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Bridging the Gap Between Monaural Speech
Enhancement and Recognition With
Distortion-Independent Acoustic Modeling

Peidong Wang ", Student Member, IEEE, Ke Tan

Abstract—Monaural speech enhancement has made dramatic
advances since the introduction of deep learning a few years ago.
Although enhanced speech has been demonstrated to have better
intelligibility and quality for human listeners, feeding it directly
to automatic speech recognition (ASR) systems trained with noisy
speech has not produced expected improvements in ASR perfor-
mance. The lack of an enhancement benefit on recognition, or the
gap between monaural speech enhancement and recognition, is of-
ten attributed to speech distortions introduced in the enhancement
process. In this article, we analyze the distortion problem, compare
different acoustic models, and investigate a distortion-independent
training scheme for monaural speech recognition. Experimental
results suggest that distortion-independent acoustic modeling is
able to overcome the distortion problem. Such an acoustic model
can also work with speech enhancement models different from the
one used during training. Moreover, the models investigated in this
paper outperform the previous best system on the CHiME-2 corpus.

Index Terms—Speech enhancement, speech recognition, speech
distortion, distortion-independent acoustic modeling.

1. INTRODUCTION

ORMULATED as a supervised learning problem, speech
F enhancement has made major progress over the last few
years with the use of data driven methods, particularly deep
learning. Wang and Wang [31], [32] first introduced deep neural
networks (DNNs) to perform time-frequency (T-F) masking
for speech enhancement. Lu er al. and Xu et al. used a deep
autoencoder (DAE) or DNN to map from the power spectrum
of noisy speech to that of clean speech [14], [36], [37]. Many
subsequent studies have been conducted to perform T-F masking
or spectral mapping by employing a variety of deep learning
models, acoustic features, and training targets [9], [13], [20],
[34], [35], [38]. These studies have elevated the performance of
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speech enhancement by a large margin [26]. DNN-based monau-
ral speech enhancement has improved, for the first time, the
intelligibility of noisy speech for human listeners with hearing
impairment as well as those with normal hearing [10], [12], [26].
Along with the progress in speech enhancement, re-
searchers have investigated using speech enhancement models
as frontends for automatic speech recognition (ASR) systems.
Narayanan et al. [18], [19] proposed to combine masking-based
DNN speech enhancement with speech recognition. With a
Gaussian mixture model (GMM) as backend, the enhancement
frontend was shown to reduce word error rate (WER) signifi-
cantly [18]. In a subsequent paper using DNN as backend, the
benefit of speech enhancement is mixed, depending on training
features [19]. For the acoustic model trained with cepstral fea-
tures, speech enhancement still helps. With log-Mel features,
however, the enhancement frontend causes performance degra-
dation. Du et al. [4] applied mapping-based frontends to both
GMM and DNN based recognition backends. Their observations
are basically in line with those of Narayanan et al. The only
difference is that their enhancement frontend can yield im-
provements on clean, noisy, and clean plus channel-mismatched
conditions for the DNN acoustic model trained with noisy
speech. In the fourth CHiME speech separation and recogni-
tion challenge (CHiME-4), Heymann et al. [11] noted that the
harm of processing artifacts introduced during enhancement
may outweigh the benefit brought by noise reduction. Based on
these studies as well as our own attempts in applying monaural
speech enhancement as a frontend for speech recognition on
CHiME-4 corpus, the distortion to speech signals introduced
in monaural speech enhancement is a major problem that can
render enhancement useless or even harmful for robust ASR.
One way to alleviate the distortion problem is to reduce or
eliminate speech distortions in enhancement frontends. Most
papers in this direction use ASR information to guide speech
enhancement model training. Erdogan et al. [6], [34] proposed
to use the alignment information derived from decoded hidden
Markov model (HMM) states. The mimic loss based method [1],
[21] proposed by Bagchi et al. jointly trains enhancement fron-
tends and recognition backends. It uses senone labels directly
as the training target. Experimental results showed that such
enhancement frontends can be effectively used with off-the-shelf
ASR models in Kaldi [22] on the second CHiME speech separa-
tion and recognition corpus (CHiME-2). In Meng et al.’s study
on applying adversarial training for speech enhancement [15],
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senone level loss was also incorporated for better ASR perfor-
mance. Gao et al. [8] proposed a progressive speech enhance-
ment training scheme. It fine-tunes enhancement models in a
multitask manner. Instead of using clean speech as the only
target of the output layer, they add multiple layers in DNN
treating speech with progressively decreased signal-to-noise
ratios (SNRs) as labels. This way, the enhancement model is
trained to reduce noise gradually, as well as the distortion in
the output layer. Meng et al. [16] proposed cycle-consistent
training for speech enhancement. It optimizes the noisy-to-clean
mapping and a clean-to-noisy mapping simultaneously.

