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ABSTRACT

Self-supervised learning has been successfully applied to various
speech recognition and understanding tasks. However, for genera-
tive tasks such as speech enhancement and speech separation, most
self-supervised speech representations did not show substantial
improvements. To deal with this problem, in this paper, we pro-
pose data2vec-SG (Speech Generation), which is a teacher-student
learning framework that addresses speech generation tasks. Our
data2vec-SG introduces a reconstruction module into data2vec [1]
and enforces the representations to contain not only the semantic in-
formation but also the acoustic knowledge to generate clean speech
waveforms. Experimental results demonstrate that the proposed
framework boosts the performance of various speech generation
tasks including speech enhancement, speech separation, and packet
loss concealment. Meanwhile, the learned representation is also
capable of helping other downstream tasks, which is demonstrated
by the good performance in the speech recognition task in both clean
and noisy conditions.

Index Terms— self-supervised learning, speech enhancement,
speech separation, packet loss concealment, automatic speech recog-
nition

1. INTRODUCTION

Self-supervised learning (SSL) has achieved massive success across
many research fields including language, vision, and speech. It
leverages a large amount of data without human annotations and
learns a universal representation that is beneficial for various down-
stream tasks. In the field of speech, existing SSL methods can be
categorized into several groups, including auto-regressive methods
like APC [2], generative tasks like TERA [3]. Also, discriminative
methods like wav2vec2.0 [4], Hubert [5], Unispeech-SAT [6] and
WavLM [7]. Specifically, by leveraging large-scale pre-training, we
expect to obtain a representation that is more effective for down-
stream training compared with adopting waveform or spectrogram
features directly extracted from the input. For the automatic speech
recognition (ASR) task, with a very limited amount of labeled data
(10 minutes), SSL-based representations can still achieve remark-
able word error rate (WER) performance.

However, even with the significant performance improvement
for numerous tasks, SSL-based representations do not exert a clear
advantage for generative tasks such as speech separation and speech
enhancement. On the Speech processing Universal PERformance
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Benchmark for Semantic and Generative Capabilities (SUPERB-
SG) [8], compared with the simple mel-filterbank (FBANK) fea-
tures, many SSL representations even perform worse in terms of
both short-time objective intelligibility (STOI) [9] and perceptual
evaluation of speech quality (PESQ) [10]. For a few advanced
SSL models, the benefit of employing pre-trained representations
is marginal. This relative improvement is much smaller than the
performance gain we observed in other non-generative tasks. The
purpose of this study is to fill this gap and explores improving the
generative capability of existing SSL methods.

There have been studies that aim to improve the speech enhance-
ment performance of pre-trained speech representations. Hang et al.
[11] first systematically evaluated the effectiveness of 13 SSL rep-
resentations for speech enhancement and separation. Through a de-
noising mask prediction task, they conclude that only some of tested
SSL representations (wav2vec2 [4], Unispeech-SAT [6], Hubert [5],
WavLM [7]) outperform the FBANK features, and the authors claim
that the information that is required for clean speech reconstruction
might be lost in deeper layers of SSL models. Hung et al. [12] pro-
posed to include incorporating the logarithm spectrogram along with
the SSL representations and fine-tuning the upstream model with the
enhancement network to compensate for the information loss of the
learned representations. Kataria et al. [13] compared representation
from various models for speech enhancement and observed a better
performance from classifier-based embedding (acoustic event classi-
fier) over SSL models [4, 14].

In this paper, we propose data2vec-SG, an SSL framework
based on data2vec [1] that specially focuses on the improvement
of speech generation downstream tasks. On top of the teacher-
student-based training objective used in data2vec, we introduce an
additional reconstruction module and a reconstruction loss that en-
forces the learned representations to contain enough information
to reconstruct the clean speech waveforms given noisy masked in-
put. The generative performance of our proposed SSL framework
is tested for three downstream tasks; speech enhancement, speech
separation and packet loss concealment. Experimental results on
all three tasks show improved performance over the baselines. The
major contribution can be summarized as two-fold:

1. We develop data2vec-SG that shows better performance on
speech generation downstream tasks, which has been tested
for speech enhancement, speech separation and packet loss
concealment.

