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Binaural Tracking of Multiple Moving Sources
Nicoleta Roman and DeLiang Wang, Fellow, IEEE

Abstract—This paper addresses the problem of tracking mul-
tiple moving sources using binaural input. We observe that
binaural cues are strongly correlated with source locations in
time–frequency regions dominated by only one source. Based
on this observation, we propose a novel tracking algorithm that
integrates probabilities across reliable frequency channels in
order to produce a likelihood function in the target space, which
describes the azimuths of all active sources at a particular time
frame. Finally, a hidden Markov model (HMM) is employed to
form continuous tracks and automatically detect the number of
active sources across time. Results are presented for up to three
moving talkers in anechoic conditions. A comparison shows that
our HMM model outperforms a Kalman filter-based approach in
tracking active sources across time. Our study represents a first
step in addressing auditory scene analysis with moving sound
sources.

Index Terms—Binaural processing, hidden Markov model
(HMM), moving source tracking, multisource tracking.

I. INTRODUCTION

THE problem of tracking multiple moving targets arises
in many domains including surveillance, navigation, and

speech processing. In this paper, we are interested in localizing
and tracking multiple acoustic sources that may move, such
as concurrent speakers at a cocktail party. A solution to this
problem is needed in many speech processing applications such
as meeting segmentation, hands-free speech acquisition, and
hearing prosthesis [1], [2].

Numerous multitarget tracking algorithms have been devel-
oped, mostly for radar sensors (for a review see [3]). There are
two main approaches to target tracking that utilize Bayesian
inference: multiple hypothesis tracking (MHT) and Bayesian
filtering. The MHT attempts to optimally associate the noisy
measurements over time to form multiple tracks. For a partic-
ular hypothesis, a Kalman filter is associated with each track
and a maximum a posteriori (MAP) cost is computed using
the Kalman filter innovation sequence and the a priori track
set probability. Finally, the estimated tracks are obtained by
comparing all the hypothesized track sets using the MAP cost.
Bayesian filtering, on the other hand, aims at the conditional
mean estimation of the location state space. The conditional
probability is recursively estimated by combining a model for
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the source motions and a likelihood for the state space given a
set of noisy measurements. The Bayesian tracker has a closed-
form solution only for a linear process with Gaussian noise
which is equivalent to the Kalman filter in this case. In gen-
eral, optimum MHT and Bayesian solutions require an expo-
nential number of evaluations and therefore are deemed im-
practical [4]. Hypothesis pruning and merging techniques have
been proposed to reduce this computational burden, including
measurement gating [5], probabilistic data association [6], and
Viterbi based algorithms [7]. An approximation to Bayesian fil-
tering for nonlinear functions, non-Gaussian noises, and mul-
timodal distributions is provided using sequential Monte Carlo
(SMC) methods, also known as particle filtering [8], [9]. When
the number of active sources rapidly varies the above algorithms
require complex birth/death rules to initiate and terminate indi-
vidual tracks. Recently, a Bayesian tracking framework based
on the random finite set (RFS) theory has been proposed to sta-
tistically model the time-varying number of sources [10]. In
the RFS approach, the multitarget states and the multitarget
measurements are modeled as random finite sets that change
their cardinality as well as their values with time. As in stan-
dard Bayesian filtering, SMC implementations of the Bayesian
RFS filter produce computationally tractable solutions. How-
ever, as the number of objects increases the Bayesian RFS filter
becomes expensive to implement. A more tractable alternative
is the probability hypothesis density (PHD) filter which propa-
gates only the first moment of the multitarget posterior [10].

HMM has been proposed for multiple frequency line tracking
as well as target tracking in sonar networks by employing the
Markovian modeling of source dynamics in a discretized target
space [11], [12]. It is important to note that this framework
can handle multimodal likelihood distributions. Due to discrete
Markov modeling, Viterbi decoding can be used to efficiently
search for the most likely state sequences. Track initiation and
termination can be modeled probabilistically in an HMM frame-
work by, for example, introducing transitions from and to a ter-
minating state [11].

Several of the above techniques have been adapted and ap-
plied to the problem of speaker tracking using microphone ar-
rays. To estimate the locations of active sources in each time
frame, these algorithms typically employ variants of the well-
known generalized cross-correlation function [13] or subspace-
based methods [14]. Algorithms that combine Kalman filtering
with probabilistic data association techniques have been pro-
posed in [15] and [16] for the tracking of multiple speakers. The
particle filtering theory has been applied to the tracking of one
moving speaker in a reverberant environment (see [17], [18])
as well as to the tracking of an unknown number of moving
speakers [19]. The RFS Bayesian tracker has also been applied
to the problem of tracking an unknown time-varying number
of speakers [20]. These multisource tracking algorithms have
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been shown to provide good localization results using an array
of microphones. However, when restricting the size of the array
to only two sensors, as in the case of human audition, the mul-
tisource tracking problem becomes more challenging and few
results have been published in this area. A recent study [21] uti-
lizes multidimensional statistical filtering methods to simultane-
ously track source directions and source spectral envelopes for
up to two concurrent speakers from binaural input. Solutions
that combine both visual and auditory information, where au-
dition helps mainly in resolving ambiguities during occlusion,
have also been proposed [22].