In addition to pursuing distortion reduction in speech en-
hancement models, designing more distortion tolerant acoustic
model backends may be another direction. The joint training
of speech enhancement frontends and ASR backends [4], [7],
[33] would belong to this category. Acoustic model training
using enhanced speech directly as acoustic model input has
been explored in many previous studies [15], [16]. Distortion-
independent acoustic modeling in our study differs from these
methods in that we use a large variety of enhanced speech during
training. Previous research in speech enhancement field shows
that DNNSs trained using a variety of noises have the ability to
generalize to new noisy conditions [3]. A recent study performed
by Narayanan et al. [17] investigated the generalization ability of
acoustic models trained with various out-of-domain data (noises,
bandwidths, codecs, and features). Their observation is that,
through large-scale training, such acoustic models perform as
well as acoustic models trained with in-domain data.

In this study, we investigate distortion tolerant acoustic model
backends. In the context of the previous work that trains an
acoustic model on enhanced speech, our study makes the fol-
lowing contributions. First, we analyze the distortion problem
and view it as a noise mismatch between training and testing.
After comparing six acoustic models, we find that the distortion-
independent acoustic model, trained with a large variety of
enhanced speech, is able to overcome the distortion problem.
Second, we demonstrate that distortion-independent acoustic
modeling can work with DNN based supervised speech enhance-
ment frontends that are different from the one used in training.
This is important for real-world applications as acoustic model
retraining can thus be avoided when a different enhancement
frontend is used. Distortion-independent training also allows
distortion tolerant ASR backends and speech enhancement fron-
tends to be trained separately. Finally, as a byproduct of this
investigation, we advance the state-of-the-art performance on
the CHiME-2 corpus.

Some preliminary results are presented in [27]. This paper
expands [27] in several ways. First, we investigate the distortion-
independent acoustic model on not only CHiME-2 but also Wall
Street Journal (WSJ). Second, we add the noise-mismatched
acoustic model and a joint-training based model as baseline
systems. Finally, we evaluate the distortion-independent acous-
tic model on a minimum-mean square error (MMSE) based
frontend.

The rest of this paper is organized as follows. Section II
gives an analysis of the distortion problem, an explanation of
distortion-independent acoustic modeling, and a description of

utterance-wise recurrent dropout for acoustic model training.
Sections III and IV present the experiment setup and results,
respectively. We make concluding remarks in Section V.

II. SYSTEM DESCRIPTION
A. An Analysis on the Distortion Problem

The distortion in this study refers to the alteration to
clean speech signal introduced by speech enhancement that
may cause performance degradation in an ASR system. More
specifically, this paper tackles with the distortion problem of
noise-independent speech enhancement. The input to a speech
enhancement system is generated by mixing clean speech with
an additive noise, as shown below:

y=s+tn ey

where y denotes noisy speech, s clean speech, and n an additive
noise.

The frequency domain representation of Eq. (1) can be written
as (2) below:

Y =8+4N 2)

where Y, S, and N are the spectral representations of noisy
speech, clean speech, and additive noise, respectively.

Speech enhancement typically operates on the magnitudes
of frequency domain representations. Masking-based models
generate a T-F mask, which is then element-wise multiplied with
the magnitude of Y,

IS|=|Y|@M=|S+N|oM )

where | - | denotes magnitude, ® element-wise multiplication,
S enhanced speech, and M mask.

Depending on the T-F mask definition, M is typically a real-
valued matrix with element values ranging from zero to one, e.g.
the IRM [30]. For such masks, (3) can be written as below:

IS|=|S+N@M=|S®M+ N M| (4)
Thus, we have
IS|=|S+S®(M—A)+N® M| (5)

where A is an all-one matrix.
The distortion for ASR backends can be defined as:

D=S@M-A+NIM=NM-S@M (6)

where M denotes the complement of M.

There are two special cases of D. First, if M is an all-one
matrix, speech enhancement has no impact on noisy speech.
The influence of S on D can also be ignored. Second, let us
consider the case when M equals the IRM defined below:

|51

IRM = ———
ST+ V]

(7
In this case, D will be an all-zero matrix, and the distortion
problem does not exist.
Other than the two cases above, the influence of S cannot be
ignored and the second term in (6), i.e. N ® M, can be viewed
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Fig. 1. Tllustration of the signal distortion problem. (a) The polar coordinate
system. (b) Clean, noisy, and enhanced speech.

as noise residue, which is different from /N. Due to this residue,
distortion is different from noise V.

Fig. 1 shows the deviation of D from /V in an intuitive way.
In this figure, spectral representations of different signals are
plotted in a polar coordinate system. The center of the coordinate
system denotes clean speech S. The distance between clean
speech S and noisy speech Y indicates the intensity of noise, and
the angle between SY and a predetermined axis indicates noise
type IV. Fig. 1(a) shows S and its mixture with NV, and Fig. 1(b)
illustrates the relative positions of Y and enhanced speech S.

As is shown in Fig. 1(b), compared with Y, S is typically
closer to \S. This corresponds to the observation that the SNR of
enhanced speech is typically higher than that of noisy speech.
In fact, many enhancement models are explicitly designed to
elevate the SNR.