2. The proposed SSL representation is still capable of helping
other downstream tasks. Experiments on ASR show that the
learned representations show significant WER improvementIC
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in noisy conditions while maintaining the performance in
clean conditions.

2. DATA2VEC-SG

Before explaining our proposed framework, we briefly introduce
data2vec [1], which is used as a basis of our proposed framework. In
data2vec, a teacher network and a student network that have exactly
the same model architecture are co-optimized with unlabeled data.
While the teacher network can access to the complete input, the stu-
dent network can access to only the partially masked input. During
the training, the student network is optimized to predict the teacher’s
representations of the full input data given the masked input data.
The teacher’s parameters are updated by computing the exponential
average of the student’s parameters.

Our proposed framework, named data2vec-SG, is developed
based on the teacher-student architecture of data2vec. The overview
of data2vec-SG is illustrated in Fig. 1. There are two major differ-
ences from the data2vec. Firstly, we conduct online noise mixing
for the speech input. More specifically, we feed noisy speech signals
to the teacher network while feeding masked noisy speech to the
student network. Secondly, we add a decoder on top of both net-
works, where the decoder performs clean waveform reconstruction
based on the contextualized representations1. The decoder is used
only for pre-training, and it is discarded in the fine-tuning stage.
The parameter of the decoder is shared between teacher and student
networks, which we found slightly better compared to the model us-
ing different parameters for teacher’s and student’s decoders. In our
implementation, the decoder consists of a three-layer transformer
followed by a convolutional upsampler. The upsampler is symmetric
to the convolutional layer at the bottom of the shared encoder such
that the reconstructed output has the same length as the original
input waveform. The contextualized representations obtained from
the teacher and student networks are separately fed to the decoder.

During the training, similar to data2vec, the parameters of the
teacher network are updated in each training step by calculating the
exponential moving average of the parameters of the student net-
work,

θt ← γθt + (1− γ)θs, (1)

where θt and θs are the trainable parameters in the teacher and
student networks, respectively. The weight γ is linearly increased
for each update until it reaches the pre-determined maximum value.
This scheduling strategy makes sure the teacher gets updated more
frequently at the beginning of the training, and less frequently after
a while when the training is more stable and the parameters are less
randomized. For updating the student network, we adopt the Smooth
L1 loss proposed for data2vec,

Ll1 =

{
1
2
(z(τ)− f(τ))2/β if|z(τ)− f(τ)| ≤ β

|z(τ)− f(τ))| − 1
2
β otherwise

(2)

where z(τ) is the average of the normalized output of top K layers
of the teacher network at time step τ , and f(τ) is the corresponding
model prediction obtained from the student network. The parameter
β is set to 1.0 such that the loss is less sensitive to outliers. In addi-

1Contextualized representations here refer to the normalized top-K layers
of the teacher network. This term also refers to the prediction of the student
network (the last layer output), as it learns to predict contextualized repre-
sentations

Fig. 1: The overview of data2vec-SG.

tion to Ll1, we add a reconstruction loss Lrec defined as follows.

Lrec =
1

T

T∑
τ=1

(|ŷt(τ)− y(τ)|+ |ŷs(τ)− y(τ)|), (3)

where L1 loss is computed for the reconstructed waveform obtained
from the teacher network ŷt, the reconstructed waveform obtained
from the student network ŷs, and the clean waveform y. The total
number of time steps is denoted as T . The complete training ob-
jective of data2vec-SG is calculated as L = Ll1 + λLrec. For the
stability of the training, we set λ = 0.1 for the first 50k iterations of
the training, and then change it to 0.01.