Location has been shown to be an effective cue for computa-
tional systems that attempt to separate individual talkers in noisy
environments using only two microphones [23], [24]. The bin-
aural cues of interaural time differences (ITD) and interaural in-
tensity differences (IID) are strongly correlated with the source
locations in time–frequency (T–F) regions dominated by only
one source. Hence, with accurate locations, the binaural cues
can be used to segregate the original signals. However, in a real-
istic environment source motion and head movement have to be
considered and location estimates may have to be updated every
frame of data.

In this paper, we study the tracking of multiple speakers based
on the binaural response of a KEMAR dummy head that ac-
curately simulates the filtering process of the head, torso, and
external ear [25]. We propose a novel HMM framework where
the change in the number of active tracks is modeled proba-
bilistically. Specifically, the target space is modeled as a set
of subspaces with jump probabilities between them. Each sub-
space models the tracking of a subset of possible active sources.
Hence, unlike most previous methods, the detection of tracks
in the HMM is fully automatic and does not require heuristic
rules for track initialization and termination. Our approach ex-
tends an HMM-based model for multipitch tracking proposed
by Wu et al. [26], [27]. This approach resembles the HMM
tracking system proposed in [11]. The system in [11] is, how-
ever, tracking a mixed track whereas our system aims at pro-
ducing continuous tracks for each active source separately. Due
to the sparsity of speech signal distribution in a 2-D T–F rep-
resentation [28], some T–F units in a mixture signal are dom-
inated by only one source and thus provide reliable informa-
tion for localization. In this paper, the T–F decomposition is
obtained at the output of an auditory filterbank; the output of
each filter channel is divided in overlapping time sections that
correspond to T–F units. Because the binaural cues are strongly
correlated with source locations in the regions dominated by a
single source, peaky statistical distributions characterize the ob-
servations in the reliable frequency channels. Hence, for a given
time frame, we propose to use a channel selection mechanism to
determine the reliable channels followed by a statistical integra-
tion of these channels in order to obtain the likelihood function
for different target subspaces. A statistical approach to binaural
cue integration for sound localization has been proposed in [29].
Due to subband analysis, such binaural approaches have strong
potential for multisource localization. By comparison, standard
beamforming-based delay-of-arrival estimators such as varia-
tions of the MUSIC and ESPRIT algorithms require that the
number of sources is fewer than the number of microphones.

Fig. 1. Schematic diagram of the proposed multisource tracking system.

The rest of the paper is organized as follows: the next section
gives an overview of the system. Section III describes auditory
motion modeling. Section IV briefly describes the auditory pe-
riphery model and binaural processing. Section V contains de-
tails of the proposed statistical model. Section VI gives results
for tracking up to three simultaneous speakers in various con-
ditions as well as a comparison with a Kalman filter approach.
The last section concludes the paper.

II. MODEL ARCHITECTURE

Our multisource tracking system consists of the following
four stages: 1) a model of the auditory periphery and binaural
cue estimation; 2) a channel selection mechanism that identi-
fies reliable frequency channels in each time frame; 3) a mul-
tichannel statistical integration method that produces the likeli-
hood function for target subspaces; and 4) a continuous HMM
model for multisource tracking. Fig. 1 illustrates the model ar-
chitecture for the case of two moving sources.

The input to our model is a binaural response of a KEMAR
dummy head to an acoustic scene with multiple moving sources.
We utilize here the catalog of head related transfer functions
(HRTF) measured by Gardner and Martin [30] for anechoic
conditions at fixed source locations on a sphere around the
KEMAR. Interpolation is then used to obtain HRTF responses
for arbitrary positions on the sphere. HRTFs introduce a natural
combination of ITD and IID into the signals which is extracted
in subsequent stages of our model. Here, we restrict the motion
of individual sources to the half horizontal plane with azimuth
in the range 90 90 . The system is, however, extensible to
cover the entire azimuth range since ITD and IID used jointly
can potentially differentiate between the front and the back (see,
e.g., [29]). Hence, for each moving source, left and right ear
signals are obtained by filtering with time-varying HRTFs that
correspond to the source trajectory on the frontal semicircle.
The responses to multiple sources are added at the two ears and
form the binaural input to our system.

In the first stage, an auditory periphery model is used to ob-
tain a frequency decomposition of the left and right ear mixtures.
Then, for each frequency channel, normalized cross-correlation
functions between the two ear signals are computed in consecu-
tive time frames. The time lag of a peak in the cross-correlation
function is a candidate for ITD estimation. At higher frequen-
cies, multiple peaks are present and this creates ambiguity in
localization. In addition, IID is computed using the energy ratio
between the two ears independently in each T–F unit.

Frequency channel selection comprises the second stage of
our system. This stage attempts to select reliable channels de-



730 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 4, MAY 2008

fined as those dominated primarily by only one source while re-
moving the more corrupted ones. Here, we use the height of the
peak in the cross-correlation function as a measure of channel
reliability. The third stage is the multichannel integration of lo-
cation information. The conventional approach is to summate
the cross-correlation functions across all frequency channels
[23]. A peak in the summary cross-correlation suggests an ac-
tive source while the height of the peak indicates its likelihood.
This approach, however, under-utilizes the location informa-
tion in individual frequency channels. In our system, we con-
sider the statistical distribution of the ITD-IID estimates. Given
a configuration hypothesis, we first formulate the observation
probability of each channel supporting the hypothesis and then
employ an integration method to produce the likelihood of ob-
serving the configuration. For configurations with more than one
active source, a gating mechanism is used to associate the ob-
servations with one of the sources.