Along with the shorter distance to S, enhanced speech S may
deviate from line SY'. Such a noise mismatch between Y and S
may degrade the performance of ASR systems trained only on
Y. This may be the main cause of the distortion problem. In fact,
for two utterances mixed with the same kind of noise at different
SNRs, experimental results suggest that the one with higher
SNR typically yield higher recognition performance. Note that,
because of the similarity of masking-based and mapping-based
speech enhancement in terms of distortion, the analysis above
is expected to be valid for mapping-based systems as well.

B. Distortion-Independent Acoustic Modeling

For ASR backends trained on noisy speech and evaluated on
enhanced speech, the input data for training and evaluation can
be expressed as (8) and (9), respectively,

Yir| = |Ser + New (8)
|Seval| = |Seval + Deval| (9)

where Deyar = Neval @ Mepar — Se'ual ® Meyal- Subscripts tr
and eval denote training and evaluation, respectively. Y3, S,
and N, are the spectral representations of noisy speech, clean
speech, and additive noise in training, respectively. Separ is the

enhanced speech in evaluation. D.,,; denotes the distortion in
enhanced speech and M., the T-F mask in evaluation.

Based on our analysis in the previous subsection, the mis-
match between Ny, and D, is the cause of the distortion prob-
lem given the consistency of Sy, and Se,,4;. The use of enhanced
speech in both training and evaluation can be viewed as a way to
reduce the mismatch [15], [16]. In speech recognition corpora
such as Aurora and CHiME series, only a limited number of
noises are provided for training. In addition, noise types are
shared between training and evaluation on these corpora. ASR
systems trained with such noisy speech may not perform well
on enhanced speech, which contains mismatched interference
D.,q1- Moreover, same noise types between training and evalu-
ation give an advantage to unenhanced evaluation data. This is
likely a main reason why speech enhancement does not improve
recognition performance on these tasks.

To alleviate the distortion problem, Ny, can be modified in
two ways. If we view D.,q; as a special type of additive noise,
a straightforward way is to increase the scope of N... Since
this strategy typically uses a large variety of additive noises to
train acoustic models, we denote it noise-independent acoustic
modeling. An advantage of noise-independent training is that its
efficacy is notinfluenced by speech enhancement frontends. This
acoustic modeling strategy, however, does not account for the
fact that additive noises may differ significantly from distortions.
Another strategy to alleviate the distortion problem is to train
the acoustic model directly with enhanced speech, i.e.,

S| = Sty + Dy (10)

where S, denotes enhanced training speech and Dy, refers to
the distortion in it.

We investigate a distortion-independent acoustic modeling
method based on (10). The training set consists of a large variety
of enhanced speech generated by a single well-trained speech
enhancement frontend. The input to the speech enhancement
model is noisy speech with various types of additive noise.
An advantage of distortion-independent acoustic modeling is
that Dy, in enhanced training speech is similar to D,,,; during
evaluation. The main concern is its generalization ability to other
speech enhancement frontends. Since most supervised speech
enhancement models can be viewed as nonlinear mapping from
noisy speech to clean speech, distortion-independent acoustic
model may be able to work with speech enhancement frontends
different from the frontend used for training.

Fig. 2 illustrates distortion-independent acoustic modeling.
The left diagram depicts the training stage and the right one
testing. In the right diagram, speech enhancement blocks with
dashed lines denote those not used during training. In this
study, we evaluate three existing DNN based supervised speech
enhancement models: gated residual network (GRN) [23],
LSTM [2], and convolutional recurrent network (CRN) [24].
We also add the IRM as another enhancement frontend and
a conventional MMSE based model [5]. The switch in the right
diagram denotes the coupling between a distortion-independent
acoustic model and various enhancement frontends.
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C. Types of Acoustic Models

In addition to noise-independent and distortion-independent
acoustic models, we investigate four other types of acoustic
models: clean, noise-dependent, noise-mismatched, and joint
training based. The clean acoustic model is trained using clean
speech. In corpora containing both additive noise and rever-
beration, clean refers to reverberant speech without noise. The
noise-dependent acoustic model is trained using only one type of
noise and is tested on the same type of noise. This experimental
setup represents typical robust speech recognition evaluations.
The noise-mismatched acoustic model also uses a single type
of noise during training, but it is tested on noises different from
those for training. The joint training based acoustic model treats
the speech enhancement frontend and ASR backend as a single
model. It is initialized with the GRN based frontend and the
well-trained noise-dependent acoustic model. The training and
test noises for the joint training model are the same.

D. Utterance-Wise Recurrent Dropout for Acoustic
Model Training

Utterance-wise recurrent dropout has been shown to be effec-
tive for acoustic model training on the CHiME-4 corpus [29].
A typical LSTM layer is described in Egs. (11), (12), and (13)
below:

i oc(W;x; +Uh;1 + by)

f, o(Wyx; + Ushy 1 +by) )

Ot - o(Wox; +Ushy 1 +by,) v

8t F(Wyx¢ +Ughy_1 + by)
ci=f®c 1 +ii®g (12)
h; =0, ® f(ct) (13)

noisy speech

? .__;___

noisy speech

f

noisy speech

Tlustration of distortion-independent acoustic modeling. See text for the meaning of acronyms.

