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Attentive Training: A New Training Framework for
Speech Enhancement

Ashutosh Pandey

Abstract—Dealing with speech interference in a speech enhance-
ment system requires either speaker separation or target speaker
extraction. Speaker separation has multiple output streams with
arbitrary assignments while target speaker extraction requires
additional cueing for speaker selection. Both of these are not suit-
able for a standalone speech enhancement system with one output
stream. In this study, we propose a novel training framework,
called Attentive Training, to extend speech enhancement to deal with
speech interruptions. Attentive training is based on the observation
that, in the real world, multiple talkers very unlikely start speaking
at the same time, and therefore, a deep neural network can be
trained to create a representation of the first speaker and utilize it
to attend to or track that speaker in a multitalker noisy mixture.
We present experimental results and comparisons to demonstrate
the effectiveness of attentive training for speech enhancement.

Index Terms—Attentive training, speech enhancement, speaker
extraction, speaker separation, talker-independent.

I. INTRODUCTION

PEECH signals in the real world are degraded by acoustic
S interferences, such as background noise, interfering talkers,
and room reverberation. Acoustic interferences degrade the in-
telligibility and quality of speech for both human and machine
listeners. For example, the performance of speech based appli-
cations, such as automatic speech recognition (ASR), hearing
aids, and telecommunications, deteriorates when dealing with
degraded speech. Speech enhancement aims at improving the
intelligibility and quality of a degraded signal by removing
acoustic interference from it. Monaural speech enhancement uti-
lizes recordings from a single microphone to provide a versatile
and cost efficient solution to the problem. This study is focused
on monaural speech enhancement that can deal with both speech
and nonspeech interference.
Speech enhancement has been widely studied in the sig-
nal processing community for decades. Some of the tradi-
tional methods include spectral subtraction, Wiener filtering and
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statistical-model-based methods [1]. The rise of deep learning
and its application to speech enhancement has led to dramatic
advances over the last decade, and it is firmly established as the
mainstream methodology today [2].

Popular approaches to speech enhancement utilize time-
frequency representations, such as short-time Fourier transform
(STFT), to represent input features and training targets, and aim
at enhancing only the spectral magnitude [3], [4], [5], [6], [7],
[81,[9], [10], [11]. A recent trend has been to jointly enhance the
spectral magnitude and phase by using either complex spectro-
gram enhancement [12], [13], [14], [15], [16], [17], [18], [19],
[20] or time-domain speech enhancement [21], [22], [23], [24],
[25], [26], [27], [28], [29].

Speech enhancement is generally formulated as the problem
of removing nonspeech interferences from a speech signal.
However, in the real world, interfering signals can also be speech
from interfering talkers. How to deal with interfering talkers in
a speech enhancement system? Dealing with interfering talkers
requires two steps: speaker selection and speaker extraction.
Human listeners have the amazing ability of auditory perception
attending to (hence extracting) a single speaker in a multitalker
scenario. This ability is widely referred to as the cocktail party
effect [30], and has inspired the perceptual theory of selective
attention [31]. For humans, speaker selection is dependent on
listener attention as well as intention. For machine separation
so far, we either separate all speakers from a mixture or provide
a cueing signal for speaker selection followed by speaker ex-
traction. The former is called speaker separation and the latter
is commonly known as target speaker extraction.

Speaker separation is the task of reconstructing all the speak-
ers from a multitalker mixture. Early works on speaker sep-
aration were extended from speech enhancement and talker-
dependent, i.e., systems that extract speech signals from only a
given speaker and cannot generalize to untrained speakers. When
extending to talker-independent speaker separation, these mod-
els suffer from a well known permutation ambiguity problem,
where a DNN is not able to consistently assign output streams
to different speakers during training. Deep clustering [32] and
permutation invariant training (PIT) [33] are two representative
approaches to resolving the permutation ambiguity problem.
Deep clustering and its variants [34] employ a DNN to map
each T-F unit of the input mixture to an embedding space, where
embeddings are trained to be closer for the units correspond-
ing to a single speaker and far for different speakers. Finally,
embedding vectors are clustered into groups corresponding to
the different speakers in the mixture to obtain a T-F mask for
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each speaker. In contrast, PIT allows for end-to-end optimization
to separate speech signals by dynamically assigning the best
matching permutation of the ground-truth signals with the output
signals. In particular, the simplicity of PIT has led to many
subsequent models for speaker separation [35], [36], [37], [38],
[39].

Speaker separation can separate all underlying speakers but
it assigns output streams arbitrarily, which is not suitable for
speech enhancement systems that need to attend to one output
stream. For example, if we design a system that always picks
a fixed output stream, it will correspond to either silence or
sporadic interruptions when the main speech stream goes to one
of the other outputs.

Target speaker extraction is the task of extracting a single
speaker from a multitalker mixture, where the target speaker
is cued using additional information in the form of audio [40],
[41], [42], [43], [44], [45] or image [46], [47], [48]. Recent
studies have also explored other kinds of cues, such as spatial
location [49], [50], speech activity [51], and onset [52]. Target
speaker extraction is similar to auditory selective attention, but
requires a priori cueing that may not be available in many
applications of speech enhancement.