The last stage of the algorithm is to form azimuth tracks in a
continuous HMM framework. We propose an HMM model that
allows jumping between subspaces within which only a subset
of the total number of sources is active. The framework com-
bines the likelihood model from the previous stage, a model for
the dynamics of source motion, and jump probabilities between
the individual subspaces. Finally, optimal azimuth tracks are ob-
tained using the Viterbi decoding algorithm.

III. MODELING AUDITORY MOTION

For human audition, sound source localization is primarily
achieved with the binaural cues of ITD and IID. For a moving
sound, there are changes in ITD and IID that may provide ve-
locity information and enable the listener to perceive and track
the changing source location [31]. The transmission path be-
tween the acoustic source and the receiver contains many sub-
systems, i.e., the loudspeaker, the ear canal and the eardrum (mi-
crophone). Here, we use the diffuse-field equalized HRTFs for
which all the factors that are not location-dependent are elim-
inated. The HRTF catalog [30] provides 256 point impulse re-
sponses for a fixed number of locations residing on a 1.4-m ra-
dius sphere around the KEMAR head. In particular, the resolu-
tion in the horizontal plane is 5 azimuth. The sampling rate is
44.1 kHz.

An attractive property of HRTFs is that they are almost
minimum-phase [32]. Therefore, a standard way of modeling
HRTFs is to decompose the system into a cascade of a min-
imum-phase filter and a pure delay line [33]. The motivation
is that minimum-phase systems behave better than the raw
measurements for interpolation both in the phase and the mag-
nitude response. In addition, a minimum-phase reconstruction
of HRTF does not have perceptual alterations [34]. Here,
we reconstruct the minimum-phase part through appropriate

windowing in the cepstral domain. Specifically, the negative
cepstral coefficients are set to 0 and a minimum-phase filter
is then obtained by inverting the truncated cepstrum [35]. The
time delay part is estimated as the mean of the group delay in
the range of interest from 80 Hz to 5 kHz.

To simulate a continuous motion, the impulse response of an
arbitrary direction of sound incidence is obtained by interpo-
lating separately the minimum-phase filters and the time delays
corresponding to neighboring entries in the HRTF catalog. Since
we simulate motions in the horizontal plane, a simple two-way
linear interpolation is applied. The impulse response is then re-
constructed from the cascade of the resulting minimum-phase
filter and the time delay. Finally, to synthesize the binaural re-
sponse of the KEMAR dummy head to one moving source a
monaural signal is upsampled to 44.1 kHz and filtered with the
corresponding time-varying left and right impulse responses.
The filter is changed every time sample. The synthesized mul-
tiple sources are added at the two ears and fed to the tracking
system.

IV. AUDITORY PERIPHERY AND BINAURAL PROCESSING

It is widely acknowledged that cochlear filtering can be mod-
eled by a bandpass filterbank [36]. The filterbank employed
here consists of 128 fourth-order gammatone filters [37] with
channel center frequencies equally distributed on the equivalent
rectangular bandwidth (ERB) scale between 80 Hz and 5 kHz. In
addition, we adjust the gains of the gammatone filters in order
to simulate the middle ear transfer function [38]. In the final
step of the peripheral model, we use a simple model of hair cell
transduction that consists of half-wave rectification and a square
root operation. We note that, while the auditory system appears
to use the interaural differences between response envelopes at
high frequencies, the system proposed extracts ITD and IID cues
from the responses directly, hence sensitive to the fine structure
of the responses.

To extract ITD information, we employ the normalized cross-
correlation computed at lags equally distributed from ms to 1
ms using a rectangular integration window of
20 ms (corresponding to samples below). This range
of time lags encloses the plausible range for the human head.
The cross-correlation is computed for all frequency channels
and updated every 10 ms, according to the following formula for
frequency channel , time frame , and lag , as shown by (1)
at the bottom of the page, where refer to the left and right
peripheral output for channel , and their mean values over
the integration window, respectively. Each lag corresponding
to a peak in the cross-correlation function is considered an ITD
estimate. Peaks are identified by comparing a value with its
two neighboring values in the cross-correlation function, cor-
responding to a derivative operation. At higher frequencies, lo-
calization of narrowband sources is intrinsically ambiguous due

(1)
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to the periodic nature of the cross-correlation function. In addi-
tion, IID information is extracted for frequency channel and
time frame by computing the energy ratio at the two ears, ex-
pressed in decibels

(2)

V. STATISTICAL TRACKING

The problem of tracking the azimuths of multiple acoustic
sources is formulated here in an HMM framework. An HMM
is a doubly stochastic process where an underlying stochastic
(Markovian) process that is not directly observable (i.e.,
“hidden”) is observed through another stochastic process that
produces a sequence of observations [39]. An HMM is com-
pletely defined by the following: 1) the possible target state
space; 2) the transition probabilities that reflect the evolution of
the target states across time; and 3) the observation probabilities
conditioned on the target states, also known as the observation
likelihood. A state in the target space specifies what the active
sources are as well as their azimuth information at a particular
time frame. The target space is decomposed into subspaces;
each subspace corresponds to a subset of active sources. Hence,
the transition probability between states in neighboring time
frames must take into account both the jump probability be-
tween subspaces and the temporal evolution within individual
subspaces. Finally, a statistical model that integrates ITD and
IID observations in different frequency channels is used to
construct the observation likelihood in the target space. To
increase the robustness of the system, only frequency channels
that are dominated by a single source and thus deemed reliable
are considered in our statistical integration.