The dropout method can be expressed as follows:

ig 0(Widzit(x¢) + Uidpi(he-1) + by)
f; _ o(Wiedyge(xt) + Updpp(hie-1) +by) 14
Oy 0(Wodzot(Xt) + Uodpo(hi-1) + by)
8t f(Wydzge(xt) + Ugdpg(hi-1) + bg)

where i, f;, and o, are the input, forget, and output gates at step ¢;
g is the vector of cell updates and c; denotes updated cell vector;
c; isused to update hidden state h,; o is a sigmoid function and f
is typically chosen to be tanh. W and U are the weight matrices
for the input vector x; and hidden vector h;_1, respectively. b
denotes the bias term. The dropout function is denoted as d().
Subscripts x and h refer to the two corresponding feature vectors
and i, f, o, g correspond to the four LSTM components. Dropout
functions with subscript ¢ are conventional frame-wise dropout,
and those without ¢ are recurrent, i.e., they use the same dropout
mask at different time steps.

Utterance-wise recurrent dropout is designed to be both re-
current and have little temporal information loss. Four inde-
pendently sampled utterance-wise masks are applied to h;_;.
For the dropout on x;, we opt for a conventional frame-wise
method since utterance-wise dropout may completely lose the
information in some feature dimensions.

III. EXPERIMENTAL SETUP
A. Datasets

We use two corpora in our experiments. One of them is
designed specially for this study and the other one follows the
official CHiME-2 recipe.

1) WSJ: We compose a corpus by mixing clean speech in
WSIJ with additive noise. Although such simulated corpora are
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not commonly used in speech recognition, they are common in
speech enhancement [3], [23].

Training sets for the six acoustic models are designed in
the following way. For the clean acoustic model, the clean
utterances in the original WSJ corpus are used directly. The
noise-dependent acoustic model has two instances, each cor-
responding to a different noise. The noise-mismatched acous-
tic model also has two instances, but it differs from the
noise-dependent acoustic model in that its training and test-
ing noises are mismatched. The training sets for the noise-
dependent and noise-mismatched acoustic models are the same.
It contains 7138 utterances generated by mixing clean ut-
terances with a training noise (ADTbabble or ADTcafete-
rial) at SNRs randomly chosen from {9 dB, 6 dB, 3 dB,
0 dB, —3 dB, —6 dB}. ADTbabble and ADTcafeterial
(available at http://www.auditec.com) are commonly used in
speech enhancement tasks [3], [23]. For the noise-independent
acoustic model, the training set is generated by adding
noise segments from a 10000 noise database (available at
https://www.soundideas.com) to clean utterances at SNRs ran-
domly chosen from the above six levels. The size of the
noise-independent training set is 157036, 22 times that of the
clean training set. The distortion-independent acoustic model is
trained using GRN enhanced speech. GRN takes as input the
noisy speech used for noise-independent acoustic model train-
ing. The distortion-independent training set thus also contains
157036 utterances. For the joint training based acoustic model,
the training set is the same as that for the noise-dependent and
noise-mismatched acoustic model.

A validation set is shared among the six acoustic models. It
contains 1206 clean utterances from 10 speakers different from
those used in training sets. Note that clean utterances are used
directly in the validation set, avoiding biases to any specific
noise.

The six acoustic models also share the same test set. It consists
of 330 noisy utterances for each of the two test noises (ADT-
babble and ADTcafeterial) and at each of the six SNRs (i.e.
{9 dB, 6 dB, 3 dB, 0 dB, —3 dB, —6 dB}). The total number
of utterances is 3960. These utterances are from 12 speakers
different from those in the training and validation sets.

Note that although ASR backends and enhancement frontends
both use the 10 k noise database, their actual noise segments
are different. First, ASR backends only use the first halves of
noises, and enhancement frontends the second halves. Second,
noise segments are randomly selected for recognition and en-
hancement.

2) CHIiME-2: CHiME-2 is a commonly used corpus for
robust speech recognition. Different from WSJ, utterances in
CHIiME-2 contain room reverberation. We treat reverberant
speech in CHiME-2 as clean speech.

Training sets for the six acoustic models are designed based
on the official recipe of the CHiME-2 challenge. The rever-
berant acoustic model is trained using reverberant utterances.
Since each recording in CHiME-2 has two channels, we apply
an average operation to get the corresponding monaural utter-
ance. The noise-dependent acoustic model exactly follows the

CHiME-2 recipe. The noise-mismatched acoustic model tests
the noise-dependent acoustic model on ADT noises (ADTbabble
and ADTcafeterial ) rather than the CHiME-2 noises. Due to the
limited number of noises provided in the CHiME-2 corpus, the
noise-independent acoustic model is trained with noises from
the 10 k noise database. We mix reverberant utterances with
noise segments. The SNR levels are the same as those for WSJ.
The noise-independent training set contains 157036 utterances
in total. For the distortion-independent acoustic model, the train-
ing set consists of 157036 utterances enhanced by GRN. The
training set for the joint training based acoustic model follows
the official CHiME-2 recipe.