How to extend a speech enhancement system to deal with
speech interruptions without requiring speaker cues? This re-
quires designing an intrinsic speaker selection mechanism. At-
tention is a major part of perception, and this has inspired us to
leverage auditory selective attention to address the problem. If
a person is listening (attending) to a talker, he would typically
continue listening to that talker irrespective of other speech in-
terruptions, particularly when the interruptions are short. Based
on this, we propose a new training framework, which we name
attentive training, for speech enhancement. In real-world envi-
ronments, it is very unlikely that multiple talkers start speaking
at the same time; such a case would lead to their grouping into
the same auditory stream on the basis of common onsets [53].
Therefore, we can assume that a given multitalker mixture has
nonoverlapping speech intervals at the beginning. With attentive
training, a model presented with a multitalker mixture will start
attending to (extracting) nonoverlapping speech segments in the
beginning and then continue attending to it while ignoring other
speakers. In other words, attentive training treats the speech
signals of the first speaker as target speech, and the utterances
of other speakers plus environmental sounds as background
interference.

The attentive training framework is consistent with the dom-
inant feature integration theory of attention [54]. According to
this perceptual account, attention serves to integrate perceptual
features extracted in separate analyses into an object. The at-
tended object forms the target (or foreground), and the remaining
objects in a scene become the background. Furthermore learning
and attending are integral parts of perception.

Note that attentive training uses the onset of the first speaker
as a cue for intrinsic speaker selection. In the context of ASR, a
similar idea of using speaker onsets as a cue has been proposed
in serialized output training (SOT) [55]. The idea of SOT is to
output speaker transcriptions from an ASR system in the order
of speaker onsets in the input mixture. The proposed attentive
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training is fundamentally different from SOT as it is designed
for a speech enhancement system that aims at extracting only
the first speaker from a mixture.

We create a multitalker dataset in a controlled way, where
the first speaker is set to start slightly ahead of the rest of
the speakers. Next, we train a recently proposed time-domain
attentive recurrent network (ARN) [29] with attentive training
to estimate the first speaker from a multitalker mixture. We
show that ARN is effective in extracting the first speaker and
generalizes well to different test conditions, such as an untrained
number of speakers, mixtures with larger gaps between the
consecutive segments of the target speaker, and smaller speaker
overlaps. For instance, a model trained using mixtures with a
maximum of 3 speakers obtains strong results for mixtures with
5 speakers.

We compare attentive training with PIT for speaker separa-
tion. We find that attentive training obtains substantially better
results than PIT when compared on the enhancement metric
of the first speaker. We also investigate a decoupled approach
to attentive training in which the nonoverlapping speech of the
first speaker in the beginning of a mixture is used to create a
speaker representation to be used as a cue for target speaker
extraction. We observe that end-to-end attentive training obtains
better results than decoupled attentive training. We also train
a target speaker extraction model using independent enroll-
ment utterances. We find that target speaker extraction with
independent enrollment utterances performs slightly better than
attentive training. When contrasting target speaker extraction
and decoupled attentive training, we conclude that target speaker
extraction is slightly better than attentive training only because
of additional information in the form of clean enrollment utter-
ances.

We also examine an attentive training model trained with
onset differences of more than 1 s between the first and the
second speaker, and show that it generalizes well to an onset
difference of 0.5 seconds. Also, we train speaker verification
systems on top of the hidden layers in ARN to demonstrate that
a few of them encode speaker information, which verifies that
ARN learns speaker representations implicitly for selection and
extraction.

Along the way we introduce a novel data generation technique
for mixing an arbitrary number of speakers in a controlled way.
Given a set of speakers, their corresponding utterances, and a
set of noises, our technique can mix any number of speakers
with specified overlaps and speaker orders. Also, mixtures are
generated dynamically during training which provides an addi-
tional advantage of data augmentation [39]. Our data generation
technique should be a useful tool for speaker separation and
diarization research, as it can utilize speakers from any corpora
and generate mixtures in a flexible way. We provide our data
generation script online.

This study focuses on extracting the first speaker from a
mixture to illustrate the effectiveness of attentive training. A
straightforward and useful extension of attentive training would
be to develop a speech enhancement system that aims at re-
moving interfering speech only from the interval of speaker
overlaps. The preserved speaker should be the one that enters
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into the overlapping interval from the past. It will reduce to a
speech enhancement system handling nonoverlapping speech
signals from multiple speakers in the output stream. Designing
such a system will require a careful consideration into fixing
hyperparameters, such as gaps between consecutive segments of
different speakers, to output a perceptually meaningful signal.

We believe that the simple and effective mechanism of at-
tentive training has the potential to be applicable to a variety of
selection, tracking, and related tasks, such as multitalker speaker
separation and speaker diarization. For speaker separation and
diarization, a straightforward extension would be to use an
iterative strategy where the first speaker is extracted first, then
second, and so on, as in [56].

A preliminary study on attentive training has been published
in [57] where a smaller ARN is trained on a smaller dataset
and compared only with speaker separation using PIT. The
remainder of the paper is organized as follows. A definition and
different methods of attentive training are discussed in Section II.
Section III describes the data generation algorithm. Section IV
details employed DNN models. Experimental settings are given
in Section V and results and comparisons are presented in
Section VI. Concluding remarks are given in Section VII.

