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Abstract—As a fundamental problem in speech processing, pitch
tracking has been studied for decades. While strong performance
has been achieved on clean speech, pitch tracking in noisy speech is
still challenging. Severe non-stationary noises not only corrupt the
harmonic structure in voiced intervals but also make it difficult to
determine the existence of voiced speech. Given the importance of
voicing detection for pitch tracking, this study proposes a neural
cascade architecture that jointly performs pitch estimation and
voicing detection. The cascade architecture optimizes a speech
enhancement module and a pitch tracking module, and is trained
in a speaker-independent and noise-independent way. It is ob-
served that incorporating the enhancement module improves both
pitch estimation and voicing detection accuracy, especially in low
signal-to-noise ratio (SNR) conditions. In addition, compared with
frameworks that combine corresponding single-task models, the
proposed multi-task framework achieves better performance and is
more efficient. Experimental results show that the proposed method
is robust to different noise conditions and substantially outperforms
other competitive pitch tracking methods.

Index Terms—Complex domain processing, densely-connected
convolutional recurrent neural network, multi-task learning,
neural cascade architecture, pitch tracking, voicing detection.

I. INTRODUCTION

P ITCH tracking, also known as fundamental frequency
(F0) estimation, is a fundamental research problem in

the domain of speech and music processing. Pitch tracking
plays an important role in many applications including speech
synthesis, speaker identification, and speech analysis. While
high F0 estimation accuracy has been achieved for speech in
clean conditions, pitch tracking in noisy conditions is chal-
lenging. In noisy conditions, the harmonic structure of speech
signals is corrupted, makingF0 estimation difficult. In addition,
non-stationary noises complicate the task of classifying voiced
and unvoiced intervals. Strictly speaking pitch and fundamental
frequency are different concepts: pitch is a perceptual attribute
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while F0 is an acoustic property of a signal. The two terms are
often used interchangeably in the literature, which is followed
in this article for convenience.

Existing pitch tracking approaches can be classified into
three categories based on input features. Time-domain methods
extract F0 information by estimating the periodicity in a signal.
Typical time-domain methods, such as YIN [1], RAPT [2], and
PRAAT [3], are based on auto-correlation functions. Frequency
domain methods such as SAFE [4] and PEFAC [5] determine
F0 by analyzing harmonic structure in the frequency domain.
PEFAC, for example, attenuates noises on a spectrogram by
applying non-linear amplitude compression, and selects pitch
candidates from harmonic peaks. Time-frequency methods such
as Wu et al. [6] perform pitch tracking in both the time and fre-
quency domain. The signal is often decomposed into sub-bands
and temporal analysis is applied to each frequency band. For
conventional methods, after determining pitch candidates, post-
processing algorithms such as dynamic programming [5] and
hidden Markov models [6], [7] are usually applied to produce
the most probable pitch track from the pitch candidates.

Deep neural networks (DNNs) have been introduced to pitch
tracking in recent years. DNN-based methods have achieved
substantial improvements over traditional signal processing
methods. These methods formulate pitch tracking as either a
multi-class classification problem or a regression problem. In
the first such study, Han and Wang [8] focused on pitch tracking
in very noisy conditions, and proposed to estimate probabilistic
outputs of pitch states with DNNs. Viterbi decoding was then
used to produce the pitch contours based on the DNN outputs.
The trained model shows robustness to different noise conditions
and better results over conventional methods. Different from Han
and Wang [8] whose model operates on spectral inputs, recent
DNN methods such as CREPE [9], FCN [10], DeepF0 [11],
and penn [12] perform pitch tracking on raw waveform. These
methods use convolutional neural network (CNN) models and
estimate the probabilistic outputs of pitch states. In the eval-
uation process, the final pitch estimates are obtained directly
from the network outputs without post-processing. However, it
is worth noting that studies such as [9], [10] include Viterbi
decoding as an optional procedure in their posted code. In
addition, these methods use synthesized data for training where
ground-truthF0 is guaranteed. The use of synthesized speech for
training resolves the issue of how to generate ground-truth pitch
labels for speech signals. However, a common drawback of these
methods is that they focus on pitch tracking in voiced frames
and ignore voicing detection. For a pitch tracker, the ability to
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classify voiced/unvoiced intervals is crucial, especially in noisy
conditions. For human speech, around 25% of speech signals are
unvoiced [13]. When producing a pitch track, unvoiced intervals
must be classified as such. In noisy conditions, voicing detection
becomes more difficult. Studies such as [14], [15] incorporate
voicing detection as a separate task for pitch tracking. For
example, in [15], a pitch tracker is integrated into a speech
enhancement framework for hearing aids, which is trained to
produce pitch and voiced probability estimates.