For the noise-dependent and joint training based acoustic
model, we apply a validation set consisting of noisy utterances.
For the other four acoustic models, we use reverberant
utterances.

In addition to the official CHiME-2 test set, we generate two
other test sets containing ADT noises. The average results on
ADT noises are reported in this paper.

Due to reverberation, speech enhancement models for
CHIiME-2 are trained to map from reverberant-noisy speech
to reverberant speech. The training data for speech enhance-
ment models are generated similarly to those for the noise-
independent acoustic model.

B. Implementation Details

We use a wide residual bidirectional LSTM network (WRBN)
as the DNN architecture of acoustic models [11], [28], [29]. For
speech enhancement frontends, we adopt a conventional MMSE
model, the IRM, and three DNN based supervised models. For
the three supervised models, GRN is the main frontend in our
experiments and is used to generates both training data and test
data. The other two models, LSTM and CRN, generate addi-
tional test data for distortion-independent acoustic modeling.
These three frontends use different training targets. GRN applies
the phase sensitive mask (PSM), LSTM uses the IRM, and CRN
is mapping based.

We couple enhancement frontends and ASR backends with
enhanced waveforms. The preprocessing steps for the enhance-
ment frontends include windowing and Fourier transform. We
apply the Hamming window with window width 20 ms and
shift 10 ms. The windowed waveform signals are then con-
verted to 320-dimensional short-time Fourier transform (STFT)
features. Speech enhancement models take as input the STFT
magnitudes and generate masks or enhanced magnitudes. We
combine enhanced magnitudes with the phase of noisy speech
to resynthesize enhanced waveform signals. As for the feature
preprocessing for ASR backends, we make modifications to the
recipe in Kaldi and our previous experiments [28], [29]. In order
to avoid manually added interferences to enhanced speech, we
skip most of preprocessing steps, including pre-emphasizing,
dithering, and direct currency offset removal. Similar to speech
enhancement frontends, we extract spectral features from en-
hanced waveform signals by applying the Hamming window and
performing 320-dimensional STFT. We then apply Mel filters
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TABLE I
WERS OF THE S1X ACOUSTIC MODELS ON WSJ. BAB AND CAF DENOTE ADTBABBLE AND ADTCAFETERIA 1, RESPECTIVELY. W/0 REFERS TO NOISY EVALUATION
DATA WITHOUT SPEECH ENHANCEMENT (I.E. UNENHANCED SPEECH), AND W/ EVALUATION DATA WITH ENHANCEMENT

clean noise-dependent noise-mismatched

noise-independent distortion-independent joint training

SNR bab caf bab caf bab caf

bab caf bab caf bab caf

w/o w/ | wlo w/ |wlo w/ |wo w |wlo w/

w/o  w/

w/o w/ | wlo w/ |wlo w/ |wo w |wo w |wo w/

9dB |11.92 3.08 12.83 3.53|3.62 4.35|4.28 5.04|6.31 5.01

6dB [22.19 4.11 |22.06 6.15|4.28 5.04 | 5.55 6.39 |9.83 5.94

3dB |38.26 6.67 |38.88 9.15|5.12 6.31 |8.11 8.93 (17.07 7.85

0dB [60.32 12.46|58.25 17.34| 7.55 9.64

495 4.05
798 5.77
14.16 8.59
12.07 14.68|28.41 11.68|26.13 14.05|18.23 10.74|17.56 14.18|12.87 9.19
-3dB|82.44 23.24|79.15 32.51(12.55 18.03|21.93 27.72|46.16 21.39(48.48 26.43|31.89 19.71|31.14 26.64(24.30 17.13|27.82 24.58|18.92 21.86(28.49 26.15
-6dB|93.16 44.76|91.44 56.25(22.66 34.34|40.13 48.40|71.64 38.05|74.67 49.52|54.06 36.19|53.99 47.94(45.41 33.55|50.68 45.17|33.83 37.49(48.29 43.55

4.89 4.00 497 4.04|4.18 3.10|3.81 3.29|4.50 9.02|6.46 9.19

7.14 4.86|7.17 5.55|5.10 4.00|559 4.80|5.55 9.38(8.13 9.51

10.59 6.65 [11.06 8.09 | 7.17 5.23 |8.85 7.08|7.32 10.63|10.65 11.60

15.21 12.85/11.04 13.38|16.87 16.23

51.4 157|504 208| 9.3 13.0[153 185|299 15.0|294

avg

18.1

21.1 13.7|21.0 177|165 12.0|194 163|135 17.0]198 194

to STFT magnitudes to generate Mel frequency features. The
dimension of Mel features is 80. In order to avoid underflow,
we add a small value e =% to Mel features and apply logarithm
to the summation. The delta and delta-delta of log-Mel features
are then generated, tripling the size of feature dimensionality.
We calculate the mean value along time for each utterance and
subtract it from the features. ASR backends take as input the
normalized features and generate log posterior probabilities for
senones. There are 1965 senones in our experiments. Subtracting
log priors from log posteriors, we feed log likelihoods to the
decoder in CHiME-2 to generate transcriptions.

