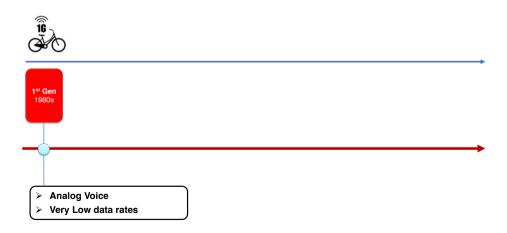
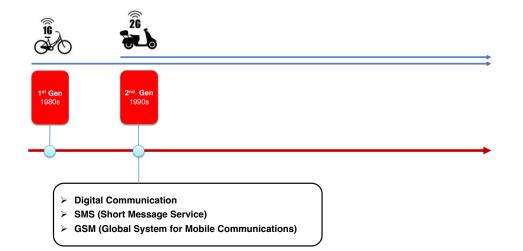
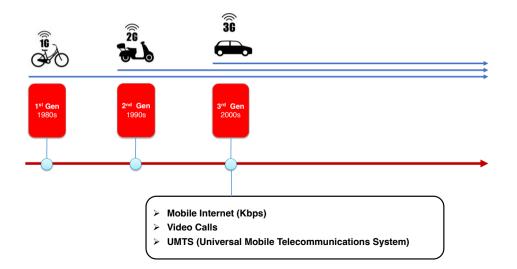
5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

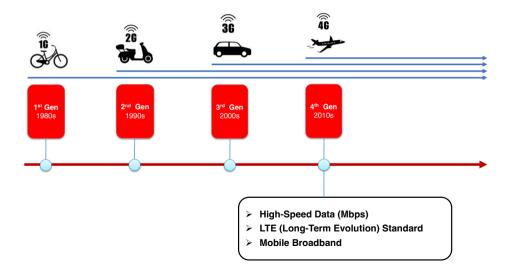
Haohuang Wen¹, Phillip Porras², Vinod Yegneswaran², Ashish Gehani², Zhiqiang Lin¹

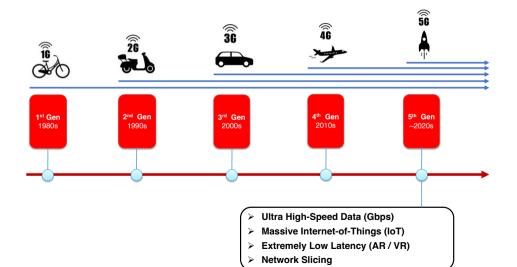
¹The Ohio State University, ²SRI International







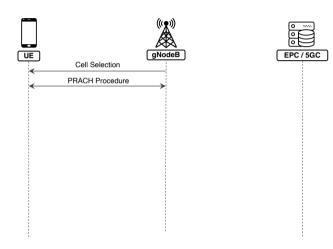


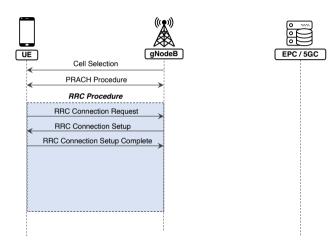


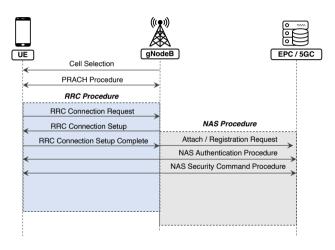
Why do we care about 5G Security and Privacy?

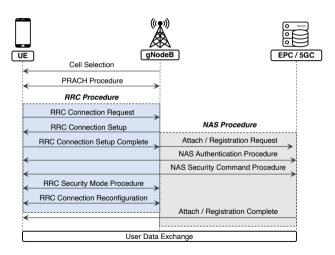
Why do we care about 5G Security and Privacy?