II. SPEAKER TRACKING AND ATTENTIVE TRAINING

A multitalker mixture y with N samples is modeled as

c
y:ZSi+n
i=1

where {y, s;} € RV*L, (C is the total number of speakers, s; is
the ith speaker, and n is the background noise. Let o; denote
the time sample when ¢th speaker starts speaking. We assume
that speaker indices i = 1,2, ..., C are sorted in the increasing
order of onset times. In other words, 7 < j implies o; < 0;.
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Different methods for extracting the first speaker from a multitalker mixture.

The goal of attentive training is to separate the first speaker s1
from y.

We can extract the first speaker from a mixture using the
following methods.

A. Speaker Separation

A speaker separation system has no selection mechanism and
reconstructs all the speakers in a mixture. Speaker separation can
be utilized to extract the first speaker by first separating all the
speakers and then selecting the first speaker using speech onset.
Speaker separation is illustrated in Fig. 1(a), and modeled as
2)

[31,...,8¢c] = fss(y)

where fgg represents a DNN for speaker separation. The speaker
separation model is trained using an utterance-level PIT loss
defined as

c

L=2 D(spa)5)

i=1

3

where D(a, b) is a distance measure between signals a and b
and ¢* is a permutation of target signals with the minimum cost,
ie.,

C
Y= i D (84:(4), 8i
¢ arg;mnz (8+(i): 3)

i=1

“

where P represents the set of all possible permutations. We use
an utterance-level negative signal-to-noise ratio (SNR) as the
distance measure, defined as

[1s]1*

~ S
ID(S7 3) =—-10- loglom

&)
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B. Target Speaker Extraction

Target speaker extraction extracts a single speaker from a
mixture with the help of an additional cue for target selection.
The speaker selection mechanism is not intrinsic to model
training. We assume that we are given additional information
in the form of an enrollment utterance e; corresponding to the
first speaker. Target speaker extraction is illustrated in Fig. 1(b).
First, a speaker embedding is computed from e as

v = h(61> (6)

where v; € RB*!, B is the size of the embedding vector, and h
is a DNN-based speaker embedding model. Next, v1 and y are
used together to estimate s; as

51 = frse (y,v1) (7N

where frgg represents a DNN for target speaker extraction. It is
trained using a distance between the estimated and the ground-
truth signal of the first speaker as defined below.

,C:’D(Sl,éﬁ (8)

C. Attentive Training

Attentive training aims at estimating s; directly from y as
shown in Fig. 1(c). It is defined as

51 = far(y) )

where f41 represents a DNN for attentive training. It is trained
using the loss in (8).

D. Decoupled Attentive Training

Decoupled attentive training decouples end-to-end attentive
training in two parts. First, it assumes that we are provided with
the nonoverlapping speech segment s7° in the beginning of vy,

defined as
s =yl0: M —-1]=81[0: M —1]+n[0: M —1] (10)

where M is the length of s7°. Next, s7° is used to generate a
speaker embedding of the first speaker

v’ = h(s}?) (11)
Finally, v7° and y are used together to estimate s; as
81 = fpe-ar (y,v1”) (12)

where fpe a7 represents a DNN for decoupled attentive train-
ing. Fig. 1(d) depicts decoupled attentive training. The loss in
(8) is used to train a decoupled attentive training model.

III. DATA GENERATION

This section describes our technique for generating mul-
titalker mixtures. Given a set S = {S1,...,S5;} of speakers,
their corresponding utterances U7 = {s7, ..., S¢, },and aset
of noise segments N = {ny,...,ng}, where @); denotes the
number of utterances of speaker S; and R is the number of
noise segments, we create a multitaker noisy mixture by adding
together speech segments of multiple speakers and a noise
segment. First, we sort a given set of speech segments in an
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Fig. 2. Examples of interaction patterns with 2 and 3 speakers, and an initial
minimum onset gap of A between the first and the second speaker. In pair (a, b)
inside a box, a and b respectively index the speaker order and the segment order.

increasing order of their onset times. Based on this, we define
a concept called interaction pattern representing the order of
speaker segments in a mixture. For example, an interaction pat-
tern of 1212 represents a mixture created by adding 4 segments
sorted in the increasing order of their onset times, where the first
and the third segments are from the first speaker and the second
and the fourth segments are from the second speaker. We also
define two parameters A and B, where A is the minimum initial
gap between the onset of the first and the second speaker, and
B is the gap between two adjacent nonoverlapping segments
(regardless of speakers). We illustrate two interaction patterns
in Fig. 2. For data generation, we use interaction patterns from
a predefined set P = {py,...,pp}.

Similar to the LibriCSS dataset [58], we generate mixtures
in a way that a given mixture can have an arbitrary number
of speakers, but at a given time instant, only a maximum of
two speakers can overlap. Algorithm 1 describes the steps used
in generating a sample mixture from S, U, N, and P. In the
algorithm, Len(x) represents the length of x, and Unique(p)
denotes the set of unique elements in p.