A. Dynamics Model

In a practical multisource tracking situation, the number of
active sources at a particular time is generally unknown. In this
study, we assume a maximum of three sources and aim to assign
separate tracks to each of the sources; the framework can be
extended for more sources. Hence, we define the target state
space as the union of eight possible subspaces as follows:

(3)

where is the silence space with no active source, is the
state space for a single active source is the state space for
two simultaneously active sources , and , and is the state
space for all three active sources. A state is represented as a 3-D
vector , where each dimension gives the
azimuth for the th source or indicates that the source is silent.

State transitions in a Markov model provide a standard statis-
tical framework for dealing with multiple dynamic models (e.g.,
[4]). Suppose that the state of the system at frame

, is in the subspace and the sources are inde-
pendent of each other. Note that is one of the eight possible

TABLE I
JUMP PROBABILITIES BETWEEN SUBSPACES WITH ZERO,

ONE, TWO, AND THREE ACTIVE SOURCES

subspaces described above. Then the state transitions are de-
scribed by

(4)

where is the jump probability between subspaces,
is the set of active sources at time frame , and

gives the temporal evolution of the th source.
The jump probabilities between state spaces of zero-, one-,

two- and three-sources in consecutive time frames are estimated
using 30 mixtures; each mixture consists of three speech utter-
ances from the TIMIT database with an average duration of 2.5 s
[40]. The speech utterances are selected to have similar lengths
in order to maximize the overlap. Speech activity detection is
performed separately on each individual utterance by using a
threshold on the signal energy. This enables the detection of the
number of active sources at each time frame in the mixture. We
assume that at most one source can be turned on or off during
one time frame. Also, the three one-source as well as the three
two-source subspaces are considered equally probable. The re-
sulting jump probabilities between the eight subspaces are re-
ported in Table I.

We assume that an active source moves slowly and follows
a linear trajectory with additive Gaussian noise. Also, when a
source transitions from silence to activity we assume a uniform
distribution in the azimuth space. Therefore, the dynamics of
the th source is described by

nil
nil

(5)

where nil stands for silence, denotes the Gaussian dis-
tribution with mean and standard deviation which is set to a
small value. denotes the uniform distribution in the azimuth
range .

B. Statistics of ITD and IID

For a particular T–F unit, the normalized cross-correlation
function of (1) has a maximum of 1 when the left and right sig-
nals are identical except for a time delay and an intensity dif-
ference. This condition is satisfied when only one source is ac-
tive in the corresponding T–F unit. The computed ITD and IID
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Fig. 2. ITD reference functions for three auditory channels with center fre-
quencies of 500 Hz, 1 kHz, and 3 kHz and azimuth in the range ���� � �� �.

reflect in this case the actual source location. However, when
sources from different locations are all strong in a T–F unit, the
left and right mixtures do not satisfy this condition anymore and
the maximum in the normalized cross-correlation function de-
creases. Moreover, ITD and IID deviate from the actual ITD/IID
reference values and can indicate phantom sources [23]. Hence,
we utilize the peak height of the cross-correlation function as
a measure of reliability in individual T–F units: A T–F unit is
considered reliable (i.e., dominated by only one source) and thus
selected if its peak height exceeds a threshold . The thresh-
olds are estimated so that 80% of all noisy T–F units are
rejected. A unit is considered noisy if the relative strength be-
tween target signal and interference is less than 0.2 where is
defined as the ratio between target energy and the sum of target
and interference energy. We observe that is a linearly de-
creasing function with respect to channel index . The threshold
varies between 0.95 and 0.5.

For each selected T–F unit, the estimated ITD and IID signal
a specific source location. By studying the deviation of the es-
timated ITD and IID values from the reference values, we can
derive the probability of one selected channel supporting a lo-
cation hypothesis. For each frequency channel, the reference
values are obtained from simulated white noise signals at loca-
tions in the azimuth range . Fig. 2 shows ITD values
for three auditory channels with center frequencies of 500 Hz,
1 kHz, and 3 kHz where the ITD corresponds to the lag of the
maximum peak in the cross-correlation function. As seen in the
figure, ITD is monotonic with respect to azimuth but has a slight
dependency on channel center frequency due to diffraction ef-
fects [41]. IID reference values for all frequency channels are
also shown in Fig. 3. Note that IID is highly dependent on both
channel frequency and azimuth.

