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Abstract
It has been shown that the intelligibility of noisy speech can be
improved by speech enhancement algorithms. However, speech
enhancement has not been established as an effective frontend
for robust automatic speech recognition (ASR) in noisy condi-
tions compared to an ASR model trained on noisy speech di-
rectly. The divide between speech enhancement and ASR im-
pedes the progress of robust ASR systems especially as speech
enhancement has made big strides in recent years. In this work,
we focus on eliminating this divide with an ARN (attentive re-
current network) based time-domain enhancement model. The
proposed system fully decouples speech enhancement and an
acoustic model trained only on clean speech. Results on the
CHiME-2 corpus show that ARN enhanced speech translates to
improved ASR results. The proposed system achieves 6.28%
average word error rate, outperforming the previous best by
19.3% relatively.
Index Terms: CHiME-2, robust ASR, speech distortion, time-
domain speech enhancement

1. Introduction
In real environments, acoustic interference is ubiquitous in
speech communication, and negatively impacts the performance
of speech-based applications such as smart home devices [1]
and conference transcription systems [2]. To attenuate back-
ground noise, speech enhancement algorithms have been devel-
oped to estimate clean speech from noisy speech. These al-
gorithms have achieved remarkable success in improving the
quality and intelligibility of noisy speech [3]. However, a ma-
jor disappointment is that monaurally enhanced speech does not
translate to improved automatic speech recognition (ASR), and
this has been attributed to the distortion introduced by monaural
speech enhancement algorithms [4]. The divide between speech
enhancement and ASR has persisted despite considerable re-
search over decades to bridge enhancement and ASR [5–7].
This study represents a new effort to bridge the fields of speech
enhancement and ASR.

For monaural speech enhancement, we employ the recently
proposed attentive recurrent network (ARN), which performs
speech enhancement in the time domain [8]. Time-domain en-
hancement operates differently from spectral methods [3, 9]. It
directly predicts clean speech samples from noisy speech sam-
ples, where speech magnitude and phase are enhanced simul-
taneously [10]. ARN incorporates a recurrent neural network
(RNN) and a self-attention mechanism, and produces excellent
enhancement performance [8]. We employ ARN as the frontend
of ASR.

In terms of robust ASR, prevailing approaches perform
acoustic modeling directly on noisy speech for noise-dependent

or noise-independent models, which are proven to be effec-
tive on CHiME-2 [4], CHiME-4 [11], and CHiME-6 [12] cor-
pora. The drawback of such approaches is that noise-dependent
models do not generalize well to untrained noises and noise-
independent models need an enormous amount of noisy speech
for training, which is not only costly but also infeasible in many
real applications. An ASR model trained on noisy speech also
results in an unavoidable performance gap compared with a cor-
responding model trained on clean speech, when tested on clean
speech. To bridge the divide between speech enhancement
and ASR, attempts have been made to perform acoustic mod-
eling on enhanced speech [4, 13] or enhanced features [14] in
a distortion-independent way. Nonetheless, backends of these
systems are fully dependent on the frontend. When the frontend
is replaced, say by a better enhancement model, the backend has
to be retrained or ASR performance degrades. Likewise, speech
enhancement can also be designed to serve ASR. In [15], a per-
ceptual loss based model was proposed to guide the training
of a speech enhancement frontend using senone labels from an
acoustic model. To completely combine speech enhancement
and ASR, a speech enhancement model and an acoustic model
can be jointly trained [16, 17]. Similar ideas are also utilized
in end-to-end (E2E) systems [18, 19]. Such E2E systems often
have a huge model size and are difficult to train. Furthermore,
the frontend and backend inside a joint or E2E system are de-
pendent on each other, which makes it problematic to improve
either the frontend or the backend individually.

In this paper, we investigate the most straightforward ap-
proach to robust ASR where the acoustic model is based on
only clean speech using a Conformer-based acoustic model
[11] and its input is ARN enhanced speech directly. Thus
the proposed robust ASR system completely decouples the
frontend and backend. In other words, the frontend is de-
signed for speech enhancement only, and the backend acous-
tic model for recognizing clean speech only. Combining two
modules directly to recognize noisy speech, the proposed sys-
tem is demonstrated to outperform other robust ASR systems,
including noise-independent, noise-dependent, and distortion-
independent models. When tested on the medium vocabulary
track (track 2) of the CHiME-2 corpus, our best system achieves
6.28% average word error rate (WER). To our knowledge, this
WER result represents the best on this dataset to date and out-
performs the previous best by 19.3% relatively. Our investi-
gation also shows that using short-time objective intelligibil-
ity (STOI) [20] as the model selection criterion is superior for
speech enhancement models in terms of ASR. ARN enhanced
speech also shows consistent improvements on other baseline
acoustic models, which further demonstrates that ARN elimi-
nates the divide between speech enhancement and ASR.

