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Abstract

In everyday listening, both background noise and 
reverberation degrade the speech signal. While monaural 
speech separation based on periodicity has achieved 
considerable progress in handling additive noise, little 
research has been devoted to reverberant scenarios. 
Reverberation smears the harmonic structure of speech 
signals, and our evaluations using a pitch-based separation 
algorithm show that an increase in the room reverberation 
time causes degradation in performance due to the loss in 
periodicity for the target signal. We propose a two-stage 
monaural speech separation system that combines the inverse 
filtering of the room impulse response corresponding to target 
location with a pitch-based speech segregation method. As a 
result of the first processing stage, the harmonicity of a signal 
arriving from target direction is partially restored while signals 
arriving from other locations are further smeared, and this 
leads to improved separation. A systematic evaluation shows 
that the proposed system results in considerable signal-to-
noise ratio gains across different conditions.   

1. Introduction 

In a natural environment, a desired speech signal often occurs 
simultaneously with other interfering sounds such as echoes 
and background noise. While the auditory system excels at 
separating speech from such complex mixtures, simulating 
this perceptual ability computationally remains a great 
challenge. Our monaural study is motivated by the following 
two considerations. First, a one-microphone solution to sound 
separation is highly desirable in many applications including 
automatic speech recognition and hearing aids. Second, 
although binaural listening improves speech intelligibility in 
anechoic conditions, this binaural advantage is largely 
eliminated by reverberation [1] which emphasizes the 
dominant role of monaural hearing in realistic conditions. 

According to Bregman, the auditory system employs 
various cues including fundamental frequency (F0), onset 
time and location in a process known as auditory scene 
analysis (ASA) [2]. This theory has inspired a series of 
computational ASA (CASA) systems (see [3] for a review). 
At the core of these systems is a time-frequency (T-F) mask 
which selectively weights the acoustic mixture in order to 
enhance the desired signal. An ideal binary mask has been 
proposed as the computational goal for CASA [4]. Such a 
mask can be constructed from a priori knowledge about target 
and interference; specifically a value of 1 in the mask 
indicates that the target is stronger than the interference and 0 
indicates otherwise. Speech reconstructed from ideal binary 
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 has been shown to be highly intelligible even when 
ted from multi-source mixtures and also to produce 
ntial improvements in robust speech recognition [5] [6].  
onaural separation of voiced speech has been studied 

usly by exploiting primarily pitch information (see e. g., 
]). In this paper, we propose a pitch-based speech 
ation method that follows the same principles as the 
 in [8] while simplifying the calculations required for 

ting periodicities. The system shows good performance 
tested with a variety of noise intrusions in anechoic 
ions. However, when pitch varies with time in a 
erant environment, reflected waves with different F0s 
simultaneously at the ear. This multipath situation 

 smearing of the signal in the sense that harmonic 
re is less clear in the signal [1]. Due to this loss of 
nicity, the performance of pitch-based segregation 
es in reverberant conditions. 
ne method for removing the reverberation effect is to 
he reverberant signal through a filter that inverts the 
eration process and hence reconstructs the original 
 However, for one-microphone recordings, perfect 
truction exists only if the room impulse response is a 
um-phase filter. Several strategies have been proposed 
mate the inverse filter in unknown acoustical conditions 
] [11]. In particular, the system developed by Gillespie 
stimates the inverse filter from an array of microphones 
an adaptive gradient-descent algorithm that maximizes 
rtosis of linear prediction (LP) residuals [10]. The 
tion of LP residuals results in both a reduction of 

ved reverberation as well as an improvement of spectral 
 in terms of harmonicity. In this paper, we employ a 

icrophone adaptation of this strategy proposed in [12]. 
 this paper, we investigate the effect of inverse filtering 
processing for a pitch-based speech segregation system 
der to improve its robustness in a reverberant 
nment. The key idea is to estimate the filter that inverts 
m impulse response corresponding to the target source. 

ffect of applying this inverse filter on the reverberant 
e is two-fold: it improves the harmonic structure of 
signal while smearing those signals originating at other 
ns. We show that the inverse filtering stage improves 
paration performance of the proposed pitch-based 
 using signal-to-noise ratio (SNR) evaluations. To our 

edge, the proposed system is the first study that 
ses monaural speech segregation with room 
eration.  
he paper is organized as follows. Section 2 gives a 
d presentation of the model. Section 3 gives systematic 
 on pitch-based segregation both in the reverberant and 
erse-filtered condition. Section 4 concludes the paper.  