In a preliminary study [16], we proposed a densely-connected
convolutional recurrent neural network (DC-CRN) model for
pitch tracking in noisy speech, motivated by the DC-CRN
model [17] for speech enhancement. The model takes complex-
domain short-time Fourier transform (STFT) [18], [19] as input
and produces probabilistic pitch state outputs. Furthermore, a
neural cascade architecture [20] is employed to jointly optimize
speech enhancement and pitch tracking DC-CRN model. The
current study expands the preliminary study mainly in the fol-
lowing aspects. First, we consider voicing detection in pitch
tracking, which was not considered in the preliminary study, and
extend the previous architecture to perform multi-task learning
forF0 estimation and voicing detection. Second, we analyze the
differences between single-task learning and multi-task learn-
ing, and establish the superiority of the latter forF0 estimation as
well as voicing detection. Third, we evaluate the influence of in-
corporating phase information in input features on the multi-task
learning framework. Fourth, we evaluate the proposed models on
both synthesized and recorded speech data. Experimental results
show that the models trained on synthesized speech generalize
well to real speech recordings and incorporating phase in input
features improves model performance. Compared to frameworks
that combine corresponding single-task models, the multi-task
framework also saves computational costs. Our neural cascade
model substantially outperforms the baseline methods on both
F0 estimation and voicing detection.

The rest of this article is organized as follows. Related work
is discussed in the next section. In Section III, we formulate
the F0 estimation problem. In Section IV, we provide the
details of model architecture and DNN configurations. Section V
describes the experimental setup, and Section VI provides evalu-
ation and comparison results. Section VII concludes this article.

II. RELATED WORK

In recent years, multi-task learning has been used in pitch
tracking and shown to have advantages over single-task models.
In [21], the task of speaker separation is optimized simultane-
ously with multi-pitch tracking. The results show that the two
tasks can benefit each other. In [22], the authors investigated
different training architectures to jointly perform singing voice
separation and pitch tracking, and showed that a stacked archi-
tecture which first performs vocal separation outperforms other
joint training models. In [14], a multi-task DNN is developed
for pitch tracking in noisy speech, where a convolutional en-
coder followed by two fully-connected layers is designed for
joint voiced/unvoiced classification and pitch regression. Our
preliminary study mentioned above also performs multi-task

learning that jointly optimizes a speech enhancement module
and a pitch tracking module. We adopted DC-CRN [17] as
the speech enhancement module. The DC-CRN model has an
encoder-decoder structure with skip connections from the en-
coder to the decoder. The encoder is composed of several convo-
lutional DC blocks. The output from the convolutional encoder
is first reshaped into a sequence of 1D features and then fed to
a 2-layer BLSTM. The output of BLSTM is reshaped to 3-D
representation again and fed to the decoder which has several
deconvolutional DC blocks. Convolutional DC block-based skip
pathways are used from the encoder to the decoder, similar to
U-Net++ [23]. The skip pathways help to enrich the feature maps
from the encoder.

III. PROBLEM FORMULATION

F0 estimation and voicing detection are both important for
pitch tracking. Following recent data-driven methods [8], [9],
[10], we formulate F0 estimation as a multi-class classification
problem. In this formulation, each class represents a pitch state
with a unique F0. A DNN takes a noisy speech signal as
input and outputs a vector in which each element represents the
probability of F0 belonging to the corresponding pitch state.
We adopt the F0 range described in FCN [10], which is from
30 Hz to 1000 Hz. ThisF0 range covers all possibleF0 values in
human voices, including scenarios such as soprano singing and
vocal fry. Pitch states are selected from the target F0 range with
12.5-cent intervals. As a result, the target F0 vector yp contains
486 elements y1p, y

2
p, . . ., y

486
p , each of which corresponds to one

pitch state. The value of the ith element yip in the target vector
yp is calculated as,

yip = exp

[
− (pi − ptrue)

2

2 · 252
]
, (1)

where pi and ptrue are the F0 of the ith pitch state and F0 of
the ground-truth pitch state in cents, respectively. Compared to
a one-hot vector, the target vector is Gaussian-blurred with a
standard deviation of 25 cents, mainly for reducing the penalty
for near-correct estimates.