The remainder of the paper is organized as follows. Sec-
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tion 2 describes ARN for time-domain enhancement and a
Conformer-based acoustic model. Section 3 describes the ex-
perimental setup and implementation details. Evaluation results
and comparisons are presented in Section 4, and Section 5 con-
cludes the paper.

2. System Description
2.1. Problem Formulation

The monaural speech enhancement problem is formulated as
follows

y = s+ n, (1)

where y, s, and n are noisy speech, clean speech, and additive
noise, respectively. Speech enhancement computes an estimate
of s, ŝ, from y.

An ASR system computes the optimal word sequence W∗

given a sequence of acoustic features X of speech signal x,
which is formulated as a maximum a posteriori probability
problem

W∗ = argmax
W

PAM,LM(W|X), (2)

where AM and LM denote an acoustic model (AM) and lan-
guage model (LM), respectively. Using Bayes’ theorem, Eq. 2
can be rewritten as

W∗ = argmax
W

pAM(X|W)PLM(W), (3)

where pAM and PLM are AM likelihood and LM prior proba-
bility, respectively. An AM predicts the likelihood of acoustic
features of a phoneme or another linguistic unit, and an LM
provides a probability distribution over words or sequences of
words in a speech corpus.

2.2. Attentive Recurrent Network

We employ ARN as the frontend of ASR, which is a time-
domain speech enhancement model comprising RNN, self-
attention, feedforward network, and layer normalization mod-
ules. Details of ARN building blocks can be found in [8]. In this
work, the non-causal version of ARN is used, namely the RNN
in ARN is bi-directional long short-term memory (BLSTM) and
self-attention is unmasked.

The diagram of ARN is shown in Fig. 1. After an input sig-
nal is chunked into overlapping frames, all frames are projected
into a latent representation of size N by a linear layer. Then the
representations are processed by four consecutive ARN blocks.
Finally, another linear layer projects the output of the last ARN
block back to size L. The enhanced speech is finally computed
using the overlap-and-add (OLA) method.

M×1

Noisy 
Speech

To 
Frames

Linear 
Layer ARN

×4

T×L T×N T×N

Linear 
Layer OLA

T×L M×1

Enhanced 
Speech

Figure 1: Diagram of ARN. M , L, and T denote the number of
samples of an input signal, frame length, and the total number
of frames, respectively.

2.3. Conformer-based Acoustic Model

We utilize the Conformer-based AM [11] as the backend in the
proposed system. It is built upon a wide residual BLSTM net-
work (WRBN) (see [4]). The Conformer-based AM is shown to
outperform WRBN on the CHiME-4 single-channel track [11].
The system architecture of the Conformer-based AM is shown
in Fig. 2, where FFN denotes a feedforward network.
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Figure 2: System architecture of Conformer-based AM. B de-
notes the batch size, and T denotes the number of time frames
of the longest utterance in a batch.

The Conformer-based AM takes as input 80-dimensional
mean-normalized log-Mel filterbank features extracted from the
ARN output (or other forms of output), coupled with its delta
and delta-delta features. First, the input is processed by a wide
residual convolutional layer denoted as WRCNN, which passes
the input signal through a convolution layer and uses three resid-
ual blocks to extract representations at different frequency res-
olutions [21]. Afterwards, an utterance-wise batch normaliza-
tion and a linear layer with exponential linear unit (ELU) non-
linearity are utilized to project the signal onto 320 dimensions.
Then a linear layer projects the signal onto the dimension of
multi-head self-attention. After two blocks of the Conformer
encoder with absolute positional encoding, the signal is pro-
jected onto 1024 dimensions, followed by a ReLU (rectified lin-
ear unit) activation and dropout. Finally, a linear layer projects
the signal to the final output of each frame as the posterior prob-
ability for 1965 context-dependent senone states. Then the out-
put is sent to a decoder for final text transcripts.