2. Model Architecture 

The speech received at one ear in a reverberant enclosure 
undergoes both convolutive and additive distortions: 

( ) ( ) ( ) ( ),y t h t s t n t                                (1)     

where ‘ ’ indicates convolution. s(t) is the clean target 
signal,  h(t) is the room impulse response from the target 
location to the ear, and n(t) is background noise. We propose a 
two-stage model for speech segregation: 1) inverse filtering 
with respect to target location in order to enhance the 
periodicity of target signal; 2) pitch-based speech segregation. 
The details are presented in the following two subsections. 

2.1. Target inverse filtering 

As described in the introduction, inverse filtering is a standard 
method for dereverberating the target. We employ the inverse 
filtering algorithm implemented in [12] which attempts to 
blindly estimate the inverse filter from one-microphone 
reverberant speech data. Based on the observation that peaks 
in the LP residual of speech are smeared under reverberation, 
an online adaptive algorithm estimates the inverse filter by 
maximizing the kurtosis of the inverse-filtered LP residual of 
reverberant speech ( )z t :

( ) ( )g yT
rz t t ,                (2) 

where ( ) [ ( 1), , ( 1), ( )]yr r r rt y t L y t y t  and ( )ry t  is 
the LP residual of the reverberant speech from the target 
source, and g is an inverse filter of length L. The inverse filter 
is derived by maximizing the kurtosis of ( )z t .
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Figure 1. (a) A room impulse response for a target source 
simulated in the median plane. (b) The effect of convolving the 
impulse response in (a) with the derived inverse filter. (c) A 
room impulse response for one interfering source at 45
azimuth. (d) The effect of convolving the impulse response in 
(c) with the derived inverse filter.  

The system is trained in the absence of interference on 
reverberant speech from the target source sampled at 16 kHz. 
We employ a training corpus consisting of ten speech signals 
from the TIMIT database: five female utterances and five 
male utterances. An inverse filter of length L=1024 is adapted 
for 500 iterations on the training data. Figure 1 shows the 
outcome of convolving an estimated inverse filter with both 
the target room impulse response as well as the room impulse 
response at a different source location. The T60 room 
reverberation time is 0.35 s (T60 is the time required for the 
sound level to drop by 60 dB following the sound offset). As 
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 seen in Fig. 1(b), the equalized response for the target 
 is far more impulse-like compared to the room impulse 
se in Fig. 1(a). On the other hand, the impulse response 
ponding to the interfering source is further smeared by 
erse filtering process, as seen in Fig. 1(d). 

onaural speech segregation 

ral CASA systems generally perform speech 
ation using periodicity information following two 
: 1) segmentation and 2) grouping. In particular, a recent 
 proposed by Hu and Wang shows good performance 

 a variety of additive noise conditions [8]. In the low-
ncy range, the system generates segments based on 
ral continuity and cross-channel correlation, and groups 
according to their periodicity. In the high frequency 
 the signal envelope fluctuates with the pitch rate and 
stem makes use of amplitude modulation (AM). The 
ation mechanism produces a binary mask which selects 
requency (T-F) units where the target signal dominates 
erference.  
 this paper, we propose a pitch-based segregation 

d that follows the same principles as the Hu and Wang 
 while simplifying the calculations required for 
ting periodicities. The proposed system incorporates a 
gram-based labeling strategy which while being 
r produces a more robust feature in the high frequency 
compared to the AM rate computation in [8]. For pitch 
tion, we employ a multi-pitch tracking algorithm which 
tes up to two pitch contours [13]. The system needs 
ment of overlapping pitch contours in the case of a 
nic interference. For this, we use as ground truth the 
 pitch contour extracted by Praat from the target signal.  
he signal provided by the inverse filtering stage is 
 through a bank of 128 fourth-order gammatone filters. 
pes are extracted in the high frequency channels as 
s. A Teager energy operator is applied to the signal. 
s defined as 2( ) ( ) ( 1) ( 1)E t x t x t x t  for a signal 
Then, the signals are low-pass filtered at 800 Hz using a 
rder Butterworth filter and high-pass filtered at 64 Hz 
inally, correlograms are computed using the normalized 
rrelation function in each frequency channel at 10 ms 
ls using time windows of 20 ms.  
he labeling of a T-F unit is carried out by comparing the 
ted pitch lag p with the periodicity of the correlogram, 
n the low-frequency range, the system selects the time 
at corresponds to the closest peak in A(n) from the pitch 
r a particular channel, the distribution of selected time 
 sharply centered around the pitch lag and its variance 
ses as the channel center frequency increases. Here, a 
it is discarded if the distance | p – l | between the two 
xceeds a threshold L . We have found empirically that 
e of 0.15* ( / )L sF F  results in good performance, 
 sF  is the sampling frequency and F is the center 
ncy of the channel. Finally, the unit is labeled 1 if ( )A l
e to the maximum of A(n) in the plausible pitch range: 

[32,200]

( )
max ( ) P

A l
A n

,                       (3)  

 P  is fixed to 0.85. The unit is labeled 0 otherwise. 