In Algorithm 1, the list E is used to keep track of allowed
overlap intervals and E[—k] denotes the kth element in E from
the end. The allowed interval spans from E[—2] to E[—1], which
indicate the ending time samples of the last two segments. The
set E/; is used to make sure that two different segments from
the same speaker do not overlap (line 27 in Algorithm 1). We
remove silences from all utterances and then pad zeroes in the
beginning to shift a given segment. We use no padding for the
first speaker, the second speaker has a minimum padding of A,
and the remaining speakers use zero padding in a way that a
maximum of two speakers overlaps at a time.

IV. DNN MODELS

We employ a recently proposed ARN model for time-domain
speech enhancement [29]. The model architecture is shown
in Fig. 3. It comprises an input linear layer followed by four
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Algorithm 1: A Pseudo Code for Generating a Random

Multitalker Noisy Mixture.

AN AW =

7.

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:

49:
50:
51:

:Input: S, U, N, P

: Output: y, s1,...,s¢c,n

: Sample a speaker pattern p from P

: Set C' = Len(Unique(p))

: Sample C' speakers Sq, ..., Sc from S
: Initialize List V =[], E =[], Set E; ={ }, Bool

Overlap = False

for jinpandiin {1, 2,..., Len(p)} do

Sample an utterance s from USi:

Remove silences in the beginning and the end of s

Sample a value 7" for the segment length

Extract a random segment x of length 7" from s
Set Overlap = True with a probability poyeriap

if i = 1 then
PadLeft = 0
else if ; = 2 then
Sample a value for B
if j in E, then
Overlap = False
end if
if no Overlap then
Set PadLeft = E[—1] + B
else
Sample PadLeft from [A, E[—1]]
end if
else
Sample a value for B
if j in E4 and E;[j] = E[—1] then
Overlap = False
end if
if no Overlap then
Set PadLeft = E[—1] + B
else

Sample PadLeft from [E[—2] + B, E[—1]]

end if
end if
Apply a left padding of PadLeft to «
SetVi]i]==
Insert Len(x) + PadLeft at the end of E/
Set E1[j] = Len(x) + PadLeft
Sort E in increasing order
if Len(E) > 2 then
Set E = [E[-2], E[-1]]
end if
end for

Apply right padding to segments in V' to match lengths
Sample a separate value of sound level for all segments

Scale all segments to appropriate levels

Create a multitalker mixture by adding all segments

together
Sample a noise segment from N
Sample a value for noise level

Scale the level of the noise segment and add to the

multitalker mixture
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Fig. 3. The model architecture used for attentive training.

Fig. 4. The model architecture used for target speaker extraction and decou-
pled attentive training.

ARN layers and an output linear layer. An input mixture y is
first converted to frames Y € RT*L where T is the number
of frames and L is the frame size. Next, frames in Y are
projected to size D, processed by a stack of four ARN layers, and
projected back to size L using the output linear layer. Finally, an
overlap-and-add (OLA) is used to get the enhanced waveform.
An ARN layer comprises an RNN block, a feedforward block,
and an attention block. A more detailed description of these
blocks can be found in [29]. For speaker separation, we use C'
linear layers at the output. For decoupled attentive training and
target speaker extraction, we utilize a strong speaker embedding
model called ECAPA-TDNN [59], which is shown in Fig. 4. The
output from ECAPA-TDNN is projected to size D using a linear
layer and then multiplied elementwise to the output of the second
ARN. We also investigated multiplying to the output of other or
all ARNs but observed worse results. We utilize a pretrained
ECAPA-TDNN model provided in the SpeechBrain toolkit [60]
as it exhibits strong speaker verification performance.

V. EXPERIMENTAL SETTINGS
A. Datasets

We generate training and evaluation data from the Lib-
riSpeech corpus [61]. We use all the speakers from train-clean-
100, train-clean-360, and train-other-500 for training. All the
speakers from test-clean and dev-clean are used respectively for
testing and validation. The training set consists of 960 hours of
speech data, which is much larger than the set of 100 hours used
in the preliminary study [57].

Noises used are from the WHAM! corpus [62]. First, we split
training noises into 10-s chunks, and validation and test noises
into 15-s chunks. All chunks shorter than 3 seconds are omitted.
We use LKFS based loudness [63] for controlling the SNR. We
sample sound levels from [—25, —30] dB for speaker segments
and from [—35, —40] dB for noise segments. We provide our
dataset generation script along with the test and validation meta-
data files at https://github.com/ashutosh620/AttentiveTraining.

For target speaker extraction, each multitalker mixture is
paired with a randomly sampled enrollment utterance of the first
speaker in the mixture. We trim silences from the beginning and
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the end of an enrollment utterance and truncate longer utterances
to a length of 4 seconds.

We also train and evaluate speaker verification systems to
examine the speaker information encoded in the hidden layers of
the ARN model trained with attentive training. For this, we create
a speaker verification dataset using speech from LibriSpeech and
noises from WHAM ! as in other experiments. We generate train-
ing data dynamically by randomly sampling a speech utterance
and mixing it with a randomly sampled noise segment. For test
and validation, we randomly sample a list of 10000 pairs of noisy
speech utterances from different speakers. We sample positive
and negative speaker pairs with equal probability.