Consider channel and azimuth for which the ITD and
IID reference values are and . Given a set of
selected peaks and the estimated ITD in a T–F unit, we define
the ITD and IID deviations as

(6a)

(6b)

Fig. 3. IID reference functions for frequency in the range 80 Hz–5000 Hz and
azimuth in the range ���� � �� �.

Fig. 4. Histogram of estimated ITD and IID deviations from reference values
for a channel with � � ��� kHz in the one-source scenario.

where is the lag of the closest peak in the cross-correlation
function to and is the estimated IID. Statistics of
the deviations and are collected separately for each fre-
quency channel across different time frames. Fig. 4 shows the
results of these deviations for a channel with center frequency

of 1.5 kHz. The ITD and IID deviations are obtained for the
one-source scenario using a small set of ten utterances from the
TIMIT database and various linear motion patterns. As seen in
the figure, both histograms are centered at zero and decrease
sharply on both sides of zero. Consequently, we model the joint
distribution of ITD and IID deviations in channel as a com-
bination of a Laplacian distribution, and a uniform distribution
which models the background noise

(7)

where is the noise level. is the 2-D
uniform distribution in the plausible range for
in lag step, and in dB. and

, where is the sampling frequency and
44 lag steps correspond to a delay of 1 ms. is the Lapla-
cian distribution with parameter defined by

(8)
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TABLE II
ESTIMATED MODEL PARAMETERS FOR ONE-SOURCE

AND MULTISOURCE CONDITIONS

We observe that the parameters are channel de-
pendent: decreases abruptly with increasing (or ),
whereas increases slowly. To obtain smooth parameters
across channels we use the following simple approximation:

(9a)

(9b)

Similarly, ITD and IID statistics are extracted for multisource
scenarios with two and three active sources. We employ a set
of ten binaural mixtures using the same utterances as in the
one-source situation and various linear motion patterns. For a
selected T–F unit, the dominant source is obtained by com-
paring the energies of the individual sources and the ITD and
IID deviations are computed relative to the dominant source.
While the deviations exhibit the same peaky distributions as in
the one-source scenario, their variance increases due to the mu-
tual interference between sources.

The maximum-likelihood (ML) method is then used to esti-
mate the parameters , and for the one-source and
the multisource scenarios assuming a fixed noise level across
all conditions and all frequency channels. This ensures that the
background noise and the unreliable channels do not influence
the comparison between one-source and multisource scenarios.
ML estimation is implemented empirically using the distribu-
tion given in (7) for the ITD/IID deviations in the datasets de-
scribed above. This estimation gives . The parameters

, and are reported in Table II.

C. Likelihood Model

In this subsection, we derive the conditional probability den-
sity , often referred to as the likelihood, which
statistically describes how a single frame of ITD and IID ob-
servations relate to the joint state of the source locations to
be tracked. Here, is the set of time lags corresponding to
the local peaks in the cross-correlation function, and is the
estimated IID for channel . The braces denote all frequency
channels.

First, we consider the conditional probability
for the one-source subspaces, i.e., . For channel
, we compute the deviations as described in (6) using as

reference values and , where refers to the
azimuth of the hypothesized active source. Then, the conditional
probability of the observations in channel with respect to the
one-source state is given by

if channel is selected
else

(10)

where the symbols are as described in (7) and (9) and the
parameters are estimated for the one-source scenario. Note
that the uniform background noise is assigned to an unreliable
channel in order to weigh similarly the noisy and the nonse-
lected channels.

By assuming independence between observations in different
channels, the conditional probability in a frame can be easily ob-
tained by multiplying the conditional probabilities in individual
channels. However, the observations are usually correlated due
to the wideband nature of speech signals and the overlapping
passbands of neighboring gammatone filters. This correlation
results in “spiky” distributions. This is known as the probability
overshoot phenomenon. To alleviate this problem, the observa-
tion probability in the current time frame conditioned on the
one-source state is smoothed using a root operation [42]:

(11)

where is the root number and is a normalization
factor.

Next, we consider the conditional probability
for the two-source case, i.e., . Similar
to the one-source case, we compute the deviations and
with respect to the th hypothesized source, where .
The conditional probability is identical for the three subspaces

and and the th source denotes one of the
two active sources in a given subspace. Observe that a selected
channel should signal only one source under the assumption that
only one speaker dominates a reliable T–F unit. Moreover, all
channels whose ITD and IID deviations with respect to the same
source are relatively small should support the same source hy-
pothesis. Consequently, we employ a gating technique to asso-
ciate channels with the hypothesized source. Specifically, we
label channel as belonging to the th source if the corre-
sponding deviations satisfy and ,
where is the gate size. Assume that the th source is the
stronger among the two (most selected channels are dominated
by the th source). Then the conditional probability for channel

under this assumption is given by

if channel not selected
if channel belongs to source

else
(12)

where all the parameters are derived for the multisource case.
Consider the case of a single active source at azimuth angle

such that all the estimates show only small deviations from
the reference values. The gating ensures that for a hypothesized
two-source state that contains azimuth , all the estimates are
associated with the source. In this case, the conditional prob-
ability for a selected channel is evaluated using the second line
of (12) and thus is computed only based on deviations from
irrespective of the value of the second azimuth. We thus avoid
fitting the data with a model of two-closely spaced sources when
only one source is active.