Figure 2. Histograms of selected peaks in the high-frequency 
range (>800 Hz) for a male utterance. (a) Results for the 
reverberant target signal. (b) Results for the inverse filtered 
target signal. 

In the high-frequency range, we adapt the peak selection 
mechanism developed in [13]. First, the envelope-based 
correlogam ( )EA n  of periodic signals exhibits a peak both at 
the pitch lag and at the double of the pitch lag. Thus, the 
system selects first all the lags such that a peak exists at that 
lag and another peak exists within a 5 percent tolerance from 
the double of that lag. If no peaks are selected, the T-F unit is 
labeled 0. Second, a harmonic introduces peaks at lags around 
the multiple of its pitch lag. Therefore, our system selects the 
first peak that is higher than half of the maximum peak in 

( )EA n  for [32,200]n . The T-F unit is labeled then 1 if the 
distance between the time lag of the selected peak and the 
target pitch lag does not exceed the threshold 15 , the unit 
is labeled 0 otherwise. All the above parameters were 
optimized by using a small training set and found to generalize 
well over the test set. 

The distortions on harmonic structure due to room 
reverberation are generally more salient in the high-frequency 
range. Figure 2 illustrates the effect of reverberation as well as 
inverse filtering in frequency channels above 800 Hz for a 
single male utterance. At each time frame, we display the 
histogram of time lags corresponding to selected peaks. As 
can be seen from the figure, inverse filtering results in sharper 
peak distributions and improved harmonicity in comparison 
with the reverberant condition. Moreover, the channel 
selection mechanism retains 79 percent of the total signal 
energy by applying inverse-filtering as compared to 58 
percent without inverse filtering. 

The final segregation of the acoustic mixture is based on 
combined segmentation and grouping. The motivation is to 
improve on the T-F unit labeling using segment-level features. 
Here, we combine the labeling described above with the 
segmentation framework proposed in [8]. The result of this 
process is a binary mask that assigns 1 to all the T-F units in 
the target stream and 0 otherwise. Finally, segregated target 
speech is resynthesized from the resulting T-F binary mask.  

3. Results 

We have evaluated the system on the left-ear response of a 
KEMAR dummy head, simulated using the room acoustic 
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 described in [14] for a small rectangular room 
m 3m). The position for the KEMAR is fixed in a 
 at (2.5m 2.5m 2m) while the sources are located at 1.5 

 the receiver. In all cases, the target is fixed at 0  and 
terference is at 45 , unless otherwise specified. The 
e filter of the target room impulse response is estimated 
he training data as explained in Section 2.1 and applied 
 whole reverberant mixture. We asses the performance 
 pitch-based segregation system in two conditions: 1) 
tructing the reverberant target from the reverberant 
e and 2) reconstructing the inverse-filtered target from 
ered mixture.  
iven our computational objective of identifying T-F 
s where the target dominates the interference, we use 
nal reconstructed from the ideal binary mask as the 
 truth in our SNR evaluation: 

2 210log10 ( ) ( ( ) ( ))IBM IBM E
t t

NR s t s t s t ,       (4) 

 ( )IBMs t  represents the target signal reconstructed using 
eal binary mask and ( )Es t  the estimated target 
tructed from the binary mask produced by our model. 
e perform SNR evaluations using as target the set of 10 

 male sentences collected by Cooke for the purpose of 
ting voiced speech segregation systems (see also [8]). 
llowing 5 noise intrusions are used: white noise, babble 
music, a female utterance and a male utterance. These 
ons represent typical acoustical interferences occurring 
l environments. Each value in the following tables 
ents the average output SNR of one particular intrusion 
 with the 10 target sentences. 
able 1 shows the performance of our pitch-based speech 
ation system applied directly on reverberant mixtures 
the reverberation time increases from 0.05 s to 0.35 s. 
ixtures are obtained by mixing the reverberant target 
 with a female speech utterance at 3 SNR levels: -5 dB, 
5 dB. The ideal pitch contours are used here to generate 
sults. As expected, the system performance degrades 
lly with increasing reverberation. The decrease in 