B. Training Methodology

All the utterances are resampled to 16 kHz. A frame size of
16 ms, frame shift of 4 ms, and D = 1024 is used for ARN. A
smaller ARN model with D = 512 was used in the preliminary
study [57]. ARN uses BLSTMs with 512 hidden units in both
directions. All the models are trained on interaction patterns
with 4 segments with a maximum of 3 speakers. In other words,
a randomly generated multitalker mixture contains either 1, 2,
or 3 speakers. For the PIT model, we use 3 linear layers at the
output, and for an input with K (K <= 3) speakers, we select
the minimum loss assignment from all possible C3- assignments.

All the training samples are randomly and dynamically gen-
erated during training, and an episode of 281 k samples (total
number of speech utterances) is considered as one epoch. We
US€ Dovertap = 0.75and A = 1second. B is sampled from [0.25,
0.50] seconds. Segment length, 7', is sampled from [2, 3] seconds
for training and from [2, 4] seconds for validation and test. The
input and the output are scaled by 25.

All the training utterances longer than 10 seconds are trimmed
to 10 seconds. All the models are trained for 100 epochs with a
batch size of 32 utterances using the Adam optimizer [64]. The
learning rate is initialized with 0.0004 and scaled by 0.98 every
two epochs.

Models are evaluated on interaction patterns from {1111,
1212, 1221, 122221, 1231, 123231, 12341, 123451} and three
overlap types: {Max, Half, None}. Following Algorithm 1, Max
uses the maximum allowed overlap, Halfuses half of the allowed
regions for overlap, and None uses no overlap. We generate
3000 evaluation utterances for each combination of the inter-
action pattern and overlap type. The pattern 1212 is used to
assess performance for an alternating pattern of the target and
interfering speaker, 1221 is used to assess performance with
a larger gap between two consecutive segments of the target
speaker. The pattern 122221 is used to assess performance with
an even larger gap not used during training. Similarly, patterns
1231 and 123231 are used to assess performance for 3 speakers
with different gaps, where 123231 is not used during training.
Patterns 12341 and 123451 are used to assess performance for
untrained numbers of 4 and 5 speakers. We use the interaction
pattern 1231 with Max overlap for validation.

The ECAPA-TDNN model is trained using a set of 7.2 k
speakers from the VoxCelebl [65] and VoxCeleb2 [66] corpora.
Data augmentation techniques, such as additive noise, room
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reverberation, speed perturbation, and SpecAugment [67] are
also utilized. An additive angular margin loss with a margin of
0.2 and scale of 30 is used [68], [69]. A more detailed description
can be found in the SpeechBrain toolkit [60].

We also evaluate attentive training for sporadic speech in-
terruptions, which occur often in daily environments. For this,
we generate a test dataset with longer interaction patterns from
{1211111,1112111,1111121}. Each of these patterns com-
prises 7 segments, 6 of which correspond to the target speaker
and 1 corresponds to the interfering speaker.

For training speaker verification systems on top of the hidden
layers of the pretrained ARN model, we use a 1-layered ARN
model with D = 256 followed by a statistical pooling borrowed
from ECAPA-TDNN. The pooling layer uses 128 channels for
attention [59], [60]. The embedding size is set to 32. A batch of
training data comprises 32 pairs of 3 seconds long utterances,
where a pair consists of one noisy and one clean utterance from
the same speaker. We trim silences from the beginning and the
end. All models are trained with a cyclical learning rate varying
between 0.00004 and 0.0004 using the triangular policy as
described in [70] in conjunction with the Adam optimizer [64].

We develop all the models in PyTorch [71] and exploit
automatic mixed precision training to expedite training [72].
Two NVIDIA Volta V100 32 GB GPUs are utilized to train all
attentive training models.

We use scale-invariant SNR (SI-SNR), extended short-time
objective intelligibility (eSTOI) [73], and perceptual evaluation
of speech quality (PESQ) [74] as evaluation metrics. Objective
scores are computed for the first speaker and eSTOI is reported
in percentage.

C. Baseline Models

We also evaluate the effectiveness of attentive training for
two widely used models for speaker separation: convolutional
time-domain audio separation network (Conv-TasNet) [36] and
dual-path recurrent neural network (DPRNN) [37]. We train
these models using the four methods shown in Fig. 1. We
modify these models to use one output stream for AT, De-AT
and TSE, and 3 output streams for speaker separation. For
Conv-TasNet, we utilize the best performing model in [36] which
uses ? = 3 repeats of X = 8 convolutional blocks. For De-AT
and TSE, speaker embeddings are fused after the first repeat
using elementwise multiplication. Similarly, we utilize the best
performing DPRNN architecture in [37], which uses a stack
of 6 dual-path blocks including intra-chunk and intra-chunk
RNN. To train DPRNN for De-AT and TSE, we fuse speaker
embeddings after the third dual-path block using elementwise
multiplication. We also train a time-domain model called SpEx+
proposed specifically for TSE [75].

