This folder contains programs implementing the algorithm described in “A tandem algorithm for pitch

estimation and voiced speech segregation,” by G. Hu and D. L. Wang in /EEE Trans. Audio, Speech, Lang. Process.,
vol. 18, pp. 2067-2079, 2010. This is an algorithm for voiced speech separation and pitch tracking in monaural
conditions.

Usage: tandem in out
tandem in out cross evCross
tandem in out cross evCross eng

Inputs:
- in: An ASCII file containing a 20 kHz waveform noisy speech signal

Outputs:

out.128.pitchT.dat: Estimated pitch contours w/ T-segments (see the definition of T-segments in
Sect. V-C of the Hu & Wang’10 paper)

- out.128.maskT.dat: Estimated binary masks w/ T-segments

- out.128.pitch.dat: Estimated pitch contours w/o T-segments (optional)

- out.128.mask.dat: Estimated ratio masks w/o T-segments (optional)

- cross: Cross-channel correlations (optional)

- evCross: Envelope cross-channel correlations (optional)

- eng: Energy of T-F units (optional)

Run an example:
- tandem sample/mixture.20k out
More about the inputs and outputs

- This algorithm uses a 128-channel gammatone filterbank

- Sampling frequency of the input signal must be 20kHz

- out.128.pitchT.dat: The two numbers in the first row denote number of pitch contours and
number of frames, and each following row denotes an estimated pitch contour

- out.128.maskT.dat: Simultaneous streams. Each row is a frame-level binary mask (128-
dimensional) associated with a pitch point. The order of rows matches that of the pitch points
(from left to right in a pitch contour) and pitch contours (from top to bottom)

- The "net" folder needs to be in the same directory as the executable

Some explanations about source files:

- tandem.cpp: The main C++ file consisting of functions corresponding to different processing stages
o Major functions
= voicedMaskEst: The iterative estimation of pitch contours and simultaneous streams (Sect.
V-A and V-B of the paper)

Page 1 of 5

= onOffSeg: Onset/offset-based segmentation (Sect. V-C)
= expandVoicedMask: Generate and incorporate T-segments (Sect. V-C)

gammaTone.cpp (and gammaTone.h): Gammatone filtering
o Class gammaToneFilter

= Data members
e cf: Gammatone filter center frequency
e bw: Gammatone filter bandwidth

= Functions
e Filtering: Filter the input signal using a gammatone filter with a specific center

frequency
e oneStep: Take a single value in the input signal and do the filtering
o Class gammaToneFilterBank

= Data members
e |owerCF: Lower cutoff frequency in gammatone filtering
e upperCF: Higher cutoff frequency in gammatone filtering
e gf: Gammatone filters
e sf: Sampling frequency
e response: Filtered signals

= Functions
e HzToERBRate: Convert Hz to ERB rate
o ERBRateToHz: Convert ERB rate to Hz
o filtering: Filter a signal using a gammatone filterbank

feture.cpp (and feature.h): Extracting features such as autocorrelations, cross-channel correlations, and the
6-dimensional pitch-based feature
o Class feature
= Data members
e acflLen: Length of signal in computing auto-correlation
o acfOrder: Used for zero-padding in FFT
e bandPass: Bandpass filters
e envelope: Envelopes of filtered signals
e window: Length of a frame
e min_delay: Minimum delay in computing auto-correlation function
e max_delay: Maximum delay in computing auto-correlation function
e Theta_p: A threshold for single-unit probabilities (See Eq. (17), .5 by default)
e corrlgm: A struct storing 6-dimensional features
e data: Temporary memory used by FFT
= Functions
e computeFeature: Extract envelopes, auto-correlations and cross-channel
correlations

Page 2 of 5

fftACF: Auto-correlations based on FFT

computeCross: Compute cross-channel correlations
newFeature: Initialize variables storing various features
deleteFeature: Free dynamically allocated variables

- pitch.cpp (and pitch.h): Pitch and mask estimation

o Class pitchMask

= Data members

sNet: MLP for single-unit labeling

mNet: MLP for multiple-unit labeling

pNet: MLP for differentiating pitch and its integer multiples
Pitch: Estimated pitch contours

= Functions

readNet: Load trained MLPs

singleUnitProb: Unit labeling based on 6-dimensional features (Sect. IlI-A in the
paper)

multiUnitProb: Unit labeling based on neighboring T-F units (Sect. 11I-C)
maskToPitchACF: Estimate pitch based on auto-correlation functions
maskToPitchML: Estimate pitch based on probabilities (Eq. (10) in Sect. IV-A)
maskToPitchML2: Estimate pitch based on mask labels (Eq. (9) in Sect. IV-A)
maskToPitchMAP: Estimate pitch and then test whether it is an octave error (using
function compareTwoCandidateMAP)

compareTwoCandidateMAP: Differentiate true pitch from its integer multiples (Sect.
IV-B). Note that in this implementation the first quantity of the 3-dimensional vector
described in Sect. IV-B of the paper is split into its integral and fractional parts,
resulting in a 4-dimensional feature and a little better performance.