3. EXPERIMENTS

3.1. Pre-training configuration

Our implementation is based on the official release of data2vec from
FAIRSEQ [15]. We follow the Base configurations where the 960
hours of Librispeech [16] dataset is used to train the model. Our
model has 95M trainable parameters for the encoder part, which is
consistent with the data2vec Base architecture. The shared decoder
has 23M parameters, containing 3 transformer blocks with a hidden
dimension of 768, and only 1 attention head to reduce memory us-
age. The model is optimized with the Adam optimizer with a peak
learning rate of 5e-4. A tri-stage scheduler is employed such that the
learning rate is warmed up for the first 3% iterations, held for 90%
of the updates and linearly decayed for the remaining part. For the
noise mixing, noise files are randomly sampled from the noise set
used in the deep noise suppression (DNS) challenge [17]. For each
utterance, we mix the clean utterance with a noise file that is pro-
cessed to be of the same length at an signal-to-noise ration (SNR)
that is uniformly sampled from the range of [5, 20] dB.

3.2. Fine-tuning for generative tasks
For the fine-tuning stage, we discard the decoder module, and only
use the student network for the feature extractor. Depending on the
specific task, we either use the output of the last layer or the weighted
average of all layers. In terms of the downstream tasks, we mainly
focus on three generative tasks, speech enhancement, speech separa-
tion, and packet loss concealment.
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Table 1: SE performance on the SUPERB-SG benchmark.

Model STOI (↑) PESQ (↑)

No SE baseline 0.9120 1.971
FBANK 0.9364 2.553
wav2vec2 Base 0.9383 2.556
Hubert Base 0.9390 2.576
WavLM Base 0.9395 2.578
data2vec Base 0.9388 2.571
data2vec-SG Base 0.9401 2.587

Table 2: Ablation study of the proposed framework on the SE task
of the SUPERB-SG benchmark.

Model STOI (↑) PESQ (↑)

data2vec-SG Base 0.9401 2.587
- (decoder parameter sharing) 0.9395 2.587
- (teacher reconstruction loss) 0.9393 2.584
- (adding noisy input for teacher) 0.9359 2.579

3.2.1. Speech enhancement
Speech enhancement (SE) aims to suppress the background noise
from noisy speech. We have two setups for this task. The first setup
follows the SE tasks in the SUPERB-SG benchmark [8], where we
train and evaluate using the Voicebank-DEMAND [18] corpus. It is
a benchmark dataset for comparing enhancement models, and con-
tains 8.8, 0.6 and 0.6 hours of speech utterances for training, valida-
tion and testing, respectively. The fine-tuning of SE is conducted by
employing a simple three-layer bidirectional long-short term mem-
ory (BLSTM) network that performs mask-based speech enhance-
ment [19]. The SE performance is evaluated using STOI and PESQ.
For both metrics, a higher value indicates a better SE performance.

Table 1 displays the results on the SE tasks of the SUPERB-SG
benchmark. We use the last layer’s output of the student network
for the input feature of BLSTM-based SS model. For the fairness of
comparison, all SSL-based models have roughly the same number of
model parameters and pre-trained with the same 960 hours of Lib-
rispeech, as known as the Base configuration. As illustrated in the
table, data2vec-SG shows a noticeable improvement in both STOI
and PESQ compared to the original data2vec, where STOI is im-
proved by 0.13% and PESQ is improved by 0.016, respectively. As
a result, data2vec-SG achieves considerable improvement over the
FBANK features, producing better results than the state-of-the-art
SSL model WavLM.

We also examine several variants of data2vec-SG as an abla-
tion study, whose results are presented in Table 2. The results on
the 2nd row are obtained by using separate decoder parameters for
the teacher and student instead of sharing the parameters of teacher’s
and students’ decoders. The results on the 3rd row are obtained when
we stop using the reconstruction loss over the teacher network. Fi-
nally, the results on the 4th row are obtained when we feed different
inputs for teacher and student networks. Specifically, we feed the
teacher network less noisy input by mixing the speech and noise
with a higher SNR than that is used for the input of the student net-
work within the range of [5, 20] dB. From these results, we confirm
the effectiveness of the proposed model and data configuration for
both STOI and PESQ.