VI. RESULTS AND COMPARISONS

We denote speech enhancement as SE, attentive training as
AT, speaker separation as PIT, decoupled attentive training as
De-AT, and target speaker extraction as TSE in the results. A
speech enhancement model is trained only on the interaction
pattern 1111, i.e., single-talker utterances with background
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TABLE I
COMPARING DIFFERENT METHODS ON THE INTERACTION PATTERN 1111

[ Metric [Mix.[[PIT| AT [De-AT[TSE[[ SE |
SISNR] 9.5 [[15.2[17.5] 17.4 [17.3][19.1

PESQ |2.33]|3.24|3.40| 3.38 |3.38/|3.61
ESTOI'|72.2{|87.6/89.8| 89.2 (89.3|/92.6

TABLE II
COMPARING DIFFERENT METHODS FOR TRAINED NUMBERS OF SPEAKERS

[ Type | Max [ Half [ None |
\(a}\ (b) \(c)\Melric\SI—SNR PESQ ESTOI‘SI*SNR PESQ ESTOI‘SLSNR PESQ ESTOI‘
Mix. | -0.6 1.67 514 | -07 186 595 -1.0 228 719

PIT | 11.4 264 764 | 124 279 803 | 142 3.04 86.4
1212 | /| AT 134 290 817 | 148 3.09 850 | 164 3.38 89.6
De-AT| 12.6 286 803 | 145 306 843 | 164 3.39 89.1
TSE | 13.8 297 827 | 150 312 854 | 169 343 893
Mix. | -06 177 512 | -08 206 60.1 | -1.0 231 71.6
PIT | 11.3 271 760 | 125 292 805 | 143 3.06 86.0
1221 | /| AT | 132 297 81.2 | 147 328 850 | 165 347 893
De-AT| 125 295 80.0 | 145 325 844 | 167 349 839
TSE | 139 3.07 828 [ 151 332 856 | 17.1 355 89.1
Mix. [ -37 200 S5I.T | -38 216 602 -39 232 716
PIT | 11.2 283 76.1 | 125 294 805 | 141 3.03 857
122221 | X| AT | 129 323 809 | 14.6 344 849 | 162 352 89.2
De-AT| 124 322 80.0 | 145 340 845 | 166 3.53 89.0
TSE | 138 333 827 ] 152 349 859 | 171 3.62 895

Mix. | -06 1.86 553 | -0.8 208 627 | -1.0 232 717
PIT | 103 266 760 | 125 290 815 | 133 3.04 864
1231 | /| AT | 132 297 824 | 152 326 860 | 163 346 89.3
De-AT| 122 293 80.8 | 147 323 85.1 | 162 348 889
TSE | 140 3.08 838 [ 154 331 864 | 16.8 3.54 893
Mix. [ -3.6 198 556 [ -37 214 626 | -39 232 716
PIT 95 268 758 | 11.6 287 81.0| 122 297 857
123231 | X| AT | 12.7 3.07 825 | 14.6 330 858 | 159 350 893
De-AT| 113 3.03 805 | 142 331 849 | 158 3.50 89.1
TSE| 136 318 838 ] 153 340 865 | 166 3.60 895

(a) number of speakers, (b) interaction pattern, (c¢) whether trained on
interaction pattern.

]

noise. Background noise is present in all of the following eval-
uations.

A. Comparing Different Methods

We start by comparing different methods for the interaction
pattern 1111. Results are given in Table I. We observe that SE
is the best, PIT is the worst, and AT, De-AT, and TSE obtain
similar results. We expect SE to obtain best results for this
case as it is trained specifically for the matched interaction
pattern of 1111. This result suggests that a model capable of
dealing with interfering speech performs worse at removing
noise than a model trained specifically for removing noise. In
other words, the capability of handling interfering speech comes
at the expense of noise removal.

Next, we compare different methods for the multitalker case
with 2 and 3 speakers and the trained number of speakers. Results
are given in Table II. We can observe that a general order of
performance among different methods is PIT < De-AT < AT
< TSE. In particular, the performance of PIT is far worse than
the other methods for all the cases. This highlights a major issue
with PIT when dealing with a varying number of speakers and
varying degrees of overlaps [39], [S8]. We also observe that AT
is similar or better than De-AT. This is encouraging because it
implies that end-to-end training can better learn the joint task of
speaker selection and tracking than a decoupled approach. As
expected, TSE obtains the best results since it is provided with
additional cueing in the form of an enrollment utterance. It is
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TABLE III
COMPARING DIFFERENT METHODS FOR THE CASE OF UNTRAINED NUMBER OF
SPEAKERS
Type Max Half None

(a)] (b) [Metric|SI-SNR PESQ ESTOI|SI-SNR PESQ ESTOI|SI-SNR PESQ ESTOI
Mix. | -24 198 575 | -25 212 626 | -28 231 718
PIT 76 265 76.1 7.6 277 795 9.1 292 854

4| 12341 | AT | 13.0 3.07 833 | 147 328 859 | 160 349 893
De-AT| 12.0 3.02 81.7 | 142 328 850 | 157 3.50 89.0
TSE | 139 3.17 844 | 152 336 863 | 165 3.57 893

Mix. | -3.6 198 557 | -37 214 628 | -40 232 718
PIT 49 255 735 43 267 714 | 60 285 850
123451 | AT | 122 3.04 824 | 144 331 86.1 | 158 3.51 89.6
De-AT| 114 3.02 81.0 | 140 330 852 | 155 3.51 893
TSE | 134 3.17 837 | 151 340 864 | 163 3.59 893

w

(a) number of speakers, (b) interaction pattern.

worth mentioning that De-AT also uses cueing, but the cueing
signal comes from the input mixture itself, and hence, it does not
provide additional information on top of the input. Also, TSE
uses a clean cueing signal in contrast to a noisy one in De-AT.