- voicedMask.cpp (and voicedMask.h): The iterative procedure (Sect. V)
o Class voicedMask

= Data members

thd_cross: Threshold for cross-channel correlations (See Eq. (13), .985 by default)
thd_evCross: Threshold for envelope cross-channel correlations (See Eq. (13), .985
by default)

= Functions

dtmPitchMask: The iterative procedure (Sect. V)

initPitchEst: Initial estimation (Sect. V-A)

iterativePitchEst: Iterative estimation (Sect. V-B)

maskToPitch: Estimate pitch contours based on masks (also deal with the splitting of
a pitch contour)

expandMask: Expand pitch contours

findContour: Generating pitch contours from pitch points

Page 3 of 5

e checkPitchCon: Check pitch continuity

e checkMaskCon: Check mask continuity

e isOverlap: Refine two pitch contours overlapping in time

e isConnected: Check whether two pitch contours can be connected together

e mergeContour: Merge pitch contours

o reDetermineMask: Estimate masks at a frame containing multiple harmonic sources
(Sect. 111-B)

e removeDuplicate: Remove pitches with very similar FOs

e switchCandidate: Switch pitch points as well as the corresponding masks between
two pitch contours

e convCont: Refine pitch estimates and produce pitch contours

o reEstimatePitch: Re-estimate pitch points of a contour as well as the corresponding
masks using maskToPitchMAP

e checkContour: Check the pitch and mask continuity of a pitch contour

o developeContour: Re-estimate non-continuous pitch points based on neighboring
continuous pitch points

- mScalelnten.cpp and segmentation.cpp (and mScalelnten.h and segment.h): Onset/offset-based
segmentation
o See the paper “Auditory segmentation based on onset and offset analysis” in IEEE Trans. Audio,
Speech, and Lang. Process., vol. 15, pp. 396-405, 2007, by Hu G. and Wang D.L. for details

- common.h, tool.h, and tool.cpp: Supplemental utility files

- filter.h and filter.cpp: Different ways of designing and applying low-pass/band-pass filters

More details on training the single-unit based MLP (Sect. IlI-A)
The following is a description based on personal communication with the original author Guoning Hu.

1. Training data
a) 4620 sentences from the training part of the TIMIT database are divided into 2 equal parts
b) Part one and part two are mixed one by one at 0 dB randomly, which yields 2310 mixtures.
A couple of rules for mixing sentences:
1. Each sentence was used once strictly
2. 2 sentences from a same speaker were never mixed together
¢) Each sentence of part one was randomly mixed with one of the 100 intrusions
(http://www.cse.ohio-state.edu/pnl/corpus/HuCorpus.html) at 0 dB, which yields another
2310 mixtures
d) The training is performed on the above 4620 mixtures

2. Training steps

Page 4 of 5

http://www.cse.ohio-state.edu/~dwang/papers/Hu-Wang.taslp07.pdf
http://www.cse.ohio-state.edu/pnl/corpus/HuCorpus.html

a) MATLAB neural-network toolbox was used for training

b) A channel (ch) in the low frequency range is first picked (I cannot recall which channel,
maybe the first one) and the MLP for this channel is trained with a random initial value. Let
model(ch) represent the resulting MLP for this channel

c) To speed up training, model(ch) is used as the initial value for channel ch+1. Then after
training channel ch+1, model(ch+1) is used as the initial value to train channel ch+2, and so
on. Channels ch-1, ch-2, ..., and 1 are trained similarly

d) Step b and c were repeated several times. Each time it generated a set of 128 MLPs. The set
that gave best performance on testing data (Sect. IV-A) was selected

Notes:
1. For longer utterances, if the current version of tandem seg-faults, increase the value assigned to the constant

identifier ‘MAX_CONTOUR’ defined in pitch.h; currently it is set to 200.

Page 5 of 5

