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ABSTRACT 
 
 

We present a novel method for binaural sound segregation from 
acoustic mixtures contaminated by both multiple interferences 
and reverberation. We employ the notion of an ideal time-
frequency binary mask, which selects the target if it is stronger 
than the interference in a local time-frequency (T-F) unit. As 
opposed to classical adaptive filtering which focuses on the 
suppression of noise, our model employs an adaptive filter that 
performs target cancellation. T-F units dominated by target are 
largely suppressed at the output of the cancellation unit when 
compared to units dominated by noise. Consequently, the actual 
input-to-output attenuation level in each T-F unit is used to 
estimate an ideal binary mask. A systematic evaluation in terms 
of automatic speech recognition performance shows that the 
resulting system produces masks close to ideal binary ones. 

 
 
 
 

1. INTRODUCTION 
 
Human listeners are able to segregate and recognize a sound 
signal from a background of acoustic interference even under 
adverse conditions. The auditory scene analysis (ASA) process 
described by Bregman involves grouping elements that are likely 
to have originated from the same source into a perceptual 
structure called an auditory stream. Our focus is on 
computational approaches to ASA that exploit the information to 
detect time-frequency (T-F) units that preserve reliable 
information for the target sound. Therefore, the computational 
goal is to estimate an ideal binary mask which selects T-F units 
where the target energy dominates [1]. Such ideal binary masks 
have been shown to be effective front-ends for robust automatic 
speech recognition [2][3] and to provide speech intelligibility 
improvements for normal listeners under noisy conditions [3].  

Location-based segregation algorithms have reported very 
good results for multi-talker scenarios under anechoic conditions 
[2], [4], [5]. The underlying assumption in those systems is that 
time delays and attenuation levels are reliable cues for sound 
segregation which show location-based characteristic clustering. 
In the reverberant conditions, anechoic modeling of time delayed 
and attenuated mixtures is inadequate. Reverberation introduces 

potentially an infinite number of sources due to reflections of 
sound sources against the surfaces of an enclosure. As a result, 
the location cues estimated in individual T-F units become 
unreliable when reverberation increases and the system 
performance degrades under realistic conditions. A notable 
exception is the system proposed by Palomaki et al. that 
combines both binaural-based grouping and reverberation 
masking and have shown improved speech recognition results in 
reverberant conditions [6].     

Other approaches to sound separation include the classical 
two-microphone adaptive beamformers which can cancel almost 
perfectly one interference under optimal conditions. The 
performance, however, degrades rapidly when the number of 
sources and the reverberation level increase. A subband adaptive 
scheme has been proposed by Liu et al. [7] to address the multi-
source problem. Their two-microphone system exploits the 
location information to steer independent nulls that suppress the 
strongest interference in each time-frequency unit. However, the 
underlying signal model is still anechoic and performance 
gradually degrades in echoic conditions. As an extension to Liu’s 
method, one could potentially switch adaptive filters to obtain 
better suppression in individual T-F units, except that it requires 
exact knowledge for each individual interference.  

The model proposed here is motivated by the need to find a 
two-microphone solution to target segregation in real world 
conditions when the acoustic scene is contaminated by both 
strong reverberation and the presence of multiple concurrent 
sound sources. We propose a method for sound segregation 
centered on target cancellation through adaptive filtering. We 
observe a correlation between the amount of cancellation 
produced in individual T-F units and the relative strength 
between target and interference. Consequently, a threshold on the 
input-to-output attenuation level is employed to estimate an ideal 
binary mask. Related work includes the system proposed by 
Alvarez et al. [8], which combines a first-order differential 
beamformer to obtain a noise estimate by suppressing one of two 
sources and spectral subtraction to simultaneously enhance the 
sound sources.  

The rest of the paper is organized as follows. The next 
section defines the problem and contains a detailed presentation 
of the model. Section 3 gives simulation results and the last 
section concludes this paper. 
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Figure 1. Schematic diagram of the model proposed. The input 
signal is a mixture of reverberant target sound and acoustic 
interference. At the core of the system is an adaptive filter for 
target cancellation. The output of the system is an estimation of 
the ideal binary mask. 

 
 

2.  MODEL ARCHITECTURE 
 
The proposed model consists of two stages as shown in Fig. 1. In 
the first stage, the system performs target cancellation through 
adaptive filtering. In the second stage, the system labels as 1 
those T-F units that have been largely attenuated in the first stage 
since those T-F units are likely to have originated from the target 
location. 