We apply integration of the individual probabilities across
all channels as done in (11) to give the conditional probability
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for the current time frame under the assump-
tion that the th hypothesized source is the strongest. Finally,
the conditional probability for the current time
frame is the larger of assuming either the first or the second hy-
pothesized source to be the stronger source

(13)

where is used to adjust the relative strength of the two-source
subspace.

Note that, without the gating mechanism, (12) and (13) sim-
plify to a simple max operation in the selected channels. How-
ever, this operation tends to overfit the data with a two-source
model by assigning the noisy observations produced by one
source to two closely spaced sources. As seen above, the gating
mechanism is one way to penalize the overfitting due to noise.

Similar to the two-source case, we consider the conditional
probability for the three-source case, i.e., .
Equations (12) and (13) are easily extensible to three sources by
considering all the three-source permutations and utilizing an
additional parameter to adjust the relative strength of the
subspace.

After training we set as follows: and .
Finally, we fix the probability of the current time frame condi-
tioned on the silence state, i.e.,

(14)

where . The above parameters provide different
weights for the individual subspaces. In addition to the actual ac-
tive sources, a few unreliable channels may align and thus indi-
cate the presence of a spurious source. The differential weights
exceed the probability produced by these channels and as a re-
sult the system avoids this spurious source occurrence.

D. HMM-Based Source Tracking

For the continuous HMM framework described above, the
state space and the time axis are discretized using 1 spacing
for azimuth and 10-ms time frames and the standard Viterbi al-
gorithm is employed in order to identify the optimal sequence
of states [43]. The algorithm attempts to reconstruct the initial
tracks of the most probable sound sources in the scene. Conse-
quently, the decision of the system at every time frame includes
the number of currently active sources and their estimated lo-
cations. The Viterbi algorithm used here is a batch algorithm,
although online versions exist that trade the precision of the so-
lution with speed [44].

The computational cost of our HMM framework is mainly
due to the large target space which increases with the maximum
number of sources considered. This cost can be reduced sig-
nificantly by employing several efficient implementation tech-
niques. First, the computations are performed in the log do-
main thus reducing the number of multiplication and root op-
erations. Second, pruning is used to reduce the number of states
to be searched for deciding the current candidate states. Since
the original tracks move slowly, the difference of azimuths in
consecutive time frames, hence search, can be restricted con-
siderably. Specifically, we allow an azimuth range of ,

Fig. 5. Source tracking for two crossing sources with linear motion. The solid
lines show the true trajectories where a gap indicates a pause in the sentence.
The “�” and “o” tracks correspond to the estimated tracks.

where is the standard deviation in the motion model of
individual sources. Finally, beam search is employed to reduce
the state space considered in the evaluation of the current time
frame [45]. In each time frame, beam searching is performed so
that any state whose maximum log probability falls more than
20 below the maximum of all states is not considered.

VI. RESULTS AND COMPARISON

The HMM tracking system presented in Section V has
been evaluated for one-, two- and three-source scenarios. As
described in Section III, binaural synthesis is used to simulate
moving sources in the auditory space of a KEMAR dummy
head. Given a binaural mixture as input, the system aims at
identifying the number of active speakers at a particular time
and constructing continuous trajectories for each of the sources.

Fig. 5 shows the result of tracking two simultaneous speakers:
one male and one female for a duration of 2.5 s. In this and sub-
sequent evaluations, the original speech utterances are equalized
to have the same energy level before binaural synthesis and ane-
choic conditions are assumed. As seen in the figure, the speakers
follow a linear motion with respect to the azimuth on the frontal
semicircle. The first speaker moves from 40 , which is on the
right side of the KEMAR, to on the left side while the
second speaker starts at and ends at 40 . Hence, the two
trajectories intersect each other in the middle. The system is able
to indicate when a source is active and to track the sources across
time as long as they are not masked by the interference. Two
types of gaps are detected by the system: when the source is
silent and when the source is masked across all frequency chan-
nels by the other source. While in Fig. 5 the system is able to
sequentially link the two sources across the intersection point,
in general our system provides no explicit mechanism for dis-
ambiguating intersecting source tracks.

Although linear motions are used during training, our system
works for nonlinear motions. Fig. 6 shows the result of tracking
one female and one male speaker moving on nonlinear trajecto-
ries consisting of two cosine azimuth paths that also cross each
other in the middle. Note that while the two source locations
are correctly identified across time, the system switches the tra-
jectories after the intersection point. However, as seen in Fig. 5,
our system could disambiguate between two tracks at a crossing
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Fig. 6. Source tracking for two crossing sources with nonlinear motion. The
solid lines show the true trajectories where a gap indicates a pause in the sen-
tence. The “�” and ’o” tracks correspond to the estimated tracks.

Fig. 7. Source tracking for two sources with closely spaced motions. The solid
lines show the true trajectories where a gap indicates a pause in the sentence.
The “�” and “o” tracks correspond to the estimated tracks.

point when the likelihood is dominated by a single continuous
source in the neighborhood of the point. In Fig. 5, the source
corresponding to the “ ” track is dominated by the source cor-
responding to the “ ” track around the crossing point, which
facilitates the tracking of the latter one and helps the disam-
biguation of the two tracks. Additional features could be incor-
porated into the model to help correctly associate targets with
tracks at the crossing points, such as spectral continuity of indi-
vidual sources.

