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Abstract
In this study, we propose a transformer-based architecture

for talker-independent audiovisual speaker separation in the
time-domain. Inputs to the proposed architecture are the noisy
mixtures of multiple talkers and their corresponding cropped
faces. Using a cross-attention mechanism, these two streams
are fused together. The fusion layer is followed by a masking
net that estimates one mask per talker and multiplies the mixed
feature matrix by these masks to separate speaker features. Fi-
nally, the separated features are converted to the time domain at
the decoder layer. Moreover, we propose a novel training strat-
egy to increase the role of the video stream which starts with a
relatively noisy condition and gradually increases audio stream
quality during training. Experimental results demonstrate that
the proposed method outperforms existing techniques accord-
ing to multiple metrics on several commonly used audiovisual
datasets.
Index Terms: audiovisual speaker separation, multi-modal
speech processing, attentive audiovisual fusion.

1. Introduction
In real environments, speech usually occurs simultaneously
with acoustic interference. The interference can be non-speech
background noise and/or the speech signal from competing
speakers. Joint audiovisual speech analysis plays a crucial role
in human speech communication system and helps us focus at-
tention on a specific talker and alleviate the effect of acoustic
background noise. The integration of audio and visual informa-
tion provides a more complete representation of speech and can
improve human ability in understanding speech by as much as
40% [1] in noisy environments. But how to effectively lever-
age the information from both modalities remains a challenging
task due to the intricate relationships between these modalities.

Recently, the use of deep neural networks (DNNs) for
audiovisual speaker separation and speech enhancement has
gained significant popularity and success [2]. The majority of
these models use the time-frequency (T-F) representation of the
audio signal [3, 4] and estimate T-F magnitude or magnitude-
phase masks to separate speakers. Other studies perform this
task in the time domain [5,6]. In terms of the video stream, var-
ious forms of visual data have been explored to analyze speech
signal. These include single-frame images [7], lip area images
and motion [8], and full-face videos [9]. While the lip area
contains the most pertinent information for speech processing,
recent studies [3, 10] demonstrate that using the entire face as
input can be advantageous, particularly when the lip area is ob-
structed or when the talkers move their heads.

Most of the proposed techniques in the literature employ a
convolutional neural network (CNN) followed by a set of feed-

Figure 1: The proposed model architecture for audiovisual
speaker separation

forward networks (FFNs) for audiovisual speech processing.
These models process acoustic and visual data streams sepa-
rately and employ a long-short-term memory (LSTM) netowrk
to fuse features from these two modalities [2].

More recently, researchers have explored the use of
attention-based mechanisms in audiovisual speaker separation
(AVSS) [11] and speech enhancement (AVSE) [12]. Trans-
former models are designed to handle sequential data and can
capture long-range dependencies between the input elements.
This makes them well-suited for AVSS, where both the audio
and visual signals are sequential in nature and exhibit depen-
dencies between different time steps. Transformer-based mod-
els offer several advantages for AVSS. First, these models have
the capability to identify long-term correlations between au-
dio and visual inputs, which often exist in the AVSS domain.
Secondly, the parallel processing nature of transformer mod-
els makes them well suited for AVSS applications that require
real-time processing. Finally, transformer models have demon-
strated strong performance in a range of sequential data pro-
cessing tasks, including speaker separation [13] and speech en-
hancement [14], making them a promising approach for AVSS
as well.

One of the challenges of joint audiovisual processing is the
fact that the audio modality tends to dominate [15–17]. It is
perceptually demonstrated that the contribution of visual cues
to speech intelligibility is minor in relatively clean acoustic sit-
uations [1]. To maximize the contribution of the visual modal-
ity, Chung et al. [15] passed the data to their model in three
modes: audio-only, video-only, and audio-video. Afouras et
al. [16] added babble noise at 0dB SNR to the audio stream
with a probability of 25% during training. Wei et al. [17] pro-
posed an audiovisual fusion network that incorporates audio-
video synchrony for audio representation and to improve video
utilization.

In this work, we propose a time-domain audiovisual separa-
tion network based on dual-path attention architecture. The pro-
posed model architecture for audiovisual speaker separation is
shown in Fig. 1. For input, the architecture gets the noisy multi-
talker mixtures from the audio modality and cropped faces of
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talkers from the visual modality. These two input streams are
encoded separately and then passed to the attentive fusion layer.
The fusion layer combines the encoded audio and video streams
employing a cross-attentive mechanism. The masking net then
separates the speaker features by estimating individual masks
per speaker and applying them to the mixed feature matrix.
Finally, the separated features are converted to the time do-
main at the decoder layer consisting of a transposed convolu-
tion layer. Additionally, we propose a training strategy to in-
crease video utilization during the training by starting the train-
ing stage with a relatively noisy condition and increasing the au-
dio stream quality gradually. Systematic evaluations and com-
parisons show that the proposed approach outperforms previous
methods in multiple audiovisual speaker separation tasks.

2. Audiovisual Speaker Separation
Mechanism

2.1. Problem Formulation

Given a video clip with an audio stream of N speakers talking∑N
i si and a background noise n the noisy speech mixture in

the time-domain is defined as

y(t) =
N∑

i=1

si(t) + n(t) (1)

Audiovisual speaker separation aims at separating speaker
speeches and suppressing the background noise using both au-
dio and visual streams. We can formulate the audiovisual
speaker separation using a deep neural network (DNN) as

{ŝi|i ∈ [1, N ]} = fθ(y, V ) (2)

where V is the video streams and fθ denotes DNN net-
work parameterized by θ. Note that when N = 1, this task is
converted to speech enhancement, its goal being to remove the
background noise n from speech signal s1.