Having an estimated F0 vector ŷp, the pitch estimate can be
calculated as shown in (2) below. The index I corresponding
to the maximum element in ŷp is first selected. With the index
I determined, the pitch estimate is the weighted average of Ith
pitch state and its neighboring pitch states pI−4, . . ., pI+4. When
the indices of some neighboring pitch states are out of range
(i.e. < 1 or > 486), the pitch estimate is the weighted average
of the pitch states whose indices are within the range. For the
convenience of evaluation, the calculated p̂ is converted to Hz,

I = argmax
i

ŷip, p̂ =

∑I+4
i=I−4 ŷ

i
ppi∑I+4

i=I−4 ŷ
i
p

. (2)

Natural speech contains both voiced and unvoiced intervals.
A voiced interval often refers to an interval where the voice
is periodic or quasi-periodic. An unvoiced interval, however,
lacks harmonic structure and acoustically resembles noise [13].
In real speech recordings, silence and pure noise intervals also
exist. In our study, we consider voicing detection as a binary
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classification problem. An audio frame is classified as a voiced
frame only when it contains a periodic or quasi-periodic speech
signal and its training target yv is set to 1. The training target yv
is set to 0 for unvoiced speech, pure noise, and silence.

During inference, the estimated ŷv is compared with the
threshold of 0.5. If ŷv is higher than 0.5, the frame is considered
as a voiced frame; otherwise, the frame is viewed as a frame
having no voiced speech. That is,

Iŷv
=

{
1 if ŷv > 0.5

0 if ŷv ≤ 0.5
, (3)

where Iŷv
is a binary number that indicates if the frame is a

voiced frame.
The final pitch value F̂0 is generated based on p̂ and Iŷv

,
given below

F̂0 = p̂ · Iŷv
. (4)

In other words, the pitch values of all non-voiced frames are
set to 0.

IV. MODEL DESCRIPTION

A. Densely-Connected Convolutional Recurrent Network for
Pitch Tracking

In our previous study [16], we developed a densely-connected
convolutional recurrent network (DC-CRN) for F0 estimation,
but the previous model only considered F0 estimation in voiced
frames. The present study takes voicing detection into account,
and we expand the previous DC-CRN model to estimate both
ŷv and ŷp. A multi-task learning objective is used to optimize
voicing detection and F0 estimation simultaneously.

The proposed network architecture is shown in Fig. 1. The net-
work is composed of 7 convolutional densely-connected (Conv-
DC) blocks, a two-layer bidirectional long short-term memory
(BLSTM) block, and two fully-connected layers with sigmoidal
activation functions which produce ŷv and ŷp respectively. The
input to the network is a concatenation of the real and imaginary
parts of the complex STFT of a noisy speech signal.

Fig. 2 shows the structure of a Conv-DC block in the DC-CRN
network. The Conv-DC block consists of 4 composite layers
followed by a gated convolutional layer. The input to each
composite layer or gated convolutional layer is a concatenation
of the outputs from all preceding layers. The dense connectivity
enables a layer to reuse features computed in the preceding
layers, which improves the information flow between layers.
Each composite layer contains a 2-dimensional (2D) convolu-
tional layer followed by batch normalization and the exponential
linear unit (ELU). As shown in Fig. 2(b), the last layer is a
gated convolutional layer that incorporates gated linear units
developed in [24].

In order to reduce the number of trainable parameters and
improve computational efficiency, a grouping strategy proposed
by Gao et al. [25] is adopted. We observe that this method
reduces computational complexity while not introducing much
performance degradation. Fig. 3 shows an illustration of the
grouping strategy for two-layer BLSTM. The group number is

Fig. 1. DC-CRN architecture for pitch tracking. ŷp represents the output for
F0 estimation and ŷv the output for voicing detection. N denotes the number
of Conv-DC blocks, and ‘Linear’ refers to fully-connected layer.

Fig. 2. Diagrams of (a) a DC-CRN block and (b) gated convolution. In
(a), each composite (comp.) layer contains a convolutional layer followed by
batch normalization and exponential linear unit (ELU) activation function. In (b),
σ denotes a sigmoidal function and

⊗
represents element-wise multiplication.
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Fig. 3. Grouping strategy for two-layer BLSTM. The group number is set
to 4.

set to 4. The input features and hidden states of the first and
second recurrent layers are first split into 4 disjoint groups. In
the first recurrent layer, intra-group features are learned within
each group. Then, the outputs from the first recurrent layer are
rearranged and fed into the second recurrent layer to model
inter-group dependency. Layer normalization is applied after
each recurrent layer. The final output is a concatenation of the
outputs from the second recurrent layer.

In order to learn the probabilistic outputs ŷv and ŷp, we train
the DC-CRN network by minimizing the cross entropy loss
Lv for voicing detection and Lp for F0 estimation. The loss
functions are given as follows,

Lv(yv, ŷv) = − yv log ŷv − (1− yv) log (1− ŷv), (5)

Lp(yp, ŷp) =
1

N

N∑
i=1

[−yip log ŷ
i
p − (1− yip) log (1− ŷip)],

(6)

where N is the number of pitch estimates and equals 486 in our
setting.

A multi-task learning objective is used to jointly optimize
voicing detection and F0 estimation,

LF0 = Lv + αLp, (7)

where α is a coefficient for Lp. The relative training efforts
between the two tasks are controlled by tuning the coefficient.