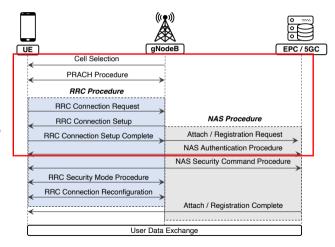
The vulnerable cellular network standard

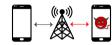


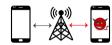




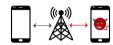








Initial Messages Not Encrypted & Integrity Protected


Adversary UEs

Adversary UEs

Man-In-the-Middle Attacker

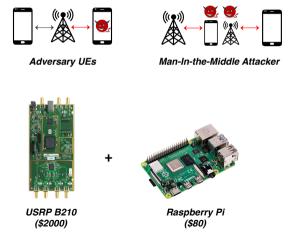
Adversary UEs

Man-In-the-Middle Attacker

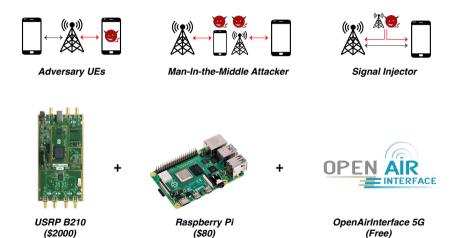
Signal Injector

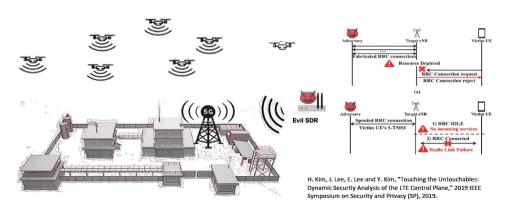
troduction Motivation O-RAN 5G-Spector Evaluation Future Work Reference

Adversary UEs

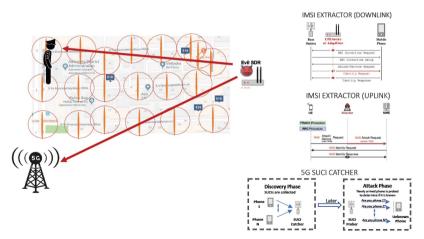

Man-In-the-Middle Attacker

Signal Injector


USRP B210 (\$2000)



Signal Injector


troduction Motivation O-RAN 5G-Spector Evaluation Future Work Reference

5G Base Station Distributed Denial-of-Service (DDoS) Attack Scenario

5G User Location Tracking Attack Scenario

Can we fix the standards to eliminate these attacks?

Can we fix the standards to eliminate these attacks?

Currently very challenging due to numerous concerns

- ► Extremely Complicated Standard
- Backward Compatibility
- ► Performance and User Experience
- ► Overhead Constraint
- **▶**

Can we fix the standard body to eliminate these attacks?

Currently very challenging due to various concerns

How to defend against these attacks?

troduction Motivation O-RAN 5G-Spector Evaluation Future Work References

Our Key Insight: OpenRAN (O-RAN)

What is OpenRAN (O-RAN) [o-r]

► Represent a new software-defined open cellular network architecture

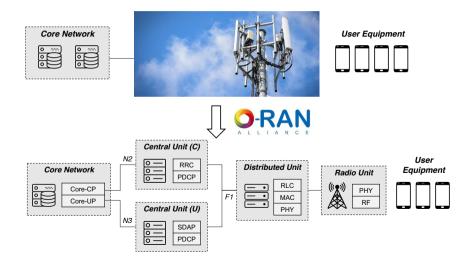
What is OpenRAN (O-RAN) [o-r]

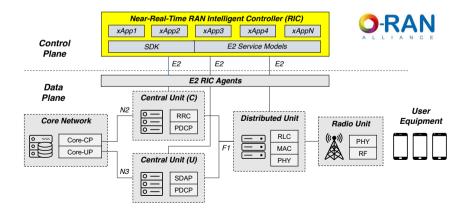
- ▶ Represent a new software-defined open cellular network architecture
- ► Founded in 2018 by O-RAN Alliance