3. Experimental Setup
3.1. Dataset

Our experiments are conducted on a medium vocabulary track
(track 2) of the CHiME-2 corpus [22]. It is a commonly used
dataset for robust ASR evaluation, which is generated by con-
volving Wall Street Journal (WSJ) clean speech with binau-
ral room impulse responses (BRIRs) and mixing with non-
stationary family home noise [23]. Although the speech ma-
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terials are from the WSJ corpus, due to the BRIRs during the
data generation process [24], the speech alignments are altered,
which makes it infeasible to use WSJ anechoic-clean speech as
the training target for speech enhancement. Therefore, we treat
reverberant-clean speech as the training target for ARN. Two
channels are averaged to produce single-channel speech.

Training data for ARN is generated by randomly mix-
ing 7138 reverberant-clean training utterances (‘reverber-
ated’) from CHiME-2 with noise segments randomly picked
from 10k non-speech sounds from a sound effect li-
brary (http://www.sound-ideas.com) under signal-to-noise ra-
tio (SNR) uniformly distributed in [−7, 0] dB and [0, 10] dB
ranges, with 50% probability for each range to be selected. Val-
idation data is generated by mixing 409 reverberant-clean val-
idation utterances (‘reverberated’) from CHiME-2 with factory
noise from the NOISEX-92 dataset [25] under −6 dB SNR.
Once trained, ARN is tested on reverberant-noisy test data (‘iso-
lated’), which has six SNR levels with each containing 330 ut-
terances.

The default backend in the proposed system is trained and
validated on 7138 and 409 reverberant-clean utterances (‘rever-
berated’) from CHiME-2, respectively. We also train a noise-
dependent backend (i.e. dependent on the CHiME-2 noise)
which is trained and validated on 7138 and 409 reverberant-
noisy utterances (‘isolated’), respectively. Training data for
the noise-independent backend is generated by randomly mix-
ing 7138 reverberant-clean training utterances (‘reverberated’)
with randomly picked 10k noise under the same SNR range as
for ARN training. Training data for the distortion-independent
backend is generated by enhancing the training data for the
noise-independent backend using ARN. The noise-independent
and distortion-independent backends are trained on 157036 ut-
terances in the same way as [4].

3.2. Implementation Details

The sampling rate for all utterances is 16 kHz. All training sam-
ples are generated randomly and dynamically for ARN. We ap-
ply root mean square normalization to noisy mixtures, and clean
speech is scaled to produce a specified SNR level. During train-
ing, the number of samples for each utterance is set to 64000.
Input and output frame size is set to 16 ms with a 2 ms frame
shift. Dimension N for BLSTM is set to 1024. The dropout rate
is set to 0.05 in feedforward blocks. ARN is trained using the
PCM (phase-constrained magnitude) loss [26], which computes
loss for both enhanced speech and noise in the time-frequency
domain. Training over 157036 utterances is considered as one
epoch, and ARN is trained for 100 epochs with batch size 16.
The Adam optimizer [27] is utilized. The learning rate of the
first 33 epochs is fixed to 2e−4 and then exponentially decays
every epoch till the final learning rate of 2e−5. Because STOI
is shown to relate to WER [28], thus we also use validation
STOI as a model selection criterion in addition to validation
PCM loss.

For the backend, the configuration of WRCNN is kept the
same as in [11]. The attention dimension is set to 256. The
kernel size of the 1-D depthwise convolution is set to 16. We
use a learning rate schedule from [29], with 2k warm-up steps
and a learning rate factor k of 100. The Adam optimizer with
β1 = 0.9, β2 = 0.98, and ϵ = 1e−9 is utilized for model train-
ing. The batch size is set to 3 and short utterances are padded
with zeros to match the length of the longest utterance in each
batch. The dropout rate is set to 0.15 for network and atten-
tion weights. All backends are trained for 25 epochs and model

selection is based on the cross-entropy loss on the validation
set. Training labels are 1965 senones in our experiments, and
they are generated as in [16]. For log-Mel feature extraction,
the approach in [4] is applied, and pre-emphasizing, dithering,
and direct current offset removal steps are skipped. A Ham-
ming window is applied to the input waveform for STFT. Then
a small value of e−40 is added to prevent the underflow of loga-
rithmic operation. For the noise-dependent, noise-independent,
and distortion-independent backends, factor k and the num-
ber of warm-up steps pairs are empirically set to {1e4, 5k},
{5e3, 80k}, and {5e3, 80k} respectively for better convergence
and validation cross-entropy. Two distortion-independent back-
ends are trained on the enhanced speech by ARN with mini-
mum PCM validation and maximum STOI validation, denoted
as distortion-independent PCM backend and STOI backend, re-
spectively.

