steering Assist Steering Assist X
Prius 0x7A2 Park Assist APGS X

0x7E0 Engine Controls ECT X
0x70C SteeringWheel Steering wheel X

Audi A3 0x714 DashBoard Instrument X
0x7E1 TCMDQ Transmission X

Seat 0x713 Brake1ESP ABS Brakes X
Ibiza 0x714 KombiUDS Instruments X

0x158 Speed EAT TRANS SPEED X
Honda 0x17C Engine RPM ENG STATUS X
Civic 0x1A4 VSA STATUS VSA WARN STATUS ABS X

0x324 Water Tempreature ENG TEMP 7
0x305 SEATBELT STATUS SRS EDR DELTA VMAX 7
0x35E CAMERA MESSAGES FCM WARN STATUS 7

Table: Part of the commands validated with public resources.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

App
Android iOS Overlapped

Syn. # Sem. # Syn. # Sem. # Syn. # Sem.

BlueDriver 304 304 304 304 304 304
Carista 105,198 105,198 105,198 105,198 105,198 105,198
Carly for BMW 14,377 14,377 16,427 16,427 13,480 13,480
Carly for Mercedes 7,921 6,528 1,698 1,698 1,393 1,393
Carly for Toyota 5,305 5,266 39 39 39 39
Carly for VAG 16,402 7,283 18,627 10,429 7,283 7,283
CarVantage 41 41 41 41 41 41
Engie 144 144 68 68 68 68
inCarDoc 160 160 160 160 160 160
Kiwi OBD 220 220 6 6 6 6

Table: Part of the cross-platform validation (commands across different platforms) results.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

App
Android iOS Overlapped

Syn. # Sem. # Syn. # Sem. # Syn. # Sem.

BlueDriver 304 304 304 304 304 304
Carista 105,198 105,198 105,198 105,198 105,198 105,198
Carly for BMW 14,377 14,377 16,427 16,427 13,480 13,480
Carly for Mercedes 7,921 6,528 1,698 1,698 1,393 1,393
Carly for Toyota 5,305 5,266 39 39 39 39
Carly for VAG 16,402 7,283 18,627 10,429 7,283 7,283
CarVantage 41 41 41 41 41 41
Engie 144 144 68 68 68 68
inCarDoc 160 160 160 160 160 160
Kiwi OBD 220 220 6 6 6 6

Table: Part of the cross-platform validation (commands across different platforms) results.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

App
Android iOS Overlapped

Syn. # Sem. # Syn. # Sem. # Syn. # Sem.

BlueDriver 304 304 304 304 304 304
Carista 105,198 105,198 105,198 105,198 105,198 105,198
Carly for BMW 14,377 14,377 16,427 16,427 13,480 13,480
Carly for Mercedes 7,921 6,528 1,698 1,698 1,393 1,393
Carly for Toyota 5,305 5,266 39 39 39 39
Carly for VAG 16,402 7,283 18,627 10,429 7,283 7,283
CarVantage 41 41 41 41 41 41
Engie 144 144 68 68 68 68
inCarDoc 160 160 160 160 160 160
Kiwi OBD 220 220 6 6 6 6

Table: Part of the cross-platform validation (commands across different platforms) results.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Car model
Overlapped App1 App2
Android iOS

Audi A4 52 52 Carista Carly for VAG
Audi A6 22 22 Carista Carly for VAG
Seat Leon 19 19 Carista Carly for VAG
Skoda Fabia 0 24 Carista Carly for VAG
VW Caddy 0 12 Carista Carly for VAG
VW Polo 52 52 Carista Carly for VAG
VW Tiguan 8 0 Carista Carly for VAG
Skoda Superb 0 20 Carista Carly for VAG
Porsche Cayenne 0 72 Carly for VAG Carly for Partners
Toyota Prius 39 39 Carly for Toyota Carista
BMW 550i 8 8 Carly for BMW Carista

Table: Part of the in-platform validation (commands within the same platforms) results

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Car model
Overlapped App1 App2
Android iOS

Audi A4 52 52 Carista Carly for VAG
Audi A6 22 22 Carista Carly for VAG
Seat Leon 19 19 Carista Carly for VAG
Skoda Fabia 0 24 Carista Carly for VAG
VW Caddy 0 12 Carista Carly for VAG
VW Polo 52 52 Carista Carly for VAG
VW Tiguan 8 0 Carista Carly for VAG
Skoda Superb 0 20 Carista Carly for VAG
Porsche Cayenne 0 72 Carly for VAG Carly for Partners
Toyota Prius 39 39 Carly for Toyota Carista
BMW 550i 8 8 Carly for BMW Carista

Table: Part of the in-platform validation (commands within the same platforms) results

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Car model
Overlapped App1 App2
Android iOS

