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Abstract

Missing-data methods attempt to improve robust speech recognition by distinguishing between reliable and unreliable data in the
time–frequency (T–F) domain. Such methods require a binary mask to label speech-dominant T–F regions of a noisy speech signal as
reliable and the rest as unreliable. Current methods for computing the mask are based mainly on bottom-up cues such as harmonicity
and produce labeling errors that degrade recognition performance. In this paper, we propose a two-stage recognition system that com-
bines bottom-up and top-down cues in order to simultaneously improve both mask estimation and recognition accuracy. First, an n-best
lattice consistent with a speech separation mask is generated. The lattice is then re-scored by expanding the mask using a model-based
hypothesis test to determine the reliability of individual T–F units. Systematic evaluations of the proposed system show significant
improvement in recognition performance compared to that using speech separation alone.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The performance of automatic speech recognizers
(ASRs) degrades rapidly in the presence of noise and other
distortions (Gong, 1995; Huang et al., 2001). Speech recog-
nizers are typically trained on clean speech and face a prob-
lem of mismatch when used in conditions where speech
occurs simultaneously with other sound sources. To miti-
gate the effect of this mismatch on recognition, noisy
speech is typically preprocessed by speech enhancement
algorithms (Loizou, 2007), such as spectral subtraction
based systems (Boll, 1979; Droppo et al., 2002). If samples
of the corrupting noise source are available a priori, a
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model for the noise source can additionally be trained
and noisy speech may be jointly decoded using the trained
models of speech and noise (Varga et al., 1990; Gales and
Young, 2007) or enhanced using linear filtering methods
(Ephraim, 1992). However, in many realistic applications,
the performance of the above approaches to robust speech
recognition is inadequate (Cooke et al., 2001).

To deal with the mismatch issue, a missing-data
approach to robust speech recognition has been proposed
by Cooke et al. (2001). This method distinguishes between
reliable and unreliable data in the time–frequency (T–F)
domain. When speech is contaminated by additive noise,
some T–F regions will contain predominantly speech
energy (reliable) and the rest are dominated by noise
energy. The missing-data ASR treats the latter T–F units
as missing or unreliable during recognition. The missing-
data recognizer, therefore, requires a binary T–F mask
that provides information about which T–F units are reli-
able and which are unreliable. Previous studies have
shown that the missing-data recognizer performs very well
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when this mask is known a priori (Cooke et al., 2001;
Roman et al., 2003; Barker et al., 2005; Srinivasan
et al., 2006). Attempts to estimate such a binary mask
through front-end preprocessing using speech separation
techniques have been only partly successful. Spectral sub-
traction is frequently used to generate such binary masks
in missing-data studies (Drygajlo and El-Maliki, 1998;
Cooke et al., 2001). For this purpose, noise is usually
assumed to be long-term stationary and its spectrum is
estimated from frames that do not contain speech (speech
silent frames containing just background noise). The noise
spectrum is then used to estimate the SNR in each T–F

unit. If the SNR in a T–F unit exceeds a threshold, it is
labeled reliable; it is labeled unreliable otherwise. In the
presence of non-stationary interference sources, however,
the use of spectral subtraction results in a poor estimate
of the mask. Methods that primarily utilize the harmonic-
ity of voiced speech have also been proposed to estimate
the mask for missing-data applications (Seltzer et al.,
2000; Brown et al., 2001; van Hamme, 2004). However,
these methods are unable to deal with unvoiced speech.
Accurate estimation of pitch is also difficult, if not impos-
sible, when the SNR is low. Hence, the estimated binary
mask corresponding to voiced speech may not be reliable.
Therefore, good estimation of the binary T–F mask
remains a challenging problem.