The decoder used in this work is the same as in [16]. AM
outputs are first substracted by the log priors, and then fed to the
decoder, which is based on the CMU pronunciation dictionary
and the official 5k close-vocabulary tri-gram language model.
The decoding beamwidth is set to 13, and lattice beamwidth is
8. The number of active tokens ranges from 200 to 700. Lan-
guage model weights ranging from 4 to 25 are utilized.

4. Evaluation and Comparison Results
4.1. Results on Speech Enhancement

Table 1 presents the speech enhancement results of ARN on the
CHiME-2 corpus in terms of STOI [20] and perceptual evalua-
tion of speech quality (PESQ) [30]. ARN with minimum vali-
dation PCM loss and ARN with maximum validation STOI are
both evaluated. Under −6 dB SNR, ARN with minimum vali-
dation PCM and ARN with maximum validation STOI improve
STOI by 19.64% and 19.57%, and PESQ by 1.27 and 1.29, re-
spectively. ARN with minimum validation PCM outperforms
ARN with maximum validation STOI at all SNR levels except
for PESQ under -6 dB SNR, although the performance differ-
ences between the two models are small. Enhancement results
on CHiME-2 from other baseline models are not available, but
the enhancement comparisons between ARN and other models
are available in [8].

4.2. Results of Acoustic Models Trained on Noisy Speech

Evaluations of ASR performance are presented in Table 2,
where Enhancement Model denotes the frontend enhance-
ment model of the system, and AM Type denotes the type
of training data for the backend. When tested on CHiME-2
reverberant-clean test utterances (‘scaled’), the WERs for the
default backend, noise-dependent backend, noise-independent
backend, distortion-independent PCM backend, and distortion-
independent STOI backend are 2.90%, 4.35%, 3.48%, 4.62%,
and 4.33%, respectively.

We first evaluate and compare AMs trained on noisy
speech. The noise-independent and noise-dependent WRBN
in Table 2 are trained on CHiME-2 clean speech mixed with
10k noise and CHiME-2 noisy speech, respectively [4]. Com-
pared with noise-independent WRBN, our noise-independent
backend achieves reasonably good performance. The noise-
dependent backend outperforms the noise-dependent WRBN by
2.6%, and is the best-performing model. The results demon-
strate the effectiveness of the Conformer-based AM baselines.
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Table 1: Speech enhancement results of different ARN models on CHiME-2. STOI results are in percentage.

Test SNR -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.

ST
O

I Mixture 73.68 77.80 81.34 85.16 88.12 90.93 82.84
Min PCM ARN 93.32 94.44 95.17 96.01 96.50 97.13 95.43
Max STOI ARN 93.25 94.17 94.71 95.35 95.75 96.24 94.91

PE
SQ

Mixture 2.13 2.33 2.49 2.66 2.85 3.04 2.58
Min PCM ARN 3.40 3.50 3.59 3.68 3.75 3.81 3.62
Max STOI ARN 3.42 3.50 3.56 3.64 3.70 3.76 3.60

Table 2: ASR (%WER) results of the proposed system and comparison systems on CHiME-2. Enh. denotes ‘enhanced’.

Model Name Enhancement
Model

AM
Type

SNR Avg.-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB
Mixture - Clean 73.81 64.88 57.59 45.10 36.05 28.54 51.00

Noise-independent WRBN [4] -

Noisy

17.45 13.06 10.69 8.82 7.72 6.63 10.73
Noise-independent backend - 19.82 13.30 10.91 9.25 7.25 6.63 11.19
Noise-dependent WRBN [4] - 14.83 9.98 8.95 6.78 6.26 5.49 8.72

Noise-dependent backend - 14.44 10.33 7.92 6.73 6.03 5.49 8.49
Distortion-independent WRBN [4] GRN Enh. Speech 15.45 11.04 9.70 7.10 6.54 5.51 9.22