B. Neural Cascade Architecture

Considering the rapid advances in speech enhancement in
recent years, a natural question is: Can we use speech enhance-
ment to help pitch tracking in noisy speech? It was observed in
our preliminary study that estimating F0 from enhanced speech
with a model trained on clean speech works reasonably well.
However, the performance of such F0 estimation is limited
because of the distortion introduced by a speech enhancement
model. Inspired by a recent study [20], we develop a neural
cascade architecture to incorporate speech enhancement into
pitch tracking.

Fig. 4 shows the proposed cascade architecture. Our model is
composed of a speech enhancement module and a pitch tracking
module. For the speech enhancement module, we employ the
DC-CRN model in [17]. For the pitch tracking module, the
proposed DC-CRN model for pitch tracking is used. An input
feature has three dimensions: frequency, time, and channel. To
form the input feature, the real and imaginary parts Xr, Xi of
the complex STFT of the noisy speech signal are concatenated
and viewed as two separate channels. The speech enhancement
module estimates the real and imaginary parts Ŝr, Ŝi of the
complex STFT of clean speech. The input to the pitch tracking
module is formed by concatenating Ŝr, Ŝi with Xr, Xi respec-
tively. The pitch tracking module generates ŷv and ŷp, which
will be utilized to calculate the final pitch track as described in
Section III. Inspired by [21], the speech enhancement module
and the pitch tracking module are jointly trained by minimizing
L, which is defined as,

L = βLenh + LF0, (8)

where LF0 is defined in (7), and β is a parameter to control the
relative training effort between speech enhancement and pitch
tracking.

The loss function for speech enhancement is defined as,

Lenh =
1

TF

∑
t,f

[|Ŝr(t, f)− Sr(t, f)|

+ |Ŝi(t, f)− Si(t, f)|
+ ||Ŝ(t, f)| − |S(t, f)||], (9)

where T denotes the number of time frames and F denotes
the number of frequency bins, and the third term represents a
magnitude-based loss. The network directly learns the real and
imaginary parts of the complex STFT of the clean speech Ŝr,
Ŝi by minimizing Lenh. We note that prior research [17], [26]
suggests that integrating a magnitude term yields better results,
which can be attributed to the greater significance of magnitude
compared to phase.

C. Network Configurations

1) DC-CRN for Pitch Tracking: As portrayed in Fig. 1 and
described in Section IV-A, the pitch tracking DC-CRN model
has 7 convolutional densely-connected (DC) blocks followed
by a two-layer BLSTM and two fully-connected layers with
sigmoidal activation functions. In each convolutional densely-
connected block, there are 4 composite layers and a gated
convolutional layer. The convolutional layer in each composite
layer uses a kernel size of 1× 3 (time × frequency) and has
8 output channels. Zero padding of size 1 is applied along the
frequency dimension to both sides. In the gated convolutional
layer, the convolutions use a kernel size of1× 4, a stride of 2, and
zero-padding of 1 for both sides along the frequency dimension.
The convolutional DC blocks have 4, 8, 16, 32, 64, 128, and 256
output channels respectively. The two-layer BLSTM has 512
units in every direction.

2) DC-CRN for Speech Enhancement: To construct the
speech enhancement module, we adopt the DC-CRN model
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Fig. 4. Illustration of the neural cascade architecture. Xr and Xi denote real and imaginary parts of the complex STFT of an input mixture. The speech
enhancement module takes Xr and Xi as input and estimates the complex STFT of the clean speech signal S. The complex STFT of the enhanced signal and
noisy input mixture are concatenated and fed into the pitch tracking module which jointly performs F0 estimation and voicing detection.

Fig. 5. DC-CRN architecture for speech enhancement. Xr and Xi denote
real and imaginary parts of the complex STFT of an input mixture. Ŝr , Ŝi denote
the real and imaginary parts of estimated speech. © represents concatenation.
N denotes the number of DeConv-DC blocks.

in [17] with some adjustments in the network configuration to fit
input features. Fig. 5 shows a diagram of the network structure.
The encoder and decoder is composed of seven convolutional
and deconvolutional DC blocks respectively. The convolutional
DC block in the speech enhancement module has the same
configuration as the one in the pitch tracking module, depicted
in Fig. 2. Compared to a convolutional DC block, a deconvo-
lutional DC block’s last layer is a gated deconvolutional layer
where the convolutional layers in the DC block are replaced
by the transposed convolutional layers. The convolutional or
deconvolutional DC block shares the same hyperparameters as
the convolutional DC block described in Section IV-C1 except
that the output channels of the DC blocks in the encoder, decoder
and pathways are 4, 8, 16, 32, 64, 128, 256 successively. In
addition, the last layer in the convolutional DC blocks in the
skip pathways has a stride size of 1 and a kernel size of 1× 3.
The two-layer BLSTM model has 512 units in each direction.
The grouping strategy is applied to the BLSTM model, with the
number of groups set to 4.