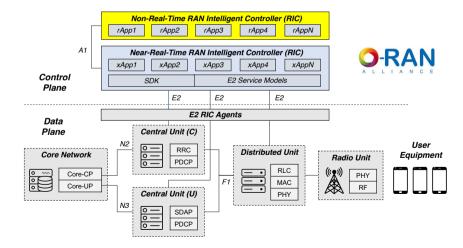
What is OpenRAN (O-RAN) [o-r]

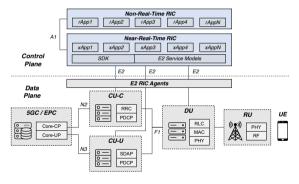
- ► Represent a new software-defined open cellular network architecture
- ► Founded in 2018 by O-RAN Alliance
- ► Adopted by 32 mobile network operator worldwide (as of 2/2024)

Deployments of O-RAN based technology and solutions from map.o-ran.org

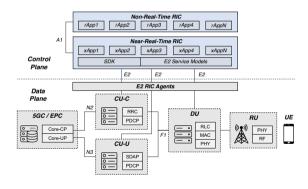

Traditional RAN vs. Open RAN

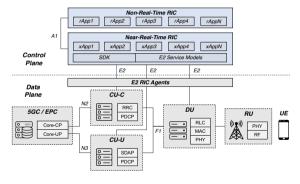



Traditional RAN vs. Open RAN

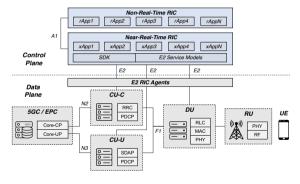


Traditional RAN vs. Open RAN




O-RAN's Key Capabilities

▶ Disaggregation


O-RAN's Key Capabilities

- **▶** Disaggregation
- ► Modularization (xApps / rApps)

O-RAN's Key Capabilities

- Disaggregation
- ▶ Modularization (xApps / rApps)
- ► Interoperability

O-RAN's Key Capabilities

- **▶** Disaggregation
- ► Modularization (xApps / rApps)
- ► Interoperability
- ► Open Interfaces

Challenges

▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security

Challenges

- ▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks

Challenges

- ▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks
- ► Efficiency: Capability to process data packets and produce alerts with low latency

Challenges

- ▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ▶ Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ Efficiency: Capability to process data packets and produce alerts with low latency

5G-Spector Solutions

⊘ MobiFlow [WPYL22] collecting UE state transitions and aggregated RAN statistics

Challenges

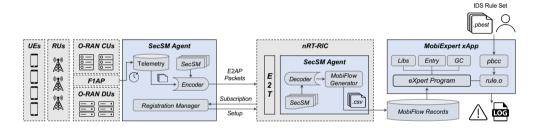
- ▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ▶ Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ **Efficiency**: Capability to process data packets and produce alerts with low latency

5G-Spector Solutions

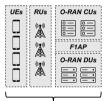
- MobiFlow [WPYL22] collecting UE state transitions and aggregated RAN statistics
- Security xApp MobieXpert as a "plug-n-play" intrusion detection service on the nRT-RIC

troduction Motivation O-RAN **5G-Spector** Evaluation Future Work References

Challenges and Solutions


Challenges

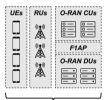
- ▶ Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ▶ Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ **Efficiency**: Capability to process data packets and produce alerts with low latency


5G-Spector Solutions

- MobiFlow [WPYL22] collecting UE state transitions and aggregated RAN statistics
- Security xApp MobieXpert as a "plug-n-play" intrusion detection service on the nRT-RIC
- P-BEST [LP99] w/ a decoupled architecture and efficient IDS programming language

5G-Spector Design

5G-Spector Design

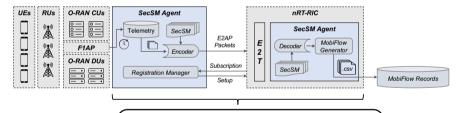


RAN Data Plane

- > Open-sourced UE and RAN implementations (LTE / 5G)
- Simulation or commodity SDRs