Finally, we present evaluation result for the untrained numbers
of 4 and 5 speakers in Table III. We observe similar performance
trends to 2 and 3 speakers except for PIT which is much worse
because it is not designed to separate the number of speakers not
used during training. It is worth noting that AT obtains an SNR
improvement of around 15 dB on higher numbers of untrained
speakers. This implies that AT does not require training with
more than 3 speakers to obtain good generalization.

We plot spectrograms of a sample multitalker mixture en-
hanced using different methods in Fig. 5. Notice that not only
PIT introduces leakage from interfering talkers in the silence
intervals but also removes high-frequency speech components.
Plots of AT and TSE look very similar with much reduced
leakage and well-retained high-frequency components.

B. Comparison With Baselines

Fig. 6 plots the performance of Conv-TasNet, DPRNN, ARN
and SpEx+ on interaction pattern 123231. First, we observe a
general trend that TSE is the best and AT is better than PIT and
De-AT, except for Conv-TasNet with overlap type None where
AT is worse than PIT and De-AT. This may be due to the fact that
Conv-TasNet is a fully convolutional model and it does not have
a mechanism to store and propagate speaker identity over time.
Additionally, ARN is the best performing model for AT, De-AT
and TSE. It is encouraging to observe that ARN outperforms
SpEx+, the baseline model proposed specifically for TSE. It
is interesting to note that the performance differences between
Conv-TasNet and DPRNN are not as significant as observed on
WSJO0-2mix and WSJO0-3mix datasets with full overlap. Finally,
we notice that even though ARN has the best performance for
the cases with a single output stream, it has worst performance
for PIT, which uses 3 output streams.

C. Importance of Attentive Training for Speech Enhancement

We have reported in Table I that SE obtains better results than
AT when dealing with single-talker input. What happens when
a SE model is presented with an input mixture with sporadic
speech interruptions? Now, we present results to assess this
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Fig. 5. Spectrograms of a sample multitalker mixture enhanced using different methods.
Max Half None TABLE IV

16 - COMPARING SE AND AT FOR SPORADIC SPEECH INTERRUPTIONS

15
x4 + [ Type | Max Half None \
RS T [ (@ |Metric[SI-SNR PESQ eSTOI[SI-SNR PESQ eSTOI|SI-SNR PESQ eSTOI|
B 12 Mix. | 56 2.9 685 55 223 698 | 52 233 724

" 1211111 | SE | 87 3.07 858 | 82 312 879 | 77 329 925

10 AT | 159 326 880 | 162 331 88.6 | 162 337 894

Mix. | 55 218 685 | 55 221 694 | 52 233 725

a7 1112111 | SE | 85 3.05 8.0 | 83 3.09 873 | 7.7 328 925

a5 AT | 160 329 884 | 165 333 889 | 169 342 900

Mix. | 55 2.8 684 | 55 221 693 | 52 233 724

g33 1111121 | SE | 85 3.05 86.1| 83 3.09 873 | 7.7 327 926

B34 AT | 160 328 884 | 164 331 888 | 17.1 342 900
29 (a) interaction pattern.

27

90!

o8 ?ﬁ; Next, we analyze behaviors of AT and SE in different seg-
. ments of interaction patterns with sporadic interruptions. An
) . . . . .

@ e interaction pattern of 12111111 contains 7 segments including
& 6 segments from the target and 1 from an interfering speaker. In
78 . . . .

- Fig. 7, we plot objective scores of AT and SE in 6 segments of the

T A ethay AT TEPT A AT TSEPT A AT TSE target speaker from the beginning to the end. We notice that SE

[-o— Conv-TasNet —#— DPRNN —=— ARN —+ SpExr| obtains better results than AT in all the segments except for the

one before and the one after the interfering talker. Particularly,

Fig.6.  Comparison of Conv-TasNet, DPRNN, ARN and SpEx+ on interaction  the performance of SE for the segment before the interfering

pattern 123231 for three types of overlap.

aspect. We compare AT and SE in Table IV on interaction
patterns 1211111,1112111, and 1111121, which are designed
to simulate sporadic interruption scenarios.

We observe that AT obtains much better scores in most of
the cases, which suggests that speech enhancement fails when
presented with speech interruptions. Attentive training enables
speech enhancement to deal with speech interruptions, and this
is an important advantage of AT. We notice that AT is better
for eSTOI for overlap type Max and Half but worse for None.
We believe this is because the computation of eSTOI ignores
silence intervals in the target signal, hence favoring SE in
nonoverlapping intervals.

talker is much worse, implying that it fails in those segments.
This establishes that AT is a more robust method than SE and
does not fail when presented with speech interruptions.