On the other hand, the human auditory system exhibits
a remarkable ability to segregate a target speech source
from various interferences (Darwin, 2008). According to
Bregman (Bregman, 1990), this is accomplished via a pro-
cess termed auditory scene analysis (ASA). ASA involves
two types of organization, primitive and schema-driven.
Primitive ASA is based on bottom-up cues such as pitch
and spatial location of a sound source. Schema-based
ASA is based on top-down use of stored knowledge about
auditory inputs, e.g. speech patterns, and supplements
primitive analysis. Top-down information has also been
used successfully in computational ASA studies previously
(Barker et al., 2005; Srinivasan and Wang, 2005b). In par-
ticular, Barker et al. (2005) have proposed a top-down
approach to identify T–F units that are dominated by
speech in a noisy mixture. We believe that a top-down
approach, using speech models, can be used to refine the
mask generated by bottom-up processing to achieve
improved recognition results.

In this paper, we present a two-pass missing-data recog-
nition system that estimates an ideal binary T–F mask and
improves recognition results at the same time. A T–F unit
in the ideal binary mask is 1 if in the corresponding T–F

unit the noisy speech contains more speech energy than
interference energy; it is 0 otherwise. The ideal binary mask
is obtained a priori from premixed speech and noise. In the
first pass, a mask produced by a speech separation system
is used to generate an n-best lattice using a missing-data
recognizer. This corresponds to bottom-up processing.
This lattice is then re-scored, to produce the final recogni-
tion results by augmenting the initial mask using the
information contained in states along individual paths.
Specifically, we propose a state-based hypothesis test to
determine the reliability of each T–F unit. This corresponds
to top-down analysis. The resulting recognition accuracy is
substantially better than that of the conventional ASR as
well as the missing-data recognizer using the mask pro-
duced by speech separation alone.

The rest of the paper is organized as follows. The next
section contains a detailed presentation of the system.
The proposed system has been systematically evaluated
on a noisy connected digit recognition task and the evalu-
ation results are presented in Section 3. Section 4 concludes
the paper.
2. System description

The proposed system is a two-pass recognition system as
shown in Fig. 1. In the first pass, we use an initial, conser-
vative mask generated through bottom-up separation as
input to a missing-data recognizer. The output of the miss-
ing-data ASR is a lattice containing n-best hypotheses. The
initial mask is then augmented by another mask generated
through spectral subtraction to result in a three-way mask.
In the second pass, we use a state-based hypothesis test to
refine this three-way mask and improve recognition results
at the same time.
2.1. Bottom-up speech separation

The input to the system is a mixture of speech and inter-
ference, sampled at 20 kHz. Following the original study of
Cooke et al. (2001), we use an auditory filterbank decom-
position (Patterson et al., 1988) of the input signal to gen-
erate feature vectors for recognition. Specifically, the input
is first analyzed using a 128 channel gammatone filterbank
whose center frequencies are quasi-logarithmically spaced
from 80 Hz to 5 kHz (see (Wang and Brown, 2006) Chap-
ter 1). Our previous studies (Srinivasan, 2006) have shown
that this frequency range is adequate for recognition of
male speech considered in this study (see Section 3). The
instantaneous Hilbert envelope at the output of each
gammatone filter is then downsampled to a frame rate of
100 Hz and finally cube-root compressed (Cooke et al.,
2001). As a result, the input signal is decomposed into a
two-dimensional matrix of T–F units.

The missing-data recognizer (Cooke et al., 2001) makes
use of spectro-temporal redundancy in speech to recognize
a noisy signal based on its speech-dominant T–F units. Spe-
cifically, it modifies the computation of the observation
probability in a state of an HMM-based ASR to handle
missing or unreliable data. The observation density in a
conventional ASR is typically modeled using a mixture of
Gaussians as shown below:

pðxjqÞ ¼
XM

k¼1

pðkjqÞpðxjk; qÞ; ð1Þ
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Fig. 1. Schematic diagram of the proposed two-pass recognition system. The noisy input is processed by a speech separation system to produce an initial
binary T–F mask. This mask is used by the missing-data recognizer to generate an n-best lattice. The states along this lattice are used in a hypothesis test to
refine a three-way mask generated by combining the initial mask with a mask produced by spectral subtraction. The system outputs an integrated mask
along with the recognition results. Notice that the information flows bottom-up leading to the lattice generation and then top-down leading simultaneously
to mask estimation and final recognition.
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where x is the spectral energy feature vector in a frame, M
is the number of mixture components, k is the component
index, q is an HMM state, pðkjqÞ is the component weight,
and pðX jk; qÞ ¼ NðX ; lk;q;Rk;qÞ. When parts of x are cor-
rupted by noise, the missing-data ASR treats them as unre-
liable data (Cooke et al., 2001) and marginalizes those
feature dimensions in the computation of the likelihood
in (1). In most missing-data studies, the various dimensions
of the feature vectors are modeled as independent given a
mixture. Theoretically, this is a good approximation if an
adequate number of mixture components are used
(McLachlan and Basford, 1988). Hence, the computation
of the observation density is modified in the presence of
unreliable data as:

pðxjqÞ ¼
XM

k¼1

pðkjqÞ
Y

pðxr;jjk; qÞ
YZ

pðxu;ijk; qÞdxu;i; ð2Þ

where xr;j and xu;i correspond to the spectral energies in a
reliable (j) and an unreliable (i) feature dimension, respec-
tively. Under additive noise conditions, the true speech va-
lue ~xu;i, in the unreliable part may be constrained as
0 6 ~xu;i 6 yu;i (Cooke et al., 2001), where yu;i is the observed
(noisy) spectral energy. This constraint is then used as
bounds on the integral in (2) as:

pðxjqÞ ¼
XM

k¼1

pðkjqÞ
Y

pðxr;jjk; qÞ
YZ yu;i

0

pðxu;ijk; qÞdxu;i:

ð3Þ

Note that the computation of
R yu;i

0 pðxu;ijk; qÞdxu;i involves
the calculation of two error functions (Stark and Woods,
2002) as shown below.
Z yu;i

0

pðxu;ijk; qÞdxu;i ¼ erf
yu;i � lk;q;i

rk;q;i

� �
� erf

0� lk;q;i

rk;q;i

� �
;

ð4Þ

where lk;q;i and rk;q;i are the mean and the standard
deviation of the Gaussian density corresponding to the
ith dimension.

As stated before, a fundamental requirement of the
missing-data recognizer is a binary mask that informs it
whether a T–F unit is reliable (value 1) or unreliable (value
0). This mask is usually generated through front-end pro-
cessing such as those based on estimates of local SNR or
those based on harmonicity of voiced speech. While the
accuracy of the mask produced by such bottom-up speech
separation methods is good in limited situations, it may
contain a large number of errors under noisy conditions.
Our experiments with the missing-data recognizer have
shown that wrongly labeling unreliable T–F units as reli-
able is especially harmful for recognition. Hence, in the first
pass, we use a ‘‘conservative” binary T–F mask as input to
the missing-data recognizer. In most cases, the conservative
mask may be obtained by simple modifications to existing
bottom-up algorithms. For example, if the mask estimation
is based on an estimate of the local SNR in a T–F unit, the
SNR threshold above which the T–F unit is labeled 1 could
be increased to produce a conservative mask.

Fig. 2 shows an example of a conservative binary mask
produced using spectral subtraction. Fig. 2a shows the
cochleagram of a speech signal, ‘‘NINE ZERO ZERO
ONE NINE NINE EIGHT”, from the TIDigits database
(Leonard, 1984). A cochleagram is a T–F representation
of a signal analogous to a spectrogram, but is generated
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Fig. 2. An illustration of the conservative binary T–F mask generated using spectral subtraction. (a) The cochleagram of a speech signal. (b) The
cochleagram of factory noise. (c) The cochleagram of the mixture. (d) The ideal binary mask. (e) The binary mask obtained from spectral subtraction using
a local SNR threshold of 0 dB. (f) The binary mask obtained from spectral subtraction using a local SNR threshold of 7.7 dB. Speech-dominant T–F units
in (d–f) are marked black and the noise-dominant ones white.
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using the gammatone filterbank decomposition of a signal
described before (see (Wang and Brown, 2006)). Fig. 2b
shows the cochleagram of a factory noise source from the
NOISEX corpus (Varga et al., 1992). The cochleagram of
a mixture of the speech signal from Fig. 2a and the noise
source from Fig. 2b at a SNR of 0 dB is shown in Fig. 2c.
The ideal binary mask corresponding to this mixture is
shown in Fig. 2d. T–F units labeled 1 in the mask are shown
in black; the rest are shown in white. Fig. 2e shows the bin-
ary mask produced by thresholding T–F units based on the
estimated local SNR. A threshold of 0 dB is used. Spectral
subtraction is used in this figure to estimate the local SNR.
Notice that the mask contains significant deviations from
the ideal binary mask. In particular, in frames that do not
contain any voice activity, the mask erroneously labels
many T–F units as speech-dominant. Fig. 2f shows the
mask produced using a threshold of 7.7 dB. This choice of
a conservative threshold significantly reduces the wrong
labeling of noise-dominant T–F units as reliable. Note that
the conservative mask may be produced by using any other
bottom-up speech separation system too. For example, a
system using harmonicity of voiced speech could increase
the threshold used in assessing the periodicity similarity in
a T–F unit (see e.g. (Wang and Brown, 1999)).