The model of the input signal as shown in Fig. 1, assumes 
that a desired speech source S has been uttered in a reverberant 
enclosure and recorded by two microphones to produce the 
signal pair (X1, X2). It is assumed that the transmission path from 
the target location to the microphones is a linear system and is 
modeled as (X1=H1S, X2=H2S). In this problem formulation, the 
challenge arises when an unwanted interference pair is also 
present at the input of the microphones (N1, N2). The interference 
here is a combination of multiple reverberant sources and diffuse 
background noise. The target is assumed fixed but there are no 
restrictions imposed on the number, location or content of the 
interfering sources. In realistic conditions, the interference can 
suddenly change its location and may contain short impulsive 
sounds. Under these conditions, it is hard to localize each 
individual source in the scene. The goal is therefore to remove 
the noise part and recover the reverberant target speech based 
only on the spatial information of the target source. 
Dereverberation can be potentially employed as a post-
processing stage of our model in order to recover the speech 
source S [9]. 

The objective here is to develop an efficient mechanism for 
estimating an ideal binary mask, which selects the T-F units 
where the a priori local SNR exceeds a 0-dB threshold. The 
relative strength between the target signal and interference for a 
T-F unit (ω, t) is defined as: 
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where ),(1 tX ω  and ),(1 tN ω  are the spectral estimates for 
signal and noise, respectively, at  microphone 1 (assume 
microphone 1 as the primary microphone). Thus, a T-F unit is set 
1 in the ideal binary mask if the relative strength exceeds 0.5, 
otherwise it is set 0. 

In the classical noise cancellation configuration, the filter 
learns to identify the differential acoustic transfer function of a 
particular noise source. This kind of system is unable to cope 
well under multiple concurrent noise sources and diffuse 
background noise. As an alternative, we propose to use the 
adaptive filter to produce target cancellation and denote the 
module as the “target cancellation module” (TCM). In the 
experiments reported here, we assume a fixed target location and 
the system is trained in the absence of interference on calibration 
sequences of white noise of 10 s duration. We implement the 
adaptation using the Fast-Block LMS algorithm with an impulse 
response of 120 ms length (6000 samples at 44.1 kHz sampling 
rate) [10]. The signals are resynthesized and a shorter time-
frequency analysis is applied to both the TCM output Z(ω, t) and 
the input at the primary microphone Y1(ω, t). The time-frequency 
resolution is 40-ms time frames with a 20-ms frame shift, and 
512 DFT outputs. Frames are extracted by applying a running 
Hamming window to the signal. 

As a measure of signal suppression at the output of the 
TCM unit, we define the output-to-input energy ratio as follows: 
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Consider a T-F unit for which the noise is zero. Ideally, the 

TCM module cancels perfectly the target source resulting in a 
zero output and therefore 0),( →tOIR ω . On the other hand, T-
F units dominated by noise are not suppressed by the TCM and 
thus 0),( >>tOIR ω . Thus, a simple binary decision can be 
implemented by imposing a threshold on the estimated output-to-
input energy ratio. The estimated binary mask is 1 in those T-F 
units where )(),( ωθω >tOIR , otherwise is 0. 
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Figure 2. Scatter plot of the estimated relative strength and 
output-to-input attenuation for a frequency bin with center 
frequency of 1 kHz. The white dotted line corresponds to the –6 
dB threshold used in the binary mask estimation. 
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Figure 2 shows a scatter plot of the estimates of relative strength 
R and output-to-input ratios OIR obtained for individual T-F 
units corresponding to a frequency bin of 1 kHz. The results are 
extracted from 100 mixtures of target speech mixed in the four 
speaker noise condition at 5 dB SNR. Observe that there exists a 
correlation between the amount of cancellation in the individual 
T-F units and the relative strength between target and 
interference. Throughout this paper, we have used a fixed  
threshold of –6 dB for the output-to-input energy ratio as 
suggested by our informal listening experiments. As indicated in 
the figure this threshold achieves almost complete noise removal 
at the expense of some speech energy loss. This threshold can be 
optimized for a particular application and SNR presentation. 
 

 
3. RESULTS 

 
We have evaluated the system on a binaural stimulus, simulated 
using a room acoustic model as described in [6]. The reflection 
paths of a sound source are obtained using the image 
reverberation model for a small rectangular room (6m×6m×3m). 
The resulting impulse response is convolved with the measured 
head related impulse responses (HRIR) from a KEMAR dummy 
head in order to produce two binaural inputs to the system [11]. 
The position of the listener was fixed asymmetrically at 
(2.5m×2.5m×2m) to avoid obtaining near identical impulse 
responses at the two microphones. All sound sources are 
presented at different angles at a distance of 1.5 m from the 
listener. For all our tests, target is fixed at 0° azimuth.  Two noise 
configurations are tested: 1) an interference of rock music at 45° 
(condition NC1) and 2) four concurrent speakers (two female  
and  two  male  utterances)  at  azimuth  angles of -135°, -45°, 
45° and 135° (condition NC2). To make the two situations more 
comparable, the interference containing the four superimposed 
speakers has been edited and the initial and last speech pauses 
deleted. In all our tests, the input SNR corresponds to the global 
SNR using the reverberated target speech as the signal. 