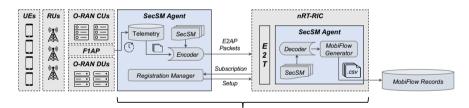
troduction Motivation O-RAN <mark>5G-Spector</mark> Evaluation Future Work Reference

5G-Spector Design


RAN Data Plane

- Open-sourced UE and RAN implementations (LTE / 5G)
- > Simulation or commodity SDRs

5G-Spector Design

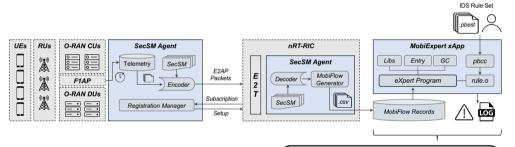


5G-Spector Control Layer

- > xApp Registration and Subscription management
- > Telemetry Report & Collection (MobiFlow)

roduction Motivation O-RAN <mark>5G-Spector</mark> Evaluation Future Work Reference

5G-Spector Design


5G-Spector Control Layer

- > xApp Registration and Subscription management
- > Telemetry Report & Collection (MobiFlow)

troduction Motivation O-RAN 5G-Spector Evaluation Future Work Referenc

5G-Spector Design

5G-Spector xApp Layer

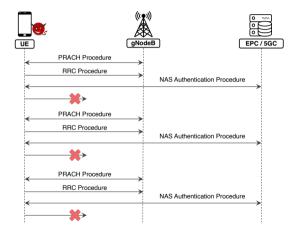
- > P-Best programming framework
- > Attack signatures / rules integration
- > Real-time alert notifications

troduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work References

Evaluation w/ Simulated Attacks and Variants

Attack	Layer	Exploited L3 Message	New	Detected
BTS RC Depletion	RRC	ConnectionRequest (Fabricated)	0	✓
Blind DoS	RRC	ConnectionRequest (Replayed TMSI)	0	✓
	NAS	$AuthRequest \leftarrow AttachReject$	0	√
	NAS	$SecModeCmd \leftarrow AttachReject$	•	✓
Downlink	NAS	AttachAccept ← AttachReject	•	✓
DoS	NAS	$AuthRequest \leftarrow ServiceReject$	•	✓
	NAS	$SecModeCmd \leftarrow ServiceReject$	•	✓
	NAS	$AttachAccept \; \leftarrow ServiceReject$	•	✓
	NAS	AttachReq ← AttachReq (Invalid IMSI)	0	✓
Uplink DoS	NAS	$ServiceReq \leftarrow ServiceReq \; \textit{(Invalid MAC)}$	•	✓
Uplink IMSI Extractor	NAS	AttachReq ← AttachReq (Unknown TMSI)		✓
	NAS	AuthRequest ← IdentityRequest (IMSI)	0	✓
Downlink	NAS	AuthRequest ← IdentityRequest (IMEI)	•	✓
IMSI	NAS	$AuthRequest \leftarrow IdentityRequest (TMSI)$	•	✓
Extractor	NAS	$SecModeCmd \leftarrow IdentityRequest$ (IMSI)	•	✓
	NAS	$AttachAccept \; \leftarrow IdentityRequest \; \textit{(IMSI)}$	•	✓
Null Cipher	RRC	${\sf SecModeComplete} \leftarrow {\sf SecModeFailure}$	0	✓
& Integrity	& Integrity NAS SecModeComplete \leftarrow SecModeReject			

Table: All L3 cellular attacks and variants replicated and evaluated ($A \leftarrow B$ indicates message B overwrites A).