V. EXPERIMENTAL SETUP

A. Data Generation With Speech Synthesis

Finding sufficient data with reliable ground-truth F0 labels
for training is challenging. Some studies of pitch tracking in

noisy [8] or multi-talker [27] scenarios use the estimatedF0 con-
tours obtained from applying conventional or pre-trained DNN
pitch trackers to clean speech as ground-truthF0. Although a rel-
atively accurate F0 track can be obtained, the estimation errors
made by a pitch tracker cannot be neglected. A better approach
uses speech datasets that provide laryngograph recordings. It
is usually assumed that ground truth F0 can be obtained by
applying a pitch estimator to laryngograph recordings. However,
it has been observed that the pitch estimates from laryngograph
data are not always reliable [10], [28]. In our experience, octave
errors can occur. In addition, obtaining laryngograph data is
laborious, which makes it difficult to collect large datasets for
training.

To acquire a large number of signals with reliable ground-truth
F0 annotations, recent studies [9], [10], [29] create datasets
by synthesizing audio files based on given F0 annotations.
This analysis-by-synthesis approach allows for complete control
on ground-truth F0 since the ground-truth F0 track used for
speech synthesis perfectly matches the given F0 annotations.
For example, in [10], a vocoder PaN [30] is employed to generate
synthesized speech with good quality, where a sequence of
pulses is first generated based on the Liljencrants-Fant model
of the glottal source [31] with the target F0 and then filtered by
a vocal tract filter. The complete signal is formed with unvoiced
components extracted from the original signal. In this study,
we employ a high-quality speech synthesizer, WORLD [32],
to create datasets of synthesized audio with given F0 labels.
In the WORLD vocoder, a pitch track is first estimated by
a pitch estimator such as DIO [33]. Then, the spectral enve-
lope is estimated using CheapTrick [34] applied to the original
waveform and the estimated F0 track. The excitation signal
generated by PLATINUM [35] is used as an aperiodic parameter.
Finally, the synthesizer takes the estimated pitch track, spectral
envelope, aperiodic parameter, and the waveform as inputs and
generates a synthesized audio signal. Note that we substitute
the pitch tracker in WORLD with Torchcrepe [36], which is a
Pytorch implementation of CREPE [9] with pre-trained models.
It provides additional methods such as silence detection and
removal of unreliable pitch estimates that we find to be helpful
for detecting silence and unvoiced intervals more precisely.

B. Dataset Preparation

We first use the WORLD [32] vocoder to generate datasets
of synthesized speech using recorded speech from Lib-
riSpeech [37], more specifically the train-clean-360 subset. To
build the training set, 4152 recordings from 921 speakers (439
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male and 482 female) are selected for speech synthesis. The val-
idation set is created with 1274 untrained recordings. All record-
ings longer than 6 s are chunked into 6-second segments. When
we estimate the pitch track of a recording with Torchcrepe [36],
theF0 estimates of the frames that are either silent or have a low
estimation confidence score are set to 0. The synthesized speech
is created with the WORLD synthesizer based on the original
waveform and the estimated pitch track. In order to span the
full range of target F0, each utterance is re-synthesized with
pitch tracks that are an octave lower or an octave higher than
the original estimated pitch track. Note that the re-synthesized
signals that contain any pitch point out of the target F0 range
are removed from the dataset and all synthesized audio files are
downsampled from 16 kHz to 8 kHz. The noisy mixtures in the
training set are generated by mixing the synthesized audio and
random segments from 10,000 noises from a sound effect library
with an SNR randomly chosen from {−5, −4, −3, −2, −1, 0}
dB. For the validation set, each synthesized audio file is mixed
with a cafeteria noise from an Auditec CD at −5 dB SNR.

Since our models are trained on synthesized data, we generate
two test sets for evaluation considering the possible bias caused
by the synthesizer. One test set contains mixtures generated
from synthesized audio. We pick 100 utterances from 10 speak-
ers (5 males and 5 females) in LibriSpeech’s clean-train-100
subset and generate synthesized audio with Torchcrepe and
WORLD. The other test set is built on real recordings. We
choose utterances from the FDA dataset [38] to build a test set
of real recordings. Due to the existence of octave errors in the
ground-truth F0 obtained from the laryngograph data of the
FDA dataset, we adopt consensus ground-truth F0 from [28]
for voiced frames, which derives ground-truth F0 from the
consensus of state-of-the-art F0 estimation algorithms. It is
observed that the provided consensus ground truth is broadly
compatible with laryngograph-based ground truth and more
representative in edge cases that might lead to octave errors
such as obscured fundamentals. In our previous study [16], we
focused on F0 estimation on voiced frames, and the voiced
frames with confidence scores of consensus ground-truth F0
that are greater than 0.7 were considered for evaluation. In
the present evaluation, since we perform voicing detection, we
use ground-truth labels from laryngograph data to determine
voiced/unvoiced intervals for the test set.