Distortion-independent WRBN [14] GRN Enh. Feature 13.11 9.43 7.92 6.20 5.45 4.54 7.78
Perceptual loss based [15] Wide ResNet

Clean
15.2 10.9 8.3 6.7 5.8 5.2 8.7

Proposed Min PCM ARN 13.30 9.66 7.83 6.41 5.25 4.60 7.84
Proposed Max STOI ARN 9.94 7.04 6.50 5.45 4.54 4.22 6.28

Noise-independent backend Min PCM ARN

Noisy

12.93 9.14 8.28 6.65 5.53 4.86 7.90
Max STOI ARN 9.62 7.34 6.78 5.45 4.84 4.46 6.42

Noise-dependent backend Min PCM ARN 12.54 9.25 8.29 6.73 6.15 5.87 8.14
Max STOI ARN 9.73 7.40 7.23 6.41 5.16 5.23 6.86

Distortion-independent PCM backend Min PCM ARN

Enh. Speech

10.14 7.98 7.29 6.28 5.94 5.51 7.19
Max STOI ARN 8.84 6.89 6.50 6.13 5.57 5.29 6.54

Distortion-independent STOI backend Min PCM ARN 10.61 8.22 7.36 6.35 5.98 5.32 7.31
Max STOI ARN 8.05 6.63 6.39 5.87 5.21 4.78 6.16

4.3. Results of the Proposed System

We next evaluate the proposed system and compare it with other
systems that incorporate speech enhancement. One system is
WRBN trained on GRN (gated residual network) [31] enhanced
speech [4], and the other is WRBN trained on GRN enhanced
magnitude spectra [14]. A perceptual loss based model [15]
is also included, and it employs a Wide ResNet trained with
a perceptual loss as the frontend and its backend uses an off-
the-shelf Kaldi CHiME-2 recipe. The proposed system with
the ARN selected using minimum validation PCM achieves
7.84% WER on average, which is close to the previous best
7.78% from distortion-independent WRBN with enhanced fea-
tures [14]. The proposed system with the ARN selected using
maximum validation STOI achieves 6.28% WER, which out-
performs the previous best by 19.3% relatively. Switching the
model selection criterion for ARN reduces WER from 7.84%
to 6.28%, corresponding to a relative improvement of 19.9%.
This suggests that maximum validation STOI is a strong option
for speech enhancement model selection when tested on down-
stream ASR tasks. Results from the proposed system demon-
strate that speech enhancement advances translate to improved
ASR results. In this way, the divide between speech enhance-
ment and ASR is eliminated by the use of ARN speech enhance-
ment.

4.4. Results of ARN on Other Acoustic Models

We finally test ARN enhanced speech on the noise-independent,
noise-dependent, and distortion-independent backends for com-
prehensive comparisons. The WER results are given in the
bottom parts of Table 2. Tested on ARN enhanced speech,
WERs of noise-independent and noise-dependent backends are
consistently reduced in comparison to those tested on noisy
speech directly. With ARN selected using maximum validation
STOI, the WER results for the noise-independent and noise-

dependent backends are improved by 42.6% and 19.2% respec-
tively over the corresponding results on noisy speech (see Ta-
ble 2). The improvements show that ARN enhanced speech
can benefit not only AM trained on clean speech only but also
AM trained on noisy speech. With ARN enhanced speech as
the input, even though ASR performances get improved for
AMs trained on noisy speech, the proposed system with AM
trained on clean speech still outperforms both baselines. Com-
pared with distortion-independent backends, the proposed sys-
tem achieves comparable performance with the 6.16% WER
from STOI backend tested on matched ARN enhanced speech,
and outperforms at SNR higher than 0 dB. This further demon-
strates the utility of the proposed system that fully decouples the
enhancement frontend and the backend trained on clean speech
only.

5. Concluding Remarks
This study aims to eliminate the divide between speech en-
hancement and ASR. The time-domain enhancement model of
ARN is employed as the frontend to a Conformer-based AM
trained on clean speech only. The proposed system fully decou-
ples speech enhancement and ASR. Results on the CHiME-2
corpus show that better speech enhancement translates to im-
proved ASR results. The proposed system achieves 6.28%
WER on the CHiME-2 corpus, outperforming the previous best
by 19.3% relatively. Future work includes conducting more ex-
periments on other corpora, applying ARN to other ASR tasks
such as continuous speech separation, and extending to multi-
channel robust ASR tasks.
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