Audi A4 52 52 Carista Carly for VAG
Audi A6 22 22 Carista Carly for VAG
Seat Leon 19 19 Carista Carly for VAG
Skoda Fabia 0 24 Carista Carly for VAG
VW Caddy 0 12 Carista Carly for VAG
VW Polo 52 52 Carista Carly for VAG
VW Tiguan 8 0 Carista Carly for VAG
Skoda Superb 0 20 Carista Carly for VAG
Porsche Cayenne 0 72 Carly for VAG Carly for Partners
Toyota Prius 39 39 Carly for Toyota Carista
BMW 550i 8 8 Carly for BMW Carista

Table: Part of the in-platform validation (commands within the same platforms) results

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

A Toyota RAV4. A Toyota Corolla.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Command (RAV4) Command (Corolla) Semantics

750 ... 14 1A 26 750 ... 1A 65 02 Wireless door locking
750 ... 14 92 26 750 ... 92 65 02 Blink turn signals
750 ... 14 9A 06 750 ... 9A 45 02 Panic Function on remote
750 ... 14 9A 25 750 ... 9A 61 02 Relock automatically
750 ... 14 9A 26 750 ... 8A 65 02 Beep when locking
750 ... 11 00 60 750 ... 14 06 00 Unlock via physical key
750 ... 11 80 20 750 ... 11 C0 20 Unlock when shifting into gear
7C0 ... 3B A2 40 7C0 ... 3B A2 40 Display unit (MPG)
7C0 ... 3B 74 A0 7C0 ... 3B A7 C0 Seat belt warning (driver)
7CC ... 00 01 00 7CC ... 3B 82 00 Fan Speed

Table: Part of commands validated with real-car testing.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Correctness Evaluation

Command (RAV4) Command (Corolla) Semantics

750 ... 14 1A 26 750 ... 1A 65 02 Wireless door locking
750 ... 14 92 26 750 ... 92 65 02 Blink turn signals
750 ... 14 9A 06 750 ... 9A 45 02 Panic Function on remote
750 ... 14 9A 25 750 ... 9A 61 02 Relock automatically
750 ... 14 9A 26 750 ... 8A 65 02 Beep when locking
750 ... 11 00 60 750 ... 14 06 00 Unlock via physical key
750 ... 11 80 20 750 ... 11 C0 20 Unlock when shifting into gear
7C0 ... 3B A2 40 7C0 ... 3B A2 40 Display unit (MPG)
7C0 ... 3B 74 A0 7C0 ... 3B A7 C0 Seat belt warning (driver)
7CC ... 00 01 00 7CC ... 3B 82 00 Fan Speed

Table: Part of commands validated with real-car testing.

17 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Related Work

1 CAN and Vehicle Security.
I Vehicle attack [MV14] [CMK+11] [MRHM16] [MV15] [Sta13] [MV13] and CAN

reverse engineering [KCR+10].
I Defenses of CAN bus. Anomaly detection [CS16] [MGF10] [NLJ08], forensics

measures [HKD11] and delayed data authentication [NLJ08].

2 Protocol Reverse Engineering. Polyglot [CYLS07], AutoFormat [LJXZ08],
Discoverer [CKW07], Tupni [CPC+08], and ReFormat [WJC+09].

3 Forced execution. J-Force [KKK+17] for JavaScript applications,
X-Force [PDZ+14] and Limbo [WC07] for binaries, and Dexism [EJS18].

18 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

Future Work

1 Handling obfuscation. The current implementation of CANHunter is not
resilient to anti-analysis techniques such as control flow obfuscation.
Deobfuscation techniques can be applied to address this limitation.

2 Investigating other vehicle commands. CANHunter reported a great
number of AT commands for vehicle diagnosis, and also interpreted commands for
vehicle control. These commands are worth of security attention.

3 Reverse engineering of other IoT protocols. CANHunter has the potential
to be extended to reverse engineer the syntactics and semantics of other IoT
protocols.

19 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

CANHunter

Syntactics

Apps

Backward Slicing Semantics
Execution

Path

Static Analysis Dynamic Forced Execution

Syntactics
Recovery

Semantics Recovery

UI Correlation Function Argument
Association

CANHunter
I An automatic and cost-effective approach of

reverse engineering CAN bus commands
from mobile apps

I Recover both the syntactics and semantics
of CAN bus commands

Implementation and Evaluation
I We implemented CANHunter on both

Android and iOS platforms

I We evaluated CANHunter on 236 apps in
which 182, 619 commands are discovered
with 86% recovered with semantics

The source code and dataset is available at https://github.com/OSUSecLab/CANHunter.