For both test sets, three noises are considered for creating
mixtures: babble noise, factory noise from NOISEX92 [39] and
cafeteria noise from an Auditec CD. These are all nonstationary
and challenging noises for speech enhancement [20]. We con-
sider four SNRs {−10, −5, 0, and 5} dB for testing. For STFT
computation, we use a Hamming window of 128 ms duration
with a 10 ms frame shift and a 1024-point discrete Fourier
transform.

C. Experimental Setup

During training, both the DC-CRN model and the cascade
architecture are trained using the Adam optimizer [40] with a
batch size of 4. The learning rate is initialized to 0.0005 and is
halved if the validation loss does not decrease for 5 consecutive

TABLE I
EFFECTS OF HYPERPARAMETERS OF α AND β IN TERMS OF RAW PITCH

ACCURACY (RPA) AND VOICING DECISION ERROR (VDE) (SEE SECTION V-D
FOR DEFINITIONS)

epochs. To avoid gradient explosion, we apply gradient clipping
with a maximum value of 5. The maximum training epoch
number is set to 80. All models converge within the designated
number of training epochs. To find appropriate values ofα andβ,
we explored three ways of tuning the hyperparameters: by fixing
α and varying β, by fixing β and varying α, and by equally
scaling both. Table I shows the corresponding results on 300
utterances randomly chosen from the validation set. From the
results, we observe that α = 100 and β = 1 yield the best result
and they are also found to balance the losses in the late training
stage. Thus these values are chosen.

D. Evaluation Metrics

We evaluate pitch tracking results in terms of two metrics:
F0 estimation accuracy in voiced frames and the accuracy of
frame voicing detection. Specifically, we use raw pitch accuracy
(RPA) and voicing decision error (VDE) [41] for pitch tracking
evaluations.

When calculating raw pitch accuracy, only the voiced frames
are taken into account. In our case, an estimated F0 is only
considered a correct estimate if the estimated F0 differs from
ground-truth F0 by less than 50 cents.

RPA =
N50

Np
, (10)

whereNp is the number of voiced frames, andN50 is the number
of voiced frames whose estimated F0 is within 50 cents of the
ground-truth F0.

Voicing decision error indicates the percentage of frames that
are wrongly classified in terms of voicing.

V DE =
Np→n +Nn→p

N
, (11)

where N represents the total number of frames, Np→n is the
number of the voiced frames that are misclassified as non-voiced
and Nn→p is the number of non-voiced frames that are misclas-
sified as voiced.
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TABLE II
RAW PITCH ACCURACY (IN %) ON SYNTHESIZED TEST SET

TABLE III
VOICING DECISION ERROR (IN %) ON SYNTHESIZED TEST SET

VI. EVALUATION RESULTS AND COMPARISONS

We train the proposed models on synthesized data to have
complete control of ground-truth F0 labels, and evaluation on
both a synthesized test set and a test set with real recordings is
conducted. In Section VI-A, we analyze the proposed models
on the synthesized test set and explore phase information in
pitch tracking. The differences between single-task learning
and multi-task learning are also investigated. In Section VI-B,
comparisons with baseline models and discussions are made on
the test set of real recordings.

A. Model Analysis on Synthesized Test Set

Tables II and III show the evaluation results in terms of
RPA and VDE respectively. With the increase of SNR, raw
pitch accuracy gradually increases, and voicing decision errors
gradually decrease. Next, we examine different input types on
the multi-task DC-CRN model. We find that the model using
complex STFT as input feature (DC-CRN) consistently outper-
forms the model trained with magnitude STFT input (DC-CRN
magnitude) in terms of both RPA and VDE, especially in the
more challenging babble and cafeteria noises and at lower SNRs.
On average, for noisy speech, RPA is improved by 4.2% and
VDE is decreased by 2.47% in absolute terms.

Our finding that better F0 estimation is obtained in the com-
plex domain than in the magnitude domain joins a growing list
of speech processing tasks with similar observations: speech
enhancement [18], [42], speech dereverberation [43], speaker
separation [44], and singing voice separation [45], [46]. It is
well documented that pitch perception is closely related to the
temporal fine structure of a signal, as opposed to the signal
envelope [47]. Phase is a key characteristic of temporal fine
structure, which may explain our observation that the real and
imaginary spectrograms provide more discriminant features for
pitch estimation than the magnitude spectrogram.