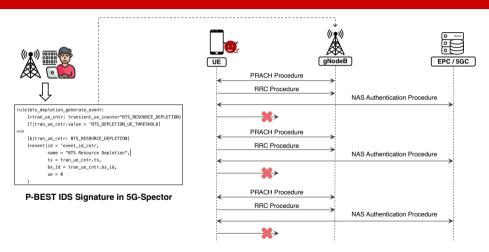

troduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work References

Evaluation w/ Simulated Attacks and Variants

Attack	Layer	Exploited L3 Message	New	Detected	
BTS RC Depletion	RRC	ConnectionRequest (Fabricated)	0	✓	
Blind DoS	RRC	ConnectionRequest (Replayed TMSI)	0	✓	
	NAS	AuthRequest ← AttachReject	0	✓	
	NAS	$SecModeCmd \leftarrow AttachReject$	•	✓	
Downlink	NAS	$AttachAccept \leftarrow AttachReject$	•	✓	
DoS	NAS	$AuthRequest \leftarrow ServiceReject$	•	✓	
	NAS	$SecModeCmd \leftarrow ServiceReject$	•	✓	
	NAS	$AttachAccept \; \leftarrow ServiceReject$	•	✓	
Uplink DoS	NAS	AttachReq ← AttachReq (Invalid IMSI)	0	✓	
	NAS	$ServiceReq \; \leftarrow \; ServiceReq \; \textit{(Invalid MAC)}$	•	✓	
Uplink IMSI Extractor	NAS	AttachReq ← AttachReq (Unknown TMSI)		✓	
	NAS	AuthRequest ← IdentityRequest (IMSI)	0	✓	
Downlink	NAS	AuthRequest ← IdentityRequest (IMEI)	•	✓	
IMSI	NAS	AuthRequest ← IdentityRequest (TMSI)	•	✓	
Extractor	NAS	SecModeCmd ← IdentityRequest (IMSI)	•	✓	
	NAS	$AttachAccept \; \leftarrow IdentityRequest \; \textit{(IMSI)}$	•	✓	
Null Cipher	RRC	$SecModeComplete \leftarrow SecModeFailure$	0	✓	
& Integrity	$regrity NAS SecModeComplete \leftarrow SecModeReject$			✓	

Table: All L3 cellular attacks and variants replicated and evaluated ($A \leftarrow B$ indicates message B overwrites A).

Evaluation w/ Simulated Attacks and Variants

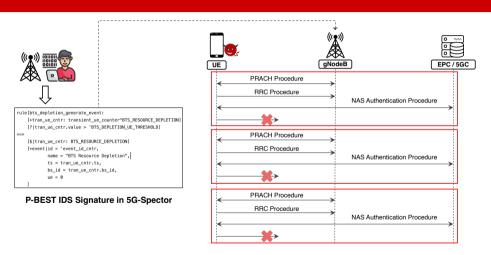


BTS Resource Depletion Attack

Kim et al. "Touching the untouchables: Dynamic security analysis of the LTE control plane."

roduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work Reference

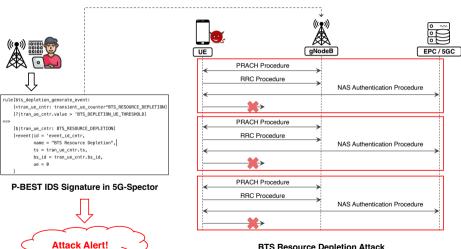
Evaluation w/ Simulated Attacks and Variants



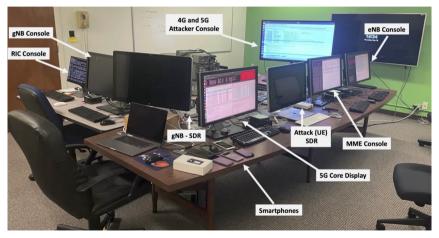
BTS Resource Depletion Attack

Kim et al. "Touching the untouchables: Dynamic security analysis of the LTE control plane."