20 / 20

https://github.com/OSUSecLab/CANHunter

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

CANHunter

Syntactics

Apps

Backward Slicing Semantics
Execution

Path

Static Analysis Dynamic Forced Execution

Syntactics
Recovery

Semantics Recovery

UI Correlation Function Argument
Association

CANHunter
I An automatic and cost-effective approach of

reverse engineering CAN bus commands
from mobile apps

I Recover both the syntactics and semantics
of CAN bus commands

Implementation and Evaluation
I We implemented CANHunter on both

Android and iOS platforms

I We evaluated CANHunter on 236 apps in
which 182, 619 commands are discovered
with 86% recovered with semantics

The source code and dataset is available at https://github.com/OSUSecLab/CANHunter.

20 / 20

https://github.com/OSUSecLab/CANHunter

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

References I

How to Hack a Car - A Quick Crash Course,

https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec.

Weidong Cui, Jayanthkumar Kannan, and Helen J Wang, Discoverer: Automatic protocol reverse engineering from network traces., USENIX

Security Symposium, 2007, pp. 1–14.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska

Roesner, Tadayoshi Kohno, et al., Comprehensive Experimental Analyses of Automotive Attack Surfaces, USENIX Security Symposium, 2011.

Weidong Cui, Marcus Peinado, Karl Chen, Helen J Wang, and Luis Irun-Briz, Tupni: Automatic Reverse Engineering of Input Formats, ACM

conference on Computer and Communications Security (CCS), 2008.

Kyong-Tak Cho and Kang G Shin, Fingerprinting Electronic Control Units for Vehicle Intrusion Detection, USENIX Security Symposium, 2016.

Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song, Polyglot: Automatic extraction of protocol message format using dynamic binary

analysis, Proceedings of the 14th ACM conference on Computer and communications security, ACM, 2007, pp. 317–329.

Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou, Resilient and scalable cloned app detection using forced execution and compression

trees, 2018 IEEE Conference on Dependable and Secure Computing (DSC), IEEE, 2018, pp. 1–8.

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann, Security threats to automotive can networks—practical examples and selected short-term

countermeasures, Reliability Engineering & System Safety 96 (2011), no. 1, 11–25.

20 / 20

https://medium.freecodecamp.org/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

References II

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny

Anderson, Hovav Shacham, et al., Experimental Security Analysis of a Modern Automobile, IEEE Symposium on Security and Privacy (S&P),
2010.

Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu, J-force: Forced execution on

javascript, Proceedings of the 26th international conference on World Wide Web, International World Wide Web Conferences Steering
Committee, 2017, pp. 897–906.

Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein Kim, and Kangbin Yim, Fuzzing can packets into automobiles, 2015 IEEE 29th

International Conference on Advanced Information Networking and Applications, IEEE, 2015, pp. 817–821.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, Automatic protocol format reverse engineering through context-aware

monitored execution, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS’08) (San Diego, CA),
February 2008.

Michael Müter and Naim Asaj, Entropy-based Anomaly Detection for In-vehicle Networks, IEEE Intelligent Vehicles Symposium (IV), 2011.

Michael Müter, André Groll, and Felix C Freiling, A structured approach to anomaly detection for in-vehicle networks, Information Assurance

and Security (IAS), 2010 Sixth International Conference on, IEEE, 2010, pp. 92–98.

Sahar Mazloom, Mohammad Rezaeirad, Aaron Hunter, and Damon McCoy, A Security Analysis of an In-Vehicle Infotainment and App

Platform, Usenix Workshop on Offensive Technologies (WOOT), 2016.

Charlie Miller and Chris Valasek, Adventures in automotive networks and control units, Def Con 21 (2013), 260–264.

20 / 20

Introduction Our Observation CANHunter Evaluation Related Work Takeaway References

References III

, A survey of remote automotive attack surfaces, black hat USA 2014 (2014), 94.

, Remote exploitation of an unaltered passenger vehicle, Black Hat USA 2015 (2015), 91.

Dennis K Nilsson, Ulf E Larson, and Erland Jonsson, Efficient in-vehicle delayed data authentication based on compound message

authentication codes, Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, IEEE, 2008, pp. 1–5.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong Su, X-force: Force-executing binary programs for security

applications., USENIX Security Symposium, 2014, pp. 829–844.

Jason Staggs, How to hack your mini cooper: reverse engineering can messages on passenger automobiles, Institute for Information Security

(2013).

Jeffrey Wilhelm and Tzi-cker Chiueh, A forced sampled execution approach to kernel rootkit identification, International Workshop on Recent

Advances in Intrusion Detection, Springer, 2007, pp. 219–235.

Wireshark: The World’s Most Popular Network Protocol Analyzer, http://www.wireshark.org/.

Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace, ReFormat: Automatic Reverse Engineering of Encrypted Messages,

European Symposium on Research in Computer Security (ESORICS), 2009.

20 / 20

	Introduction
	

	Our Observation
	

	CANHunter
	

	Evaluation
	

	Related Work
	

	Takeaway
	

	References
	