An example of speech target extraction is presented in Fig. 
3. The interference consists of four simultaneous speakers at a 0 
dB SNR presentation. As seen from the figure, the extracted 
signal is very similar to the original one. Informal listening 
shows that the system filters out the acoustical interference and 
preserves a highly intelligible target signal. 

We perform an SNR evaluation for the two conditions using 
10 speech signals from the TIMIT database as target, and results 
are given in Table I and Table II. In order to completely assess  
the system performance, both the output SNR and the retained 
speech ratio (RSR) are computed as follows: 
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where o(t) corresponds to the original target signal, s(t) the 
target signal resynthesized through the estimated mask and 
n(t) the noise signal resynthesized through the same mask. 
Results show SNR improvements in the range of 7-15 dB 
while preserving much of the target energy (70-90%). Observe 

that the system performance degrades at lower SNR values 
because of the increased overlap between the target signal and 
the noise. The speech energy loss may be improved by 
imposing a higher threshold on the output-to-input attenuation 
level at the expense of increasing the residual noise. 

 
 

Table I: SNR evaluation for a one-source interference. 
 

MIXTURE SNR -5 0 5 10 
OUTPUT SNR 10.5 14.5 17.0 20.32 

RSR(%) 77 83 88 90 
 
 

Table II: SNR evaluation for a four-speaker interference. 
 

MIXTURE SNR -5 0 5 10 
OUTPUT SNR 2.7 8.5 13.2 17.6 

RSR(%) 57 75 84 89 
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Figure 3: (a) Target speech recorded at the primary microphone. 
(b) Mixture of target speech presented at 0° and four interfering 
speakers at locations  -135°, -45°, 45° and 135° at the primary 
microphone. SNR presentation level of 0dB. (c) Segregated 
target signal. 

 
We also evaluate the performance of our system in a speech 

recognition task using the missing-data technique as described in 
[3]. In this approach, a hidden Markov model recognizer is 
modified such that only those acoustic features indicated as 
reliable in a binary mask are used during decoding. Hence, it 
works seamlessly with the output from our speech segregation 
system. We have implemented the missing data algorithm with a 
512 coefficient DFT feature vector. More specifically, each 
feature vector is extracted by computing the log-compressed 
energy in frames of 20 ms with 10 ms overlap. Frames are 
extracted by applying a running Hamming window to the signal. 
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We use the bounded marginalization method for classification 
[3]. The task domain is recognition of connected digits, and both 
training and testing are performed on acoustic features from the 
right ear signal using the male speaker dataset in the TIDigits 
database. 

Figure 4 shows the speech recognition results based on the 
binary masks estimated by our system for condition NC1 (Fig. 
4A) and condition NC2 (Fig. 4B). For all tests, the same male 
target speaker is located at 0°. Both training and testing of the 
system are performed on acoustic features from the right ear 
signal. The performance of our model is compared against the 
ideal masks systematically for five SNR levels: –5 dB, 0 dB, 5 
dB, 10 dB and 20 dB. Also shown in the figure is the baseline 
performance where the recognition is conducted on the 
unprocessed mixtures from the right ear. As seen previously in 
the SNR evaluation, the system estimates well the ideal binary 
mask for positive SNR levels but the estimates degrade gradually 
at lower SNR levels. However, observe that large improvements 
over baseline performance are obtained across all conditions. 
Also, the system produces a significant improvement compared 
with the system by Palomaki et al., especially at low SNRs. For 
example, a word error reduction of 50% is obtained at 0 dB SNR. 
This shows the strong potential of applying our model for  robust 
speech recognition.   
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Figure 4. Recognition performance at different SNR values for 
original mixture (diamond), ideal binary mask (circle) and 
estimated mask (square). (a) Accuracy score for NC1 condition. 
(b) Accuracy score for NC2 condition. 

 
 
 

4. CONCLUSION 
 

We have presented a novel two-microphone sound segregation 
system that performs well under realistic conditions. The system 
can be applied to spatial configurations with multiple interfering 
sources and strong reverberation. We have also carried out 
experiments in a real office setting and found similar 
performance with the simulations presented here. Our approach 
is based on target cancellation through adaptive filtering 
followed by an analysis of the output-to-input attenuation level 
in individual T-F units. Therefore, there are no restrictions 
imposed on the number and location of the interfering sources 
and moving interferences are easily accommodated by the 
system. The output of the system is an estimate of a binary mask 
which labels the T-F components of the acoustic scene 
dominated by the target sound. A systematic evaluation using an 
automatic speech recognizer shows that the resulting system 
produces masks close to the ideal ones in a variety of conditions.   
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