Based on the promising results from the SUPERB-SG tasks,
we then train and evaluate the proposed data2vec-SG with the sec-
ond setup, which follows conventional SE configurations. We adopt
the speech data and noises from the DNS challenge [20], where
much larger fine-tuning data with a more sophisticated SE model

Fig. 2: The diagram illustrates the fine-tuning pipeline of SE task on
the DNS dataset.

architecture are utilized. Here, we use a relatively large dataset
read speech subset extracted from the DNS challenge for fine-
tuning, which consists of around 550 hours of clean speech. In this
experiment, we use the deep complex convolutional recurrent net-
work (DCCRN) [21], which is a widely used lightweight but effec-
tive complex domain SE network. Unlike the SUPERB-SG setup
that directly employs the SSL features to perform the SE task, we
feed the learned representation to the bottleneck part of DCCRN. As
illustrated in Fig. 2, the feature maps are concatenated with the SSL
representations and then fed to the bottleneck layers. We employ
the weighted sum of outputs from transformer layers of the student
network as the SSL representation.

Table 3 shows the SE results on the DNS challenge 3 synthetic
testing utterances (with no reverberation) [17]. For a more detailed
analysis, we mix the clean utterances with two types of noises, fac-
tory noise (stationary) and babble noise (non-stationary) from the
NOISEX-92 dataset [22] at two SNR levels 0 dB and 5 dB. Our re-
sults suggest that the proposed model outperforms WavLM Base and
data2vec Base for both noise types at various SNR levels. The ad-
vantage is more obvious at the lower SNR. Specifically, compared
with the original data2vec model, at 0 dB SNR factory noise, STOI
is improved by around 1.26%, and PESQ by 0.046.

3.2.2. Speech separation

Speech separation (SS) is a task to convert multi-speaker-mixed
speech signal into multiple overlap-free speech signals. In this
study, we follow the two-speaker SS task in the SUPERB-SG bench-
mark. The experiment is conducted on the 16 kHz version of the
Libri2Mix dataset, which is simulated by mixing the utterances of
the Librispeech [16]. We focus on the mix clean condition and
each utterance contains 2 speakers. A 3-layer BLSTM model with
a dimension of 896 for each direction is employed to perform the
masking-based SS. We feed the last layer’s output of the SSL models
as an input feature to the BLSTM-based SS model. Permutation in-
variant training (PIT) [23] is adopted to calculate the mean-squared
loss determined by the difference between the predicted mask and
the ideal Non-negative Phase Sensitive Mask [19]. The separation
performance is assessed by the scale-invariant signal-to-distortion
ratio (SI-SDR) [24], and we display the results using the SI-SDR
improvement (SI-SDRi) over the non-processed speech mixtures.

The result is presented in Table 4. With obvious improvement
over the data2vec Base, we also find it outperforms WavLM. The SI-

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2023 at 15:57:46 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: SE performance on the synthetic testing utterances of the DNS challenge dataset.

Factory noise Babble noise

0 dB 5 dB 0 dB 5 dB

Model STOI (↑) PESQ (↑) STOI (↑) PESQ (↑) STOI (↑) PESQ (↑) STOI (↑) PESQ (↑)

No SE baseline 0.7033 1.0542 0.8222 1.1090 0.7085 1.0869 0.8299 1.1802
WavLM Base 0.8386 1.3604 0.9159 1.7802 0.8383 1.3734 0.9234 1.8688
data2vec Base 0.8375 1.3581 0.9153 1.7690 0.8356 1.3622 0.9214 1.8462
data2vec-SG Base 0.8501 1.4037 0.9216 1.8417 0.8504 1.4149 0.9285 1.9185

Table 4: SS performance on the SUPERB-SG benchmark.

Model SI-SDRi (↑)

No SS baseline -
FBANK 9.23
WavLM Base 10.37
data2vec Base 9.76
data2vec-SG Base 10.80

Table 5: PLC performance on the PLC challenge test dataset.