Even though multi-task learning is a simple and effective
framework to train a pitch tracking model, it is uncertain if F0
estimation and voicing detection tasks can benefit each other
and whether the multi-task framework is an optimal choice.
To examine these questions, we train two DC-CRN single-task

models, where one model is trained to perform F0 estimation
only and the other is trained only for voicing detection. Two
models are trained independently. We then combine the results
from the two single-task models using (4) to generate pitch
tracks. This approach is denoted as single-task combination.
From the tables, we observe that the single-task combination
model does not perform as well as the multi-task DC-CRN
model. In addition, we find that the single-task DC-CRN model
for voicing detection makes more false reject errors on voiced
frames. For example, in the −10 dB cafeteria noise condition,
with 1% VDE difference, false rejects in voiced intervals account
for 14.13% out of 25.07% VDE errors for the multi-task model,
and 18.5% out of 26.02% for the single-task model. Overall,
the multi-task learning framework performs better and it also
consumes less computation.

In addition, methods such as [8] incorporate a non-pitch state
in the target vector and the probabilistic output is learned using a
cross-entropy loss function. To examine this technique, we train
a corresponding DC-CRN model under this setup (DC-CRN w/
non-pitch state in Tables II and III) and compare with multi-task
learning. Post-processing is not considered in this comparison.
From Tables II and III, one can observe that multi-task learning
shows better results in terms of both RPA and VDE. We think
that the multi-task framework has several advantages compared
to the introduction of a non-pitch state. First, voicing detection
is not influenced by wrong pitch estimation. Second, multi-task
DC-CRN is trained with a binary cross entropy loss which
enables using the Gaussian-blurred training target for pitch
estimation and softens the penalty of near-correct predictions.

Evaluation results in Tables II and III also demonstrate that
the proposed cascade architecture consistently outperforms the
DC-CRN model in terms of both RPA and VDE in different
noise conditions. Major improvements are observed in low SNR
scenarios. For example, in the −10 dB case, the raw pitch
accuracy is improved by 8.07% on average, and voicing decision
error is reduced by 2.53% in absolute terms.

Fig. 6 illustrates pitch tracking results of an example utterance
from the FDA test set mixed with babble noise at −10 dB SNR.
Fig. 6(a),(b), and (c) show the spectrograms of noisy speech,
clean speech, and the enhanced speech from the cascade model
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Fig. 6. Example of pitch tracking in noisy speech. The noisy speech is a female utterance from the FDA corpus mixed with babble noise at −10 dB SNR.
(a) Spectrogram of noisy speech. (b) Spectrogram of clean speech. (c) Spectrogram of enhanced speech. (d) DC-CRN estimated pitch contours. The circles denote
the estimated F0, and solid lines denote the ground-truth F0 contours. (e) Cascade architecture estimated pitch contours.

respectively. Fig. 6(d) and (e) show the estimated pitch contours
from the DC-CRN model and the cascade architecture. We can
see from Fig. 6(a) that, at −10 dB SNR, the harmonic pattern of
clean speech is severely corrupted by the noise. By comparing
Fig. 6(d) with (e) more robust voicing detection and accurate
F0 estimation are observed with the cascade architecture.

B. Comparison With Baseline Methods on Real Recordings

We now compare several baseline methods and proposed
methods on real recordings. Three competitive baseline methods
are chosen for comparison and they are PEFAC [5], Han and
Wang’s RNN model [8], the FCN model [10] as discussed in
Section I. PEFAC is a pitch tracking algorithm that identifies
voiced frames in speech and estimates F0 in highly noisy
conditions. In this method, voiced frames are identified using
the likelihood ratio of two Gaussian mixture models trained on
voiced and unvoiced frames respectively. In the RNN model [8],
the network incorporates a no-pitch state in its output to iden-
tify unvoiced or speech-free frames. FCN (fully convolutional
network) is an end-to-end model which takes a raw waveform

as input and generates probabilistic outputs of pitch states. This
model achieves state-of-the-art performance on clean speech.
Specifically, we select FCN-929 for comparison as it is reported
to have the highest pitch detection results on real recordings.
For a fair comparison, we retrain the RNN model and FCN
model on our training set. While the FCN model does not
produce voicing decisions directly, one way to obtain voicing
decisions is by thresholding the pitch class probability outputs.
In our evaluation, we assessF0 estimation and voicing detection
performance of FCN with this approach (noted as FCN with
voicing detection (FCN w/ V.D.) in Fig. 7). Since FCN is not
designed for voicing detection, for fair comparison, we also
include an evaluation of F0 estimation in voiced frames.