D. Effects of Speech Onset Differences

The results discussed so far are on test sets in which the onset
difference between the first and the second speaker is no smaller
than A = 1 second. Now, we analyze the behavior of different
methods when onset difference is gradually decreased. We plot
results for interaction patterns 1221 and 123231 with overlap
type Max in Fig. 8. The onset difference is gradually decreased
from 1 s to 0.25 seconds with a step of 0.25 seconds. We consider
two cases of TSE. TSE-1 uses enrollment utterances as specified
in the original test set. TSE-2 sets the length of enrollment
utterances to the length of onset difference.
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Fig. 8. Performance comparisons with gradually decreasing onset difference.

We notice that there is a gradual decrease in the perfor-
mance of all the models as the onset difference is decreased.
TSE-2 and De-AT are the most unstable as the performance
drops drastically below 0.75 seconds. AT outperforms PIT up
to an onset difference of 0.5. The performance of AT drops
drastically only for the case of small onset difference of 0.25 s.
TSE-1 is the most stable for all the cases. These comparisons
indicate that even though AT is sensitive to the onset difference,
it generalizes well to smaller onset differences not used during
training.

Next, in an attempt to improve the robustness of AT to
smaller onset differences, we train ARN with AT using gradually
decreasing values of A from {1,0.75,0.5,0.25,0.0} seconds.
Note that A = 0 does not imply an onset difference of 0, but the
minimum allowed onset difference of 0. We plot the performance
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Fig. 9. Comparing ARN trained with AT using a gradually decreasing value
of A. AT, a denotes an ARN trained with AT using A = a.

TABLE V
PERFORMANCE OF SPEAKER VERIFICATION SYSTEMS TRAINED ON TOP OF THE
HIDDEN LAYERS IN THE ARN MODEL

Layer |Raw|Lin-inp|ARN-1|ARN-2|ARN-3|ARN-4
EER (%)| 45| 4.2 3.8 4.7 3.4 4.5

of these ARN models in Fig. 9 for interaction pattern 123231
and compare it with PIT and TSE (the better-performing TSE-1)
plotted in Fig. 8. We see a gradual improvement in the perfor-
mance with decreasing value of A. Notable, the performance
with A = 0 matches that of TSE and considerably outperforms
PIT. This implies that the robustness of AT to smaller onset
differences is easily improved by setting A = 0.

E. Speaker Encoding in ARN

The key idea of attentive training is to generate a speaker
representation of the first speaker and use it to track this target
speaker over the whole mixture. This implies that the hidden
layers of the ARN model should have speaker information
encoded in them. To investigate this, we present results on
training speaker verification models on top of the hidden layers
in the pretrained ARN model with frozen parameters. Speaker
verification performance in terms of Equal Error Rate (EER) is
given in Table V. We observe that training a speaker verification
model from raw waveform obtains an EER of 4.5%. The output
from the linear layer at the input improves the performance
to 4.2%. Layers 2 and 4 do not provide any improvement.
However, layers 1 and 3 respectively improve EER to 3.8% and
3.4%, which represents substantial relative EER improvements
of 15.6% and 24.4% respectively. This demonstrates that the
ARN model is implicitly creating a speaker representation to
track the target speaker. We believe that the speaker recognition
performance would be even better if we utilized an ARN trained
with A = 0 instead of A = 1.

VII. CONCLUDING REMARKS

We have proposed a novel attentive training framework for
speech enhancement. The key idea of attentive training is to
attend to a single talker in a given multitalker mixture. Based on
the principles of auditory selective attention, attentive training
starts attending to (extracting) a speaker based on speech onset
and continues attending to it irrespective of other interfering
talkers. Attentive training is the first study, to our knowledge, to
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propose an intrinsic selection mechanism for speaker extraction.
We have demonstrated that attentive training has the capability
to extend a speech enhancement system to deal with speech
interruptions as well as background noises.

We have compared attentive training with different methods
of speaker extraction including speaker separation and target
speaker extraction. Attentive training is found to be far bet-
ter than PIT-based speaker separation, which does not have a
speaker selection mechanism. Attentive training is competitive
with target speaker extraction, which exploits cueing in the
form of an enrollment utterance. We have also shown that an
approach of decoupling attentive training into speaker selection
and tracking obtains similar or worse results than end-to-end
training.

Additionally, we have established the importance of attentive
training for speech enhancement. We have shown that, when
presented with speech interruptions, a speech enhancement sys-
tem fails during these interruptions. An attentively trained model
is found to be far more stable and performs enhancement well
during interruptions.

Further, attentive training generalizes to untrained shorter
onset differences. For example, a model trained with onset dif-
ferences of more than 1 s generalizes well to an onset difference
of 0.5 seconds. We have also verified that some of the hidden
layers of the employed ARN model encode speaker information
used for speaker tracking.

We plan to utilize attentive training to train a speech en-
hancement model to remove interfering speech only from the
overlapping intervals instead of tracking the first speaker. Future
research also includes investigating attentive training for speaker
diarization and separation.
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