Model PLC-MOS (↑)

Zero-filling baseline 2.90
FBANK 3.78
WavLM Base 3.83
data2vec Base 3.81
data2vec-SG Base 3.88

SDRi is 1.04 dB over the original data2vec, and 0.43 dB compared
with WavLM Base. It is worth noting that WavLM Base incorpo-
rates speaker overlap in 20% of the training utterances during the
pre-training stage, while we did not. We also found that if we per-
form speaker overlap, the SI-SDRi improves by 0.47 dB, but with a
sacrifice in the speech enhancement performance.

3.2.3. Packet loss concealment

During signal transmission, it is unavoidable some packets are lost
or arrive too late, and packet loss concealment (PLC) is employed
to restore the lost packets and enables a more robust transmission
system. For this downstream task, we adopt the experimental setup
of the INTERSPEECH 2022 Audio Deep Packet Loss Concealment
challenge2 to evaluate the PLC performance. For fine-tuning, we
conduct experiments on the dataset provided in the challenge, which
contains 23184, 966 and 966 utterances for training, validation, and
testing, respectively. The dataset is constructed using actual packet
loss traces collected in Microsoft Teams to randomly chosen seg-
ments of audio from a podcast dataset [25]. We adopt the E3Net
[26] as the backbone to perform PLC, and the pipeline of incorpo-
rating SSL representations is similar to the settings depicted in Fig.
2. Specifically, we insert SSL representations before the LSTM bot-
tlenecks and concatenate them with the feature maps obtained from
convolutional encoder. The final performance is evaluated using the
PLC-MOS3, which is the neural network-based estimator of human
ratings.

We again observe the performance advantage of data2vec-SG,
which is illustrated in Table 5. As shown in the table, incorporating

2https://github.com/microsoft/PLC-Challenge
3https://github.com/microsoft/PLC-Challenge/tree/main/PLCMOS

Table 6: ASR performance on both clean and noisy LibriSpeech.

Clean WER (↓) Noisy WER (↓)
Model test-clean test-other test-clean test-other

data2vec Base 2.8 6.8 37.9 55.3
data2vec-SG Base 3.0 7.0 15.5 30.0

SSL baselines all show clear improvement over the FBANK features.
We observe a similar trend as we observe in the SE and SS tasks,
where data2vec-SG shows a clear advantage over WavLM Base and
data2vec Base. Specifically, the PLC-MOS is improved over 0.11
compared with WavLM.

3.3. Fine-tuning for ASR task
We also conduct clean and noisy ASR evaluations to demonstrate
the generalization capability of the proposed representation for non-
speech-generation downstream tasks. The fine-tuning regime fol-
lows the setup of wav2vec2.0, where a linear adaption layer is added
over the learned representations to produce character predictions.
We use the 100-hour subset of the Libri-light corpus [27] as the la-
beled data to fine-tune the model with connectionist temporal classi-
fication (CTC) loss. During the evaluation, a 4-gram language model
[28] trained on LibriSpeech is applied with a beam size of 1500. The
word error rate (WER) results are reported for both clean and noisy
conditions using two subsets (test-clean and test-other)
from Librispeech. The noisy speech for evaluation is simulated by
mixing the clean utterances with noises extracted from the MUSAN
corpus [29] at an SNR randomly sampled from [5, 20] dB.

As shown in Table 6, compared with the original data2vec, the
WER performance is similar on the clean conditions, and we observe
0.2% absolute WER degradation on the test-clean subset. This
result demonstrates the effectiveness of our approach to improving
noise robustness of the learned representation without sacrificing the
capabilities of clean speech.

4. CONCLUSION
In this paper, we proposed data2vec-SG which specially focuses on
the improvement of speech generation downstream tasks. On top
of the teacher-student learning framework proposed in data2vec, we
added a reconstruction module that enforces the representations to
contain enough information to generate clean speech waveforms.
Experimental results showed that our proposed model achieved
better performance on generative tasks like speech enhancement,
speech separation, and packet loss concealment. Meanwhile, the
representation still generalized well to other tasks. For instance, it
benefited ASR and shows good WER results in both clean and noisy
conditions. For future work, we plan to leverage both labeled and
unlabeled noisy speech during the pre-training stage, such that we
can relax the constraint that the clean speech label is required.
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