A conservative mask is needed to ensure that the first
pass retains a small set of viable recognition candidates
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for subsequent top-down analysis. This will not only
reduces the search space during the second pass, but also
ensures that the less likely recognition candidates are not
considered in subsequent mask determination. This mask
is used in conjunction with the spectral feature vectors as
input to the missing-data ASR in the first pass. The output
of this stage is a lattice from which an n-best hypothesis list
can be generated.

2.2. Top-down hypothesis testing

In the second stage, we seek to augment the bottom-up
mask by using top-down information in the form of speech
models. Specifically, we use those states of the missing-data
ASR that are contained in the n-best lattice.

The use of a conservative criterion during bottom-up
mask generation ensures a high probability that a T–F unit
labeled reliable is actually dominated by speech. Hence,
during top-down processing, we only analyze the T–F units
labeled 0 in the first stage. Since the number of unreliable
T–F units under low SNR conditions is very high, a
state-based analysis of each unreliable T–F unit is compu-
tationally prohibitive. Therefore, we only analyze those
0-labeled T–F units which have a high probability of being
relabeled 1. For this purpose, we use spectral subtraction:
The spectrum of noise is estimated as the average spectrum
of the first 10 frames of the noisy speech spectrum (Cooke
et al., 2001). The noise spectrum is then used to estimate
the local SNR in each T–F unit. Each T–F unit labeled 0
by bottom-up separation is now relabeled using a threshold
d2 as below,

label ¼
2 if SNRlocal P d2;

0 otherwise:

�
ð5Þ

The choice of d2 represents a trade-off between increasing
the computation time of top-down analysis and possibly
reducing the number of speech-dominant units. The opti-
mal value of d2 is dependent on SNR (Renevey and
Drygajlo, 2001). For simplicity, we set d2 to a constant va-
lue of 0 dB as suggested by Barker et al. (2005). Not all T–F

units labeled 2 are dominated by speech due to the limita-
tions of spectral subtraction stated previously. Therefore,
top-down processing is needed to remove noise-dominant
T–F units from those labeled 2. Note that T–F units labeled
1 by bottom-up processing are not affected by this spectral
subtraction based labeling. As a result, we now have a
three-way mask.

The lattice generated by the first pass is now re-scored
using the missing-data recognizer and the three-way mask.
During re-scoring, each active state independently analyzes
the T–F units labeled 2. The observation density of each state
in an HMM-based ASR models a particular class of speech
signal. This information could therefore be used to verify
whether the observed value in a T–F unit is consistent with
a speech state. This corresponds to top-down processing.

More generally, the task of deciding whether a test sam-
ple is inconsistent with pretrained models is known as
novelty or outlier detection (Markou and Singh, 2003).
Bishop (1994) suggests that unseen test samples should be
first modeled using a uniform distribution. Subsequently,
a threshold on the likelihood ratio of the pretrained distri-
bution and the uniform distribution could be used to label
a particular test data as ‘‘novel”. If training data follows a
Gaussian distribution, Tax and Duin (1998) suggest that
test samples outside of three standard deviations from the
mean should be treated as outliers. The mean and the stan-
dard deviation again pertain to training data. When
HMMs are used to model the training data, the observed
value may be used to generate ‘‘evidence” and ‘‘counter-
evidence” measures for speech in a particular state (Barker
et al., 2005). In this paper, we use two measures to con-
struct a hypothesis test for each T–F unit labeled 2 as fol-
lows: If a T–F unit satisfies the inequality in (6), we label it
as 1; it is labeled 0 otherwise.