In training the noise-independent and distortion-independent
acoustic models, we monitor validation results after every 7138
utterances. This technique is commonly used in speech and
language processing experiments.

1) WSJ: During training, most hyper-parameters for the six
acoustic models are the same. The optimizer is Adam and
dropout rate is 0.2. Initial learning rate is set to 1073 for all
acoustic models except the joint training based one, whose
learning rate is 10~%.

2) CHIME-2: For experiments on CHiME-2, the noise-
mismatched acoustic model uses the well-trained noise-
dependent acoustic model. Therefore, there are only five
acoustic models on this corpus. The optimizer and dropout rate
are the same as those on WSJ. All but the joint training based
acoustic models share the same initial learning rate of 10~*. The
initial learning rate of the joint training based model is 1075.

IV. EVALUATION RESULTS AND ANALYSIS

This section presents and analyzes our evaluation results on
the six acoustic models. The results are provided separately for
the WSJ and CHiME-2 corpora.

A. Results on WSJ

Table I shows the WERS of the six acoustic models on WSJ.
We use ADTbabble and ADTcafeterial as the noises for eval-
uation. The clean acoustic model clearly benefits from speech

enhancement, as enhanced speech has a higher SNR than the
corresponding noisy speech.

For the noise-dependent acoustic model, consistent with pre-
vious observations [4], [11], [19], the results on unenhanced
speech are better. Based on our analysis on the distortion prob-
lem, the performance degradation on enhanced speech is caused
by the mismatch between Ny, and Dgyq;.

The noise-mismatched acoustic models are able to benefit
from speech enhancement in our experiments on WSJ. Such
an ability, however, is influenced by the type of noise used
for testing. We will discuss this more after presenting the re-
sults on CHiME-2. In Table I, we observe that the results of
noise-dependent acoustic models are much better than those
of noise-mismatched acoustic models on unenhanced speech.
This indicates that acoustic models trained on one noise cannot
generalize to untrained noises. This performance degradation
caused by noise mismatch supports our analysis on the distortion
problem.

The noise-independent acoustic model also benefits from
speech enhancement on WSIJ. This indicates that 10 k additive
noises can capture a lot of the distortions on WSJ. The efficacy
of noise-independent acoustic modeling, however, may be influ-
enced by factors such as reverberation, as will be shown in the
results on the CHiME-2 corpus.

For the distortion-independent acoustic model, the results on
enhanced speech are better than those on unenhanced speech.
This shows that distortion-independent acoustic models are able
to alleviate the distortion problem caused by GRN. Moreover,
the results of the distortion-independent acoustic model are
better than those of the noise-independent model. Note that both
noise-independent and distortion-independent acoustic models
are tested on noises different from those used during training.
The strong performance of our distortion-independent acoustic
model shows that large-scale training with various distortions
generalizes well to untrained distortions.

Generally speaking, the joint training based acoustic model,
similar to the noise-dependent model, does not benefit from
speech enhancement. For ADTcafeterial, enhancement yields
an improvement at low SNRs. Note that in our experiments, the
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WERS OF THE DISTORTION-INDEPENDENT ACOUSTIC MODEL OEA\Blng VIVIITH OTHER FRONTENDS. SEE TABLE I CAPTION FOR NOTATIONS
SNR unenhanced LSTM CRN IRM MMSE
bab caf bab caf bab caf bab caf bab caf
9dB 4.18 3.81 3.36 3.21 3.27 409 | 273 273 | 445 5.36
6dB 5.10 5.59 4.24 4.88 4.13 465 | 275 2.88 | 5.96 7.17
3dB 7.17 8.85 5.70 7.64 5.03 753 | 284 265 | 942 1140
0dB | 12.87 1521 | 9.02 13.17 | 839 11.53 | 2.88 286 | 17.13 19.30
-3dB | 2430 27.82 | 17.95 2514 | 1437 2238 | 3.05 276 | 31.14 3488
-6dB | 4541 50.68 | 3499 47.80 | 28.19 40.82 | 291 293 | 53.63 61.20
avg 16.5 19.4 12.5 17.0 10.6 15.2 2.9 2.8 20.3 232
TABLE III

WERS OF THE S1X ACOUSTIC MODELS ON CHIME-2. CHIME-2 DENOTES THE OFFICIAL CHIME-2 EVALUATION SET. ADT REFERS TO THE
AVERAGE WER OF ADTBABBLE AND ADTCAFETERIA 1. SEE TABLE I CAPTION FOR OTHER NOTATIONS

reverberant noise-dependent | noise-mismatched noise-independent distortion-independent | joint training

SNR chime-2 ADT chime-2 ADT chime-2 ADT chime-2 ADT chime-2
w/o  w/ | wlo w/ | wlo w/ w/o w/ w/o w/ | wo w/ | wlo w/ | wo w/ | wlo w/