Fig. 7 highlights the robustness of the system to close trajec-
tories. Two male speakers are moving on nonlinear trajectories
with respect to azimuth. The two trajectories are symmetric with
respect to the median plane. The first speaker oscillates on the
right side of the KEMAR while the second trajectory oscillates
on the left side. Note that the distance between the two trajecto-
ries can be as small as 10 when both speakers approach the me-
dian plane. As seen in the figure, the system makes associations
and reconstructs the two trajectories. In some cases, a strong
source may mask the presence of other sources, which results
in the gaps in the estimated tracks.

Fig. 8 shows results for a challenging scenario with three
speakers following nonlinear motions. Two male and one fe-
male utterances are used to obtain the three binaural signals.
The left ear signal for each speaker is displayed in Fig. 8(a), (b)
and (c), respectively. As seen in the figure, the system is able to

Fig. 8. Tracking three nonstationary moving sources. (a) Left ear signal for the
first speaker. (b) Left ear signal for the second speaker. (c) Left ear signal for the
third speaker. (d) Continuous tracks obtained by the proposed model. The solid
lines show the true trajectories where a gap indicates a pause in the sentence.
The “�,” “o,” and “ ” tracks correspond to the estimated tracks.

detect the pauses between words in the utterances. Such word
level accuracy is required in real speech applications where the
talkers may utter only a few words for the duration of a partic-
ular recording. Since we assume that at most one source can be
turned on or off during one time frame, there are no transitions
allowed between the one-source subspace and the three-source
subspace. In Fig. 8, the number of active sources in the time in-
terval [0.45 s, 0.5 s] changes between three sources to one source
and then to three sources again. This causes the switching of the
tracks corresponding to the first and the third speakers as seen
in Fig. 8(d).

We have systematically evaluated the performance of the pro-
posed system. Although our model deals with multisource situ-
ations explicitly, diffuse background is often present in acoustic
environments. To examine how our system functions in such
environments, our evaluation also includes some background
noise. We report results for the following conditions: 1) one
moving speaker with no background noise as well as with back-
ground noise at 40, 20, and 10 dB SNR, respectively; 2) two
moving speakers with an interspeaker separation of 30 and no
background noise as well as background noise of 40-dB SNR;
3) two moving speakers with an interspeaker separation of 10
and no background noise as well as background noise of 40-dB
SNR; and 4) three moving speakers with an interspeaker sep-
aration of 30 and no background noise as well as background
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TABLE III
SYSTEMATIC EVALUATION OF THE PROPOSED MODEL

noise of 40-dB SNR. The background noise is formed by adding
white noise independently to each of the two ear signals at a
specified SNR level. We assume that the speakers are moving at
a speed of 1 m/s on the frontal semicircle around the KEMAR
and thus the tracks for all the conditions here are linear; for ex-
ample, in the one-speaker scenario, the trajectory goes from 0
to 90 azimuth. A total of ten mixtures are used for each con-
dition, and the results are presented in Table III. The binaural
signals are simulated as before using speech utterances from the
TIMIT database. The left ear signals for individual sources are
equalized before summation. Table III shows the percentage of
frames where the number of sources is overestimated or under-
estimated, separately. Additionally, the accuracy of estimating
the source locations is given in the last column. At each frame,
the estimated locations are compared against the actual loca-
tions and the standard deviation is reported in the column. When
the number of sources is incorrectly estimated, the estimated az-
imuths closest to the actual ones are used in the calculation of the
standard deviation. The results in Table III show that, although
the error of estimating the number of sources increases going
from one source to three sources, the accuracy of tracking re-
mains reasonable. In addition, the system is robust to moderate
levels of background noise.

Finally, we compare our approach with a combination of
Kalman filtering and data association techniques proposed by
Sturim et al. [15] for the tracking of multiple speakers using
measurements from an array of 16 microphones. Fig. 9 shows
the extracted tracks using this Kalman filtering approach for
the same three source configuration as used in Fig. 8. For
azimuth estimation, we employ the skeleton cross-correlogram
described in [23] which is similar to the generalized cross-cor-
relation method. First, the time-delay axis for the normalized
cross-correlations is mapped to the azimuth axis using the
reference ITD values. Next, each peak in the cross-correlation
function is replaced with a narrow-width Gaussian and all the
individual channels are summed together. The results for the
summary cross correlation across time are shown in Fig. 9(a).
Here the brighter regions correspond to stronger activities. For
an anechoic situation, strong peaks are usually well correlated

Fig. 9. Tracking three nonstationary sources using a Kalman filter approach.
(a) Summarized cross correlation across time. (b) Continuous tracks using the
Kalman filter approach. The solid lines show the true trajectories where a gap
indicates a pause in the sentence. The “o” tracks correspond to the estimated
source locations.

with the active sources. Hence, at each time frame we select
all the azimuths corresponding to the prominent peaks in the
summary cross-correlation function. As seen in Fig. 9(a), this
representation exhibits spurious as well as missing peaks for a
considerable number of frames. Smoothing these observations
using Kalman filtering improves the location estimation. In
Sturim et al., the Kalman filter is used for the tracking of
single-source tracks [15]. Specifically, we use a second-order
autoregressive model for the source motion. In addition, a data
association algorithm is used to initialize and terminate tracks.
The new observations are associated with individual tracks
using acceptance regions that take into account the variance
of measurement noise and the possible target motion [15].
Observations that cannot be associated with any of the active
tracks are used in the initialization of a new track. The estimated
tracks obtained using this approach are presented in Fig. 9(b).
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Fig. 10. Source tracking for three stationary sources. The solid lines show the
true trajectories where a gap indicates a pause in the sentence. The “�,” “o,” and
“ ” tracks correspond to the estimated tracks.