XM

k¼1

pðkjqÞ pðyijk; qÞ
pðyiÞ

>
XM

k¼1

pðkjqÞ
Z yi

0

p xijk; qð Þ 1
a

dx; ð6Þ

where

a ¼
Z yi

0

pðxiÞdx; ð7Þ

is the normalization factor. Recall that yi and xi are, respec-
tively the observed spectral energy and the speech spectral
energy seen during training in frequency channel i.
pðyijk; qÞ is the likelihood of observing yi given a state q

and a mixture component k. The prior pðxiÞ, used to nor-
malize the probabilities in (6), is modeled empirically using
a mixture of Gaussians based on the data used in training
the ASR. The left hand side of (6) therefore models the evi-
dence for the speech signal in state q. The right hand side
provides the probability that the observed value is speech
corrupted by additive noise, or counter-evidence for clean
speech. For example, a high value provides evidence
against the observed spectral energy being from speech
alone. As stated previously, since yi represents spectral en-
ergy, under additive noise conditions the range for the true
speech value is ½0; yi�. In the absence of any knowledge
about the noise level, (6) represents a conservative decision.
This is consistent with our observation regarding the con-
sequences of wrongly labeling unreliable T–F units as reli-
able. Note that this top-down mask refinement is
performed simultaneously with the lattice re-scoring. Thus,
we first use bottom-up cues to generate a conservative
mask and then subsequently augment this mask using
top-down processing.

As mentioned before, Barker et al. (2005) have also pro-
posed a top-down approach using an HMM-based speech
recognizer to identify T–F units that are dominated by
speech in a noisy mixture. The primary difference in our
approach is the use of bottom-up cues in our initial mask
generation. This mask helps to drastically reduce the search
space for top-down analysis (see Section 4). Additionally,
two other differences are worth pointing out. First, while



Table 1
Digit recognition accuracy (%) of the proposed system and the missing-
data recognizer using the initial mask.

System SNR (dB)

�5 0 5 10 ‘

One-pass Mask 63.8 68.7 68.6 75.6 92.7
Two-pass Mask 71.9 75.2 76 81.7 92.7
Ideal binary Mask 86.2 86.7 89.4 90.2 92.7

S. Srinivasan, D. Wang / Speech Communication 52 (2010) 72–81 77
the ‘‘evidence” and ‘‘counter-evidence” measure definitions
in (6) are also used by Barker et al. (2005), we use (6) to
construct a hypothesis test for each T–F unit labeled 2.
Barker et al. (2005), on the other hand, use the two mea-
sures to create alternate decoding traces corresponding to
target and interference. Second, the prior distribution in
their probabilistic framework is modeled as an uniform dis-
tribution which can cause a bias toward labeling more T–F

units as unreliable (Barker et al., 2005). By empirically
modeling the prior density using Gaussian mixtures, our
system does not suffer from this bias.

3. Evaluation results

We have evaluated the system on speaker-independent
recognition of connected digits. This task is also used by
Cooke et al. (2001) and Barker et al. (2005). Thirteen
(1–9, silence, short pause between words, zero and oh)
word-level models are trained. All except the short pause
model have 8 states, whose output distribution is modeled
as a mixture of 10 Gaussians (Cooke et al., 2001). The
short pause model has three states. The TIDigits database’s
male speaker data (Leonard, 1984) is used for both training
and testing. This subset is commonly used in robust speech
recognition studies (see example, (McCowan and Bourlard,
2003; Roman et al., 2003)); we expect that the evaluation
results will be similar when tested on the female speaker
data. Specifically, the models are trained using 4235 utter-
ances from 55 speakers in the training set of this database.
Testing is performed on a subset of the testing set consist-
ing of 461 utterances from 6 speakers that are different
from the speakers in the training set. This test set size
ensures that the evaluation results are statistically signifi-
cant. The speech prior is modeled empirically using a mix-
ture of 100 Gaussians using all utterances in the training
set. An HMM toolkit, HTK (Young et al., 2000), is used
for training. For testing, a decoder incorporating our mask
generation and missing-data recognition is used. To test the
robustness of the proposed two-pass system on the afore-
mentioned task, noise is added at a range of SNRs from
�5 dB to 10 dB in steps of 5 dB. The noise source is the fac-
tory noise from the NOISEX corpus (Varga et al., 1992).
Factory noise is chosen as it has energy in the formant
regions, therefore posing challenging problems during rec-
ognition. It is also impulsive, making it difficult to estimate
its spectrum using spectral subtraction methods (Cooke
et al., 2001).