9dB |31.27 10.50 |31.03 11.40 | 5.49 5.81 7.82 8.33 6.63 637 | 659 798 | 742 551 |10.20 6.60 | 6.03 7.36
6dB | 38.69 13.67 | 47.53 19.00 | 6.26 798 |10.28 11.76 7772 792 | 8.66 11.04| 8.61 6.54 |13.27 8.64 | 6.67 7.55
3dB [46.85 17.26 | 67.50 31.68 | 6.78 833 |18.03  20.46 8.82 8.78 |14.00 19.35|10.01 7.10 [20.99 14.73| 7.75 9.81
0dB |57.33 23.73|85.96 50.89| 895 11.26 |30.07 3438 |10.69 11.62|23.72 30.99 |12.93 9.70 |32.30 22.76| 9.81 12.25
-3dB | 62.94 29.91|93.49 71.89| 9.98 1448 |50.34 5530 |13.06 13.30|39.04 51.60|14.85 11.04 |51.02 37.74|12.44 16.64
-6dB | 72.31 39.87 |95.58 88.79 |14.83 19.05 |75.65  78.83 17.45 19.80|60.73 76.08 |21.80 15.45|75.54 58.24|16.78 22.32
avg | 51.6 22,5 | 702 45.6 | 8.7 11.2 32.0 34.8 10.7 113 | 255 328 | 126 9.2 | 339 248 | 99 127

joint training based model is initialized with the well-trained
noise-dependent model and it does not perform better than the
noise-dependent acoustic model. The reason may be that, in
order to keep the same experimental setup as the other models,
the number of trainable parameters in the joint model is overly
large for a relatively small corpus like WSJ.

Along each column of Table I, there is a clear performance
degradation as SNR reduces, consistent with our analysis on the
cause of the distortion problem.

In Table II, we present the results of the distortion-
independent acoustic model when coupled with speech enhance-
ment frontends different from the one used during training.
From the table, we observe that both LSTM and CRN yield
better results than unenhanced speech. This shows that the
distortion-independent acoustic model is able to generalize to
different enhancement frontends. This also suggests that there
may be a common pattern in the distortions introduced by DNN
based supervised speech enhancement models.

Comparing the results of LSTM, CRN, and IRM, we find that
for the distortion-independent acoustic model, the improvement
of speech enhancement quality results in the improvement of
recognition performance. In real-world applications, this sug-
gests that a distortion-independent model need not to be re-
trained when a more advanced speech enhancement frontend is
applied. In addition, the distortion-independent acoustic model

on WSJ may be used to provide an indicator on the modeling
ability of different speech enhancement frontends. Note that at
different SNRs, the IRM results slightly vary, which may be due
to the waveform resynthesis during speech enhancement. When
the distortion-independent acoustic model is evaluated on clean
speech, the average WER is 2.7%. For the clean acoustic model
evaluated on clean speech, the WER is 2.0%.

The WERs on the MMSE enhanced test set are higher than
those on unenhanced speech. It appears that MMSE has trouble
handling non-stationary noises like ADTbabble and ADTcafete-
rial [37]. In fact, according to short-time objective intelligibility
(STOI), which is a standard metric for speech enhancement,
the average score of MMSE enhanced speech over the two test
noises is 70.90%, lower than that of unenhanced speech, which
is 76.02%.

B. Results on CHIME-2

Table III presents the WERs of the six acoustic models
on CHiME-2. The noises used for evaluation include chime-2
noises and ADT. WERs on ADT are the averages of those on
ADTbabble and ADTcafeterial. The reverberant acoustic model
on CHiME-2 corresponds to the clean acoustic model on WSJ. It
is clear that the reverberant acoustic model benefits from speech
enhancement.
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TABLE IV
WERS OF THE DISTORTION-INDEPENDENT ACOUSTIC MODEL ON CHIME-2 WITH OTHER FRONTENDS. SEE TABLE III CAPTION FOR NOTATIONS
SNR unenhanced LSTM CRN IRM MMSE
chime-2  ADT | chime-2 ADT | chime-2 ADT | chime-2 ADT | chime-2 ADT

9dB 7.42 10.20 5.79 7.61 6.65 7.50 3.40 3.66 8.46 10.65

6dB 8.61 13.27 7.47 10.21 7.68 10.09 3.44 3.64 10.09 15.13

3dB 10.01 20.99 8.63 17.57 9.04 15.57 3.34 3.62 12.40 22.35

0dB 12.93 32.30 11.36 28.47 11.25 25.73 3.38 3.73 15.36 34.52

-3dB 14.85 51.02 14.16 44.83 13.51 41.12 3.74 3.95 18.14 53.80

-6dB 21.80 75.54 19.41 67.08 18.06 62.33 3.31 4.10 27.59 79.29

avg 12.6 33.9 11.1 29.3 11.0 27.1 34 3.8 15.3 36.0

The noise-dependent acoustic model follows the official train- ‘ TABLE V
: : : s . WER COMPARISONS BETWEEN THE PROPOSED MODELS AND
ing recipe of the CHlME—Z challenge. Slmlla}r to prior observa- PRIOR WORK ON CHIME-2
tions [4], [18], the noise-dependent acoustic model does not
benefit .from speech enhancement, which is in line with the models 9dB 6dB 3dB 0dB -3dB -6dB | ave
results in Table I W d W 33] [6.61 6.86 8.67 10.39 13.02 18.23|10.6
We test the noise-mismatched acoustic model on ADT noises. ang and Wang [33] | 6. ’ ’ i : ’ i