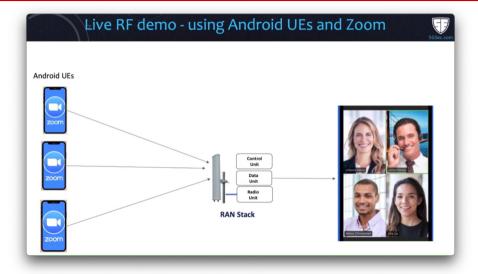
roduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work Reference

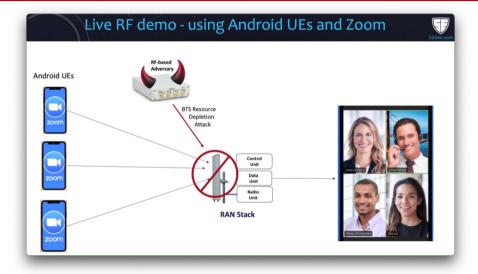

Evaluation w/ Simulated Attacks and Variants

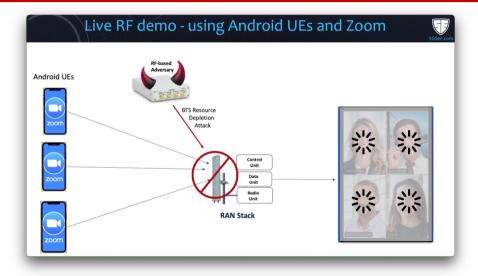
BTS Resource Depletion Attack


Kim et al. "Touching the untouchables: Dynamic security analysis of the LTE control plane."

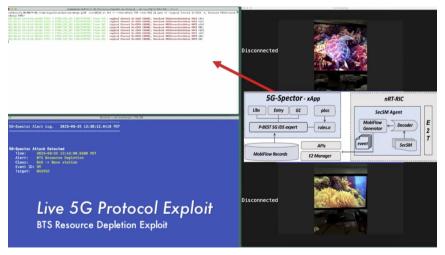
Evaluation w/ Simulated Attacks and Variants




BTS Resource Depletion Attack


Kim et al. "Touching the untouchables: Dynamic security analysis of the LTE control plane."

Our 5G Network Testbed at the Computer Science Lab of SRI International.



troduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work References

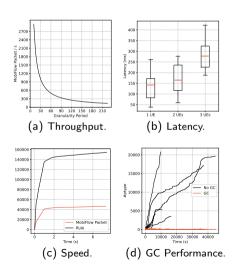
Evaluation w/ OTA Attacks

Demo video available at https://www.5gsec.com/post/5g-spector-demo

Evaluation w/ Real-World Datasets

Name	Ref	UE	Time(s)	#Pkt.	#MF	#Sess.	В	Event
BT-1	[LPY ⁺ 16]	LG LS660	10,597	4,164	1,810	113	✓	0
BT-2	[LPY ⁺ 16]	LG G3 VS985	514	3,803	173	15	/	0
BT-3	[LPY+16]	LG G3 VS985	489	3,766	158	15	1	0
BT-4	[LPY ⁺ 16]	Galaxy S5	764	2,996	154	13	1	0
BT-5	[LPY ⁺ 16]	LG G3 VS985	16,324	26,548	1,217	114	1	0
BT-6	[LPY+16]	Galaxy S5	1,459	2,803	97	13	1	0
BT-7	[LPY ⁺ 16]	Galaxy S5	2,053	4,794	448	27	1	0
BT-8	[LPY ⁺ 16]	Galaxy S5	6,387	2,839	1,435	113	✓	0
AT-1	$[EAW^+]$	N/A	1	632	61	11	X	0
AT-2	$[EAW^+]$	N/A	1	482	53	8	X	0
AT-3	[EAW ⁺]	N/A	1	626	59	6	X	0

Table: Evaluation results using real-world benign cellular traffic.