Monaural CASA systems that estimate an ideal binary
mask have been used as front-ends for the missing-data rec-
ognizer previously (e.g. (Brown et al., 2001)). To generate
this mask, target and interfering signals are decomposed
into a two-dimensional matrix of T–F units using the pro-
cedure described in Section 2.1. The resulting cube-root
compressed envelope is used as the estimate of energy
(Cooke et al., 2001).

While several systems estimate the ideal binary mask
well in low frequencies, they perform poorly in high fre-
quencies (for an exception, see (Hu and Wang, 2004)).
Additionally, under noisy conditions, high-frequency com-
ponents of speech are more corrupted than low-frequency
ones. Hence, to reveal the potential for our top-down pro-
cessing stage, we set high-frequency components (above
1 kHz) of the ideal binary mask to 0 and use it as our bot-
tom-up, speech separation (initial) mask for the first pass.
Note that 1 kHz is commonly used as the low-frequency
boundary in several binary mask estimation systems (see
e.g., (Hu and Wang, 2004)). Here we use 2 best tokens in
each state to generate the n-best lattice. Our experiments
indicate that the use of only 2 tokens in each state is suffi-
cient to retain the true hypothesis most of the time, while
maintaining a reasonable computational cost. The top-
down processing stage is then used to identify reliable
regions above 1 kHz. Table 1 summarizes the performance
of the two-pass system when using the ideal binary mask
below 1 kHz (‘‘Two-pass Mask”). Performance is mea-
sured in terms of word-level recognition accuracy at vari-
ous SNRs. For comparison, the performance of the
missing-data recognizer when using the speech separation
mask is also shown (‘‘One-pass Mask”). Additionally, we
show the performance of the missing-data recognizer when
using the ideal binary mask at all frequencies (‘‘Ideal Bin-
ary Mask”), which represents the ceiling performance for
the proposed approach.

Across all SNRs, the proposed system shows significant
performance improvement over that of the missing-data
recognizer using the ideal binary mask below 1 kHz. This
indicates that the top-down hypothesis testing stage of
our system is able to correctly identify reliable T–F units
in the high-frequency region. The results also confirm pre-
vious findings that the missing-data recognizer achieves
high accuracy with the ideal binary mask.

Fig. 3 illustrates the top-down mask refinement. Fig. 3a
shows the mask corresponding to the mixture in Fig. 2c
produced by using the ideal binary mask in the low fre-
quencies and spectral subtraction in the high frequencies
as described above. T–F units labeled 0 in the mask are
shown in white, while those labeled 1 are shown in black.
The gray T–F units correspond to those labeled 2 (see Sec-
tion 2.2). Fig. 3b shows the mask produced by the top-
down hypothesis testing stage. For ease of comparison,
the ideal binary mask from Fig. 2d is also shown in
Fig. 3c. Notice that compared to the ideal mask in
Fig. 3a, the mask in Fig. 3b contains significantly less label-
ing of noise-dominant T–F units as 1. Additionally, the
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Fig. 3. An illustration of mask refinement by top-down analysis. (a) The three-way mask. The low-frequency T–F units in the mask correspond to the ideal
binary mask. T–F units labeled 1 are marked black and the rest white. In high frequencies, spectral subtraction is used to label a T–F unit as 2 (gray) or 0
(white). (b) The mask produced by using the hypothesis test in (6). (c) The ideal binary mask.
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Fig. 4. Performance of the proposed system and the missing-data ASR
using the mask produced by spectral subtraction. Two-pass Mask refers to
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comparison, the performance of the conventional ASR without the use of
any front-end processing (Unprocessed) and with a spectral subtraction
front-end processing (Spectral Subtraction) are also shown.
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mask in Fig. 3b is able to correctly retain all speech-dom-
inant units from Fig. 3a.