Note that in the Kalman filter approach presented above there
is no correspondence between estimated tracks across time. This
differs from our system which uses the continuity of the tracks
at the boundaries between the one-, two-, and three-source sub-
spaces to reconstruct the individual tracks across time. A com-
parison between Figs. 9(b) and 8(d) shows that our HMM model
performs better in estimating the individual source locations. An
evaluation of the Kalman filter approach on the three-speaker
tracking task described in Table III results in 17% overesti-
mation, 31% underestimation, and an accuracy of 12.87 with
no background noise. With 40-dB SNR background noise, the
Kalman filter yields 17% overestimation, 32% underestimation,
and an accuracy of 10.14 . The slightly higher accuracy with
background noise is probably due to sensitivity to the track ini-
tialization and termination rules. Our model produces more ac-
curate tracking, while its underestimation error is substantially
higher and overestimation error is significantly lower.

VII. CONCLUSION

We have proposed a new approach for tracking multiple
moving sound sources. Our approach includes an across-fre-
quency statistical integration method for localization and an
HMM framework that imposes continuity constraints across
time for individual tracks along with a switching mechanism
for transition between subspaces corresponding to different
numbers of active sources. As a result, the system is able to
automatically detect the number of active sources at a given
time and provide accurate location estimates. Such a property
is highly desirable in speech applications where speakers spon-
taneously change locations and utter words in a sporadic way.

Our system may also be applied to multisource localization
of stationary sources. Fig. 10 shows such an example with
three stationary sources: one female speaker at 30 , one male
speaker at 0 , and another female speaker at 30 . The signals
for the three sources are equalized to have the same average
energy at the two ears. To demonstrate the system capability
to jump between the subspaces with zero, one, two, and three
sources, we let the three speech utterances start and end at
different times. As shown in the figure, the system correctly
detects the number of sources for a majority of time frames.
Moreover, the source locations are estimated to within 5 of the

Fig. 11. Source tracking for three stationary sources in a reverberant condition
(� � ��ms). The solid lines show the true trajectories where a gap indicates
a pause in the sentence. The “�,” “o,” and “ ” tracks correspond to the estimated
tracks.

true azimuths. This demonstrates the potential of our system in
localizing stationary sources. A standard localization method
for stationary sources summates the cross correlations across
both frequency and time [23]. Each prominent peak in the
resulting summary cross correlation indicates an active source.
However, such pooling often leads to spurious or missing peaks,
which in turn result in significant tracking errors. Tracking of
individual sources across time as well as detecting the number
of sources in each time frame gives a detailed description
which may be necessary for improved accuracy in multitalker
scenarios.

The current system does not consider reverberation. To ex-
amine whether the system can tolerate mild reverberation, we
simulate binaural mixtures for the same three source scenario
described above in a mildly reverberant condition. The left and
right reverberated impulse responses are simulated using the
image acoustic model described in [46] on the same HRTF data-
base used above. The reverberation time is ms (
is the time required for the sound level to drop by 60 dB fol-
lowing the sound offset). The results are given in Fig. 11, and
show that our system is able to estimate the number of sources
in most frames at the expense of decreased accuracy. Under re-
verberation, ITD and IID cues are smeared due to the multiple
reflections of a sound source [47]. Our channel selection based
on cross correlation can be used as a simple technique for in-
tegrating the binaural cues in T–F units with relatively little re-
verberation. Consequently, as seen in Fig. 11, our system is able
to function to some extent. However, future research is required
in order to make the system robust to room reverberation. It is
well known that the acoustic onsets are generally unaffected by
reflections, and hence they can inform the system on when to
perform localization so as to minimize the adverse effects of
reverberation. In [48], robust acoustic onset detection is investi-
gated for binaural localization which incorporates a physiolog-
ically inspired model for a precedence effect. The coupling of
such onset detectors with our statistical integration framework
can potentially improve the performance of our system in rever-
berant conditions.

Although we have considered a maximum of three sources,
our tracking framework is extensible to an arbitrary number of
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sources. With increased number of sources, the number of re-
liable channels decreases, and hence the dynamics part of the
model should play a more dominant role. However, the state
space grows exponentially with the number of sources, and thus
efficient pruning strategies will become increasingly necessary.
Also, the system needs to incorporate additional information in
order to robustly identify possible direction changes at crossing
points, such as spectral and pitch continuity. These issues as
well as adaptation of our system to robust tracking in real envi-
ronments require further research.
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