We first compare the proposed models with pitch tracking
methods that perform both F0 estimation and voicing detection.
The models are evaluated in terms of raw pitch accuracy and
voicing decision error. Fig. 7 shows the evaluation results on the
FDA test sets with three noises and at 4 SNRs from −10 dB
to 5 dB. It can be observed that both the DC-CRN method and
cascade architecture outperform baseline methods substantially.
The RNN model of Han and Wang achieves better RPA and VDE
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Fig. 7. Raw pitch accuracy and voicing decision error of F0 estimation on the FDA test set for three noises: (a) & (d) for babble noise, (b) & (e) for factory
noise, and (c) & (f) for cafeteria noise.

Fig. 8. Raw pitch accuracy of F0 estimation without the influence of voicing decision errors on the FDA test set for three noises: (a) babble noise, (b) factory
noise, and (c) cafeteria noise.

than PEFAC in most cases and performs well in high SNR condi-
tions. For FCN w/ V.D., we explore different thresholds ranging
from 0 to 1, with increment of 0.1 and found 0.5 to be the best
threshold. It can be seen that FCN w/ V.D. produces reasonable
voicing detection results even though it is not trained for making
voicing decisions and outperforms PEFAC in terms of both RPA
and VDE. Compared with the DC-CRN model, the proposed
cascade architecture has better performance, especially in low
SNR scenarios. For example, in the −10 dB scenario, RPA is
increased by 6.24%, 5.1%, and 3.21%, and VDE is decreased
by 4.95%, 1.37% and 3.5%, for babble, factory, and cafeteria
noises respectively. With the help of the speech enhancement
module, consistent improvements of VDE are observed in the
cascade architecture at all SNRs. In this comparison, RPA and
VDE are calculated based on estimated pitch tracks. Note that,
since F0 estimates incorporate voicing decisions, RPA results
do not reflect the accuracy of F0 estimation entirely; for some

voiced frames, the estimated F0 is set to 0 because of voicing
decision error.

Recent DNN methods such as CREPE [9] and FCN [10]
focus on F0 estimation in voiced frames, without detecting
voiced/unvoiced intervals of target speech. To be consistent
with this focus, when comparing with FCN, we calculate RPA
according to p̂ from F0 estimation in ground-truth voiced
frames. Thus the calculated RPA represents the accuracy of F0
estimation without the influence of voicing decision error. Fig. 8
presents the RPA comparison results. We can see by comparing
Figs. 8 to 7 that removing the influence from voicing detection
increases the RPA scores by more than 10% on average for the
proposed methods. We observe from Fig. 8 that FCN has strong
performance in less noisy conditions but the F0 estimation
results of the proposed methods are more robust in more noisy
conditions. Note that in this study, we utilize ground-truth labels
derived from laryngograph data to determine voiced/unvoiced
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intervals for the test set. This leads to inclusion of frames with
lower confidence levels,and also lower RPA compared to [16]. In
addition, the proposed DC-CRN model has 4.1 million trainable
parameters, which are much fewer than FCN with 12.3 million
parameters. In terms of the inference speed of FCN, DC-CRN,
and the neural cascade architecture, we document the mean
computation time over 500 runs on a 1-second audio on a CPU
and a GPU. Specifically, we employ an Intel Xeon Gold 5115
2.4 GHz 10-core CPU, and a NVIDIA GeForce RTX 2080 Ti
GPU. We observe that on the GPU, FCN exhibits the fastest
speed, requiring only 4.9 ms. In contrast, DC-CRN and the neu-
ral cascade architecture take 17.8 ms and 18.3 ms, respectively.
On the CPU, DC-CRN has the fastest speed at 101.9 ms, whereas
the neural cascade architecture takes 109.1 ms, and FCN is the
slowest at 170.7 ms. In the −10 dB scenario, the RPA of the
DC-CRN model is 8.88% higher than the RPA of the FCN model
on average. Again, the cascade architecture further outperforms
DC-CRN in low SNR scenarios.

VII. CONCLUSION

In this study, we have proposed a neural cascade model that
jointly performs F0 estimation and voicing detection. The cas-
cade model takes complex STFT as input and optimizes a speech
enhancement module and a pitch tracking module jointly. We
have observed that introducing the speech enhancement module
improves both F0 estimation and voicing detection accuracy,
especially in very noisy conditions. Furthermore, we show that
proposed multi-task learning is superior to a framework that
combines the corresponding single-task models, and system-
atic comparisons show that the proposed method substantially
outperforms other baseline methods. The pitch tracking models
trained on synthesized speech show strong performance on real
recordings. We thus believe that the proposed cascade archi-
tecture for multi-task training represents a significant advance
in F0 estimation in noisy speech. For future work, we plan to
explore pitch tracking in multi-talker and noisy speech mixtures,
as well as the potential contribution of pitch estimation to speech
enhancement.
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