Next, we present results using two methods that esti-
mate the ideal binary T–F mask in both high and low fre-
quencies. First, we present results using spectral
subtraction, which is a frequent choice for mask estimation
in missing-data studies as mentioned in Section 1. Specifi-
cally, the noise spectrum is used to estimate the local
SNR in each T–F unit as described in Section 2.2. Follow-
ing the suggestion of Cooke et al. (2001), we use the thresh-
old of 8 dB to generate our conservative, initial mask.
Fig. 4 shows the performance of the proposed system using
this mask for the first pass. Performance is shown in terms
of digit recognition accuracy with respect to the SNR. For
comparison, the performance of the missing-data ASR
using the speech separation (spectral subtraction) mask,
the ideal binary mask and that of a conventional MFCC-
based ASR with no preprocessing and preprocessing using
spectral subtraction are also shown. For spectral subtrac-
tion preprocessing, the spectrum of noise is once again esti-
mated as the average spectrum of the first 10 frames of the
noisy speech spectrum. The noise spectrum is then sub-
tracted from the noisy speech spectrum to estimate the
clean speech spectrum for processing by the conventional
MFCC-based ASR. Across all SNR conditions, the pro-
posed system shows significant improvement (p-value
< 0.05) over the performance of the missing-data recognizer
using the speech separation mask. An average reduction in
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word-error-rate (WER) of 16% is obtained. Note that per-
formances of both the proposed system and the missing-
data recognizer using the speech separation mask are sub-
stantially better than the unprocessed baseline. Also notice
that for clean speech, the conventional MFCC-based ASR
achieves the best performance; it is well known that recog-
nition using cepstral coefficients yields superior perfor-
mance compared to recognition using spectral coefficients
under clean speech conditions (Davis and Mermelstein,
1980).

We now present results using a monaural CASA system
that is able to handle both high and low frequencies of
speech (Hu and Wang, 2004). This system is a voiced
speech separation system based on two main stages: (1) seg-
mentation, and (2) grouping. In segmentation, the input
signal is decomposed into a collection of contiguous T–F

segments (regions) that are dominated by one sound
source. During grouping, those segments that are likely to
belong to the same source are grouped together. In the
low-frequency range, the system generates segments based
on temporal continuity and cross-channel correlation,
and groups them based on periodicity similarity. At high
frequencies, the signal envelope fluctuates at the pitch rate
and amplitude modulation rates are used for grouping (Hu
and Wang, 2004). Provided a target pitch contour can be
estimated, this segregation mechanism produces a binary
mask which selects T–F units where speech dominates the
interference. The system shows a robust performance when
tested with a variety of noise intrusions. Hence, we use the
system to generate our initial mask. For input to the system
in Hu and Wang (2004), a pitch estimate is derived from the
noisy mixture using Praat (Boersma and Weenink, 2002).

Fig. 5 summarizes the performance of the proposed sys-
tem when using the mask generated by the Hu and Wang
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Fig. 5. Performance of the proposed system and the missing-data
recognizer using the mask produced by the speech separation system of
Hu and Wang (2004). Two-pass Mask and One-pass Mask refer to the
performance of the proposed system and that of the missing-data ASR
using the mask from Hu and Wang (2004), respectively. See Fig. 4 caption
for other notations.
system as the initial mask. Performance is again shown in
terms of digit recognition accuracy across different SNRs.
Similar to the results obtained using spectral subtraction,
the proposed system shows significant improvement over
the performance of the missing-data ASR using the speech
separation mask. The improvement in recognition accuracy
at SNRs 6 5 dB are statistically significant (p-value
< 0.05). For example, a maximum reduction in WER of
42% is obtained at the SNR of 5 dB. Note that, at
SNRs P 5 dB, the performance of the proposed system is
close to that of the missing-data recognizer with the ideal
binary mask. Also note that both the proposed system
and the missing-data ASR substantially outperform the
conventional ASR with no preprocessing. Finally, compar-
ing the results in Figs. 5 and 4, we can see that masks gen-
erated by the Hu and Wang system yield substantially
better recognition results than those generated by spectral
subtraction. This shows the better ability of the Hu and
Wang system for speech segregation.