Evaluation w/ Real-World Datasets

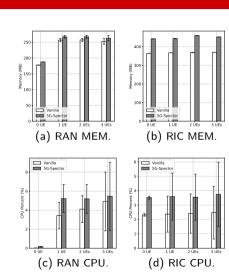
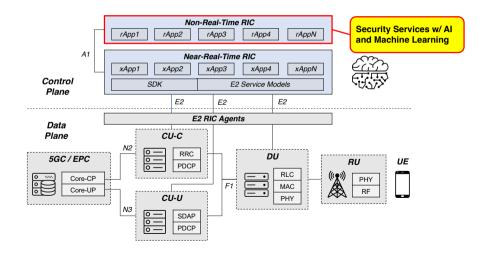
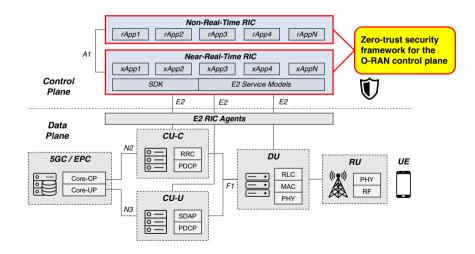
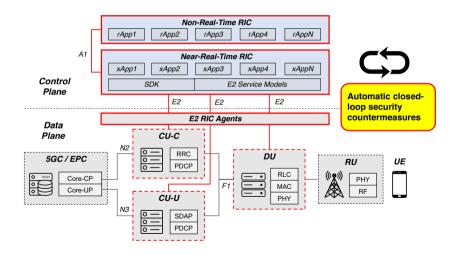

Name	Ref	UE	Time(s)	#Pkt.	#MF	#Sess.	В	Event
BT-1	[LPY ⁺ 16]	LG LS660	10,597	4,164	1,810	113	✓	0
BT-2	[LPY+16]	LG G3 VS985	514	3,803	173	15	1	0
BT-3	[LPY+16]	LG G3 VS985	489	3,766	158	15	1	0
BT-4	[LPY ⁺ 16]	Galaxy S5	764	2,996	154	13	1	0
BT-5	[LPY ⁺ 16]	LG G3 VS985	16,324	26,548	1,217	114	1	0
BT-6	[LPY+16]	Galaxy S5	1,459	2,803	97	13	1	0
BT-7	[LPY+16]	Galaxy S5	2,053	4,794	448	27	1	0
BT-8	[LPY ⁺ 16]	Galaxy S5	6,387	2,839	1,435	113	✓	0
AT-1	$[EAW^+]$	N/A	1	632	61	11	X	0
AT-2	$[EAW^+]$	N/A	1	482	53	8	X	0
AT-3	[EAW ⁺]	N/A	1	626	59	6	X	0

Table: Evaluation results using real-world benign cellular traffic.


troduction Motivation O-RAN 5G-Spector <mark>Evaluation</mark> Future Work Reference

Evaluation of Performance and Overhead




Future Work

Future Work

Future Work

Thank You

Thank You

sec.com

Paper QR Code

5G-Spector Full paper (NDSS'24):

https://web.cse.ohio-state.edu/~wen.423/papers/5G-Spector-NDSS24.pdf

5G-Spector Source Code: https://github.com/5GSEC/5G-Spector

5G-Spector Demo Video: https://www.5gsec.com/post/5g-spector-demo

My personal homepage: https://web.cse.ohio-state.edu/~wen.423/

References I

Mitziu Echeverria, Zeeshan Ahmed, Bincheng Wang, M Fareed Arif, Syed Rafiul Hussain, and Omar Chowdhury, *Phoenix: Device-centric cellular network protocol monitoring using runtime verification.*

Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim, *Touching the untouchables: Dynamic security analysis of the Ite control plane*, 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1153–1168.

Ulf Lindqvist and Phillip A Porras, Detecting computer and network misuse through the production-based expert system toolset (p-best), Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No. 99CB36344). IEEE, 1999, pp. 146–161.

Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang, *Mobileinsight: Extracting and analyzing cellular network information on smartphones*, Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, 2016, pp. 202–215.

O-ran alliance, https://www.o-ran.org/.

Haohuang Wen, Phillip Porras, Vinod Yegneswaran, and Zhiqiang Lin, *A fine-grained telemetry stream for security services in 5g open radio access networks*, Proceedings of the 1st International Workshop on Emerging Topics in Wireless, 2022, pp. 18–23.