Different from the results on WSJ, the noise-mismatched acous- Plantinga ez al. [21]1 | - - - - - - 193
tic model does not perform better on enhanced speech. Note distortion-independent | 5.51 6.54 7.10 9.70 11.04 1545 9.2
that the eXperlmentS on CHIME-2 use CHIME-Z noises fOr noise—dependent 549 6.26 6.78 895 998 14.83| 8.7

training, whereas the experiments on WSJ use ADT noises. The
inconsistent results on the two corpora indicate that the ability of
the noise-mismatched acoustic model to overcome the distortion
problem may depend on the noise used for testing.

The noise-independent acoustic model on CHiME-2 does not
gain performance improvement on enhanced speech. This is
again different from the corresponding results on WSJ. On the
CHiME-2 corpus, room impulse responses (RIRs) are different
between training and testing [25]. Although we use a large
variety of additive noises to train the noise-independent acoustic
model, the RIR mismatch still exists. During testing, distortions
introduced by speech enhancement thus deviate from the 10 k
additive noises used for training. Note that at SNR level 9 dB and
3 dB, enhanced speech performs better than unenhanced speech
on the CHiME-2 corpus.

The distortion-independent acoustic model is able to ben-
efit from speech enhancement. On both CHiME-2 and ADT
noises, distortion-independent acoustic model outperforms
noise-independent acoustic model. The ability of distortion-
independent acoustic modeling to benefit from speech enhance-
ment shows that large-scale training on a variety of distortions
generalizes to untrained distortions.

Similar to the situation on WSJ, the joint training based acous-
tic model on CHiME-2 does not benefit from speech enhance-
ment. It also does not perform better than the noise-dependent
acoustic model, likely due to overfitting.

Table IV shows the results of the distortion-independent
acoustic model when used with different speech enhance-
ment frontends. Similar to the experiments on WSJ, distortion-
independent acoustic model is tested on LSTM and CRN
enhanced speech. The results of both LSTM and CRN enhanced
speech are better than those of unenhanced speech. This indi-
cates the ability of the distortion-independent acoustic model to

work with various DNN based supervised speech enhancement
frontends. This also suggests that distortions introduced by dif-
ferent supervised enhancement models have certain similarities.

On IRM enhanced speech, the distortion-independent acous-
tic model performs very well. This suggests that as speech
enhancement research progresses, speech recognition perfor-
mances of the distortion-independent acoustic model should also
improve. The average WER of the distortion-independent acous-
tic model on reverberant speech is 3.4%. For the reverberant
acoustic model evaluated on reverberant speech, the WER is
2.8%.

Like in Table II, the WERs on MMSE enhanced speech are
higher than those on unenhanced speech. For the average STOI
score over the three test noises, MMSE enhanced speech gets
67.44%, whereas unenhanced speech achieves 70.95%.

Table V shows a comparison of ASR systems in this study
with those in prior work. It is worth noting that our distortion-
independent acoustic model achieves a 9.2% WER, which is bet-
ter than the previous best systems on the CHiME-2 corpus [21],
[33]. For the noise-dependent acoustic model, we achieve an
average WER of 8.7%, outperforming the previous best system
by 6.5% relatively. Note that, in order to avoid the influence
of model adaptation on our analysis of the distortion problem,
we do not apply speaker adaptation to our models. The good
results of our proposed models suggest that the observations in
this study are likely valid for real world systems.

V. CONCLUDING REMARKS

The distortion problem occurs when we apply speech en-
hancement as a frontend for ASR tasks. This study treats the
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distortion problem as a noise mismatch between training and
testing. We categorize acoustic models into six types and ex-
amine each of them for their ability to overcome the distortion
problem. Distortion-independent acoustic modeling emerges as
the best among the six acoustic models. Its ability to generalize
to untrained noises suggests the utility of large-scale training for
acoustic modeling. We also show that the distortion-independent
acoustic model is able to work with various DNN based super-
vised speech enhancement frontends. In addition, the WERs
of our proposed distortion-independent and noise-dependent
acoustic models both outperform the previous best system on
the CHiME-2 corpus.

Future work on the distortion problem includes using ASR
features as the training target of speech enhancement models, ap-
plying time-domain speech enhancement frontends, improving
the generalization ability of the distortion-independent acoustic
model by using both supervised and conventional speech en-
hancement models during training, and investigating distortion-
independent training for end-to-end ASR systems.
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