4. Concluding remarks

It is known that lattice re-scoring can be an order of
magnitude faster than normal recognition (Young et al.,
2000). Due to the small size of the lattice generated in
our first pass, only a small increase in the computation time
is observed for our system over that of the missing-data
recognizer. We wish to emphasize that the computation
time of the two-pass system is significantly lower than a
purely top-down system such as the one suggested by
Barker et al. (2005). The amount of savings in computation
depends on the size of the lattice generated during the first
pass of our system. While enlarging the lattice size ensures
that the correct hypothesis is not pruned away during the
first pass, it comes at the cost of increasing the number
of states that examine a T–F unit labeled 2 in the second
pass. We have observed that retaining 2 best hypotheses
in each state provides a reasonable trade-off. With this
choice of lattice pruning, our overall system is about five
times faster than the purely top-down approach of Barker
et al. (2005). Note that there is no performance degradation
due to the use of the two-pass approach compared to the
purely top-down approach, if adequate numbers of
hypotheses are retained in the first pass.

In general, in a purely top-down approach, the search
for alternate labels for each T–F unit would be exponential.
While theoretically such an approach could achieve excel-
lent recognition results, practically, the prohibitive compu-
tational cost would make it impossible. Barker et al. (2005)
handle this problem by analyzing the output of the spectral
subtraction mask in four frequency bands and employing
an efficient token-passing search algorithm. However, the
computational cost is still substantial because the search
involves all states in the complete decoding lattice. On
the other hand, the use of the bottom-up speech separation
stage in our system enables us to create a small lattice con-
taining only the most promising hypotheses. The allows the
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top-down hypothesis testing state to perform an efficient
search for labeling a T–F unit.

The ‘‘evidence” measure used in the top-down hypothe-
sis testing stage of our system is similar to state-level pos-
terior probability proposed by Williams and Renals
(1999). One could therefore use such local confidence mea-
sures also to create a hypothesis test. If the right threshold
is chosen, we expect the results of such a hypothesis test to
be similar to that provided by (6).

In our experiments, we have used masks produced by
spectral subtraction and by a monaural CASA system as
bottom-up speech separation masks. However, masks pro-
duced by other speech separation methods, including those
produced through binaural processing (e.g. (Roman et al.,
2003)), could also be used. Using a fixed threshold with
spectral subtraction to generate candidate T–F units during
the second pass, the system is unable to produce adequate
T–F units labeled 2 at very low SNRs. This may explain the
relatively low recognition accuracy obtained under these
conditions. Additionally, fixing the number of tokens to 2
also limits the performance improvement. The optimal
number of tokens may also depend on the vocabulary size.
Future work will need to address these issues.

To conclude, the missing-data recognizer shows excellent
recognition performance when the ideal binary mask is
accurately estimated. Binary masks estimated by speech sep-
aration systems, however, contain a significant number of
errors even under moderate amounts of additive noise. In
this paper, we have presented a two-pass missing-data rec-
ognition system that refines the mask generated through
front-end processing and provides significant reduction in
the WER compared to that of the missing-data recognizer
using the speech separation mask. Additionally, the pro-
posed system outperforms a conventional ASR system with
no preprocessing and prepocessing with spectral subtraction
by a large margin. In our future work, we plan to also com-
pare the performance with other noise reduction algorithms
on the AURORA noisy speech recognition task (Pearce and
Hirsch, 2000). It is worth noting that the system does not
require a noise model. Hence, it is applicable under various
noise conditions. Additionally, with the use of CASA sys-
tems for speech separation, bottom-up mask generation is
independent of the recognition task (Srinivasan, 2006).
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