mance for T60 = 0.35 s compared to the anechoic 
ion ranges from 4.23 dB at -5 dB input SNR to 7.80 dB 
dB input SNR. Overall, however, the segregation 
hm provides consistent gains across a range of 
eration times, showing the robustness of the pitch cue. 
e that a sizeable gain of 9.55 dB is obtained for the – 5 
ut SNR even when T60 = 0.35 s. 
ow we analyze how inverse-filtering pre-processing 

ts the overall performance of our speech segregation 
. The results in Table 2 are given for both the 
erant case (R) and inverse-filtered case (I-F) at three 
evels: -5 dB, 0 dB and 5 dB. The performance depends 
put SNR and type of interference. A maximum 
ement of 12.46 dB is obtained for the female 

rence at -5 dB input SNR. The proposed system (I-F) 
 average gain of 10.11 dB at -5 dB, 6.45 dB at 0 dB and 
.55 dB at 5 dB. When compared to the reverberant 

ion a 2-3 dB improvement is observed for the male and 
 intrusions at all SNR conditions. Almost no 
ement is observed for white noise or babble noise. 
ver, inverse filtering decreases the system performance 



in the case of white noise at low SNRs by attempting to over-
group T-F units in the high frequency range.

Table 1. Output SNR results for different reverberation times. 
Reverberation Time -5 dB 0 dB 5 dB 

Anechoic 8.78 11.61 13.93 
T60=0.05 s 7.25 8.54 10.65 
T60=0.10 s 7.35 8.16 9.46 
T60=0.15 s 6.37 7.09 8.24 
T60=0.20 s 5.59 6.52 7.39 
T60=0.25 s 4.74 6.06 6.79 
T60=0.30 s 4.47 5.57 6.22 
T60=0.35 s 4.55 5.36 6.13 

Table 2. Output SNR results for target mixed with different 
noise types at T60 = 0.35 s. Target at 0  and noise at 45 .

Input SNR -5 dB 0 dB 5 dB 

 R I-F R I-F R I-F 

Female 3.21 4.90 4.61 6.42 5.70 7.71 
Male 0.92 2.71 3.50 4.89 5.27 6.93 

White noise 4.07 4.32 5.17 5.5 5.8 6.99 
Babble noise 0.85 1.26 2.97 3.78 4.78 6.00 
Rock Music 2.76 3.64 4.49 5.61 5.64 7.10 

Average 2.36 3.36 4.14 5.24 5.43 6.94 

Table 3. Output SNR results for target mixed with different 
noise types at T60 = 0.35 s. Target and noise at 0 .

Input SNR -5 dB 0 dB 5 dB 

 R I-F R I-F R I-F 

White noise 6.37 6.76 6.30 6.82 6.21 7.28
Female 4.82 5.51 5.74 6.65 6.28 7.57

Table 3 shows results when the interference location is 
fixed at 0 , the same as the target location. As expected, in the 
white noise case, the SNR gains are similar to the ones 
presented in Table 2. However, for the female speech 
interference, the relative improvement obtained using inverse 
filtering is largely attenuated to the range of 0.5-1 dB. This 
shows that smearing the harmonic structure of the interfering 
source plays an important role in boosting segregation 
performance. 

Finally, we compare our system with spectral subtraction 
which is a standard speech enhancement technique. For this, 
the SNR is computed using the reverberant target as ground 
truth for the spectral subtraction and the inverse-filtered target 
as ground truth for our system. Spectral subtraction performs 
significantly worse than our system, especially at low levels of 
input SNR because of its well known deficiency in dealing 
with non-stationary interferences. For example, at -5 dB input 
SNR, the average output SNR is -1.81 dB compared to the 
4.01 dB produced by our system. At high input SNR, 
however, spectral subtraction although does not remove all the 
noise it introduces little distortion to the target signal. By 
comparison, our system does not retain the inharmonic target 
components. Hence, spectral subtraction performs slightly 
better than our system in those cases.  
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4. Conclusion 

ave investigated pitch-based monaural segregation in 
reverberation and report the first systematic results on 
allenging problem. Reverberation causes huge problems 
ch-based segregation systems due to the smearing of 
nic structure. To reduce the smearing effects on the 
speech, we have proposed a pre-processing stage which 
zes the room impulse response that corresponds to target 
n. Extensive evaluations show that our system yields 
ntial SNR gains across a variety of noise conditions. 
ding to ASA, auditory cues such as onsets, acoustic-
tic properties of speech are also important for monaural 
tion. Future work will therefore attempt to utilize these 
 enhance the current performance. 
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