2.2. Audiovisual speaker separation model

The initial step in the proposed method involves feeding the
audio signal and video frames into separate encoders. The en-
coders are designed to transform the input data into a higher-
dimensional feature space. The encoded video is then up-
sampled to ensure the number of frames in the audio and visual
features match. The encoded audio and video are combined in
the audiovisual fusion layer, producing a fused feature repre-
sented by the variable h. The fused feature is then passed to the
MaskNet, which is responsible for estimating the masks. The
estimated masks will be multiplied by the fused feature matrix
enabling the separation of speaker features. The resulting sep-
arated features are then converted back to the time domain us-
ing a 1D transposed convolution layer. Since the output of the
model is the estimated waveform of clean signals, we train the
model via utterance-level Permutation Invariant Training (uPIT)
and Scale-Invariant Signal-to-Noise Ratio (SI-SNR) loss func-
tion.

2.3. Audio encoder

For the audio encoder, we use a 1D convolution layer. This
encoder utilizes a kernel size of k and a stride of k/2 to pro-
cess the mixed noisy signal y ∈ RTa in the time domain.
The audio encoder’s objective is to extract features, denoted as
ha ∈ RFa×T ′

a from noisy audio signal.

2.4. Video encoder

For the video encoder as shown in Fig. 2(a), we leverage a
model that is based on the Lip2Wav architecture [18]. This
block takes cropped speaker faces presented in the mixed au-
dio signal as input V ∈ RTv×3×160×160. This model em-
ploys a sequence of blocks with 3D convolutions, normaliza-
tion, and Rectified Linear Unit (ReLU) activation function, fol-
lowed by a bidirectional LSTM. The encoded video matrix of
all speakers is concatenated on feature dimension and is denoted
as h′

v ∈ RFv×Tv . Then, the encoded video is up-sampled in the
time dimension using the nearest method to match the number
of frames in the encoded audio. The output of this block is de-
noted as hv ∈ RFv×T ′

a .

2.5. Attentive audiovisual fusion

In the audiovisual fusion block, we use an attentive fusion net-
work similar to [17]. The structure of the fusion block is shown
in Fig. 2(b). This block involves feeding encoded audio and
video features into separate multi-head-attention (MHA) [19]
blocks. Following this, we designate the video (audio) features
as K and V vectors, and audio (video) features serve as the
query vector Q for the next MHA on the audio (video) side.

f ′
a = MultiHead(Qa,Kv, Vv) (3)

f ′
v = MultiHead(Qv,Ka, Va) (4)

These blocks are subsequently followed by a layer normal-
ization and a FFN layer. To process the fused features, the out-
put of these two streams is concatenated and passed through a
final round of MHA attention and FFN blocks. The goal of this
process is to extract and map data in the fused feature domain.
As demonstrated by [17], this technique effectively lessens the
disparity between audio and visual modalities. The fused audio-
visual output matrix h ∈ RFa×T ′

a is then passed to the masking
net.

2.6. Masking Net

For the masking net, we utilize a dual-path attention network as
proposed in [13] to generate a mask matrix for each talker. The
configuration of this network is illustrated in Figure 2(c). First,
we normalize the fused audiovisual features and pass the re-
sult to a linear layer. The output is then segmented into chunks
of time with 50% overlap between each pair of consecutive
chunks. Subsequently, we apply a dual-path attention layer,
similar to the SepFromer block proposed in [13]. This block
is composed of two transformer blocks, which share a similar
structure, with the only distinction being that the first block pro-
cesses the time sequence, while the second one processes the
feature sequence. As shown in 2(c), each transformer block is
comprised of a layer normalization and a self-attention block
followed by another set of layer normalization and FFN layer.
To optimize training efficiency, residual connections are incor-
porated enabling gradients to flow through the layers. Then, the
output is fed to an overlap-and-add-block and a linear layer, as
described in [20]. Finally, a linear layer is utilized in combi-
nation with a ReLU function to estimate one mask matrix per
talker.

2.7. SNR scheduler

In order to increase the impact of visual data on the model’s per-
formance, we implement a technique named SNR scheduler. In
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Figure 2: Illustration of the proposed audiovisual speaker separation architecture (a) Video encoder, (b) Fusion block, (c) Masking
block

this approach, we initiate the training process with high levels of
background noise which we gradually decrease over time. The
information carried by the visual stream remains intact as it is
not impacted by background noise or reverberation. As a result,
the high noise levels in this approach prevent the audio features
from dominating the model input, allowing the visual modality
to play a more prominent role in the early stages of training.
As training progresses, we gradually decrease the background
noise energy level, allowing the audio features to become dom-
inant once again.

3. Experimental Setup
3.1. Datasets

We use AVSpeech dataset [9] for the training. This dataset con-
sists of over 4,700 hours of 3- to 10-second-long video seg-
ments gathered from 290,000 YouTube videos. The collec-
tion includes speakers from a wide range of acoustic condi-
tions, including almost 150,000 individuals who speak a vari-
ety of languages and have varied vocabularies. The AVSpeech
dataset samples may contain background noise and reverber-
ation, which may provide difficulties during the training pro-
cess due to their uncleanliness. To address this limitation, we
use a subset of the AVSpeech dataset. To identify relatively
clean samples, we employ CMGAN [21], to enhance the sig-
nals. Then, we measure the Signal-to-Noise Ratio (SNR) value
of the original audio relative to the enhanced signal and filter out
samples with an SNR value lower than 15dB, leading to around
700k samples. In the training stage, we randomly choose two
3-second samples in the training stage from this subset. For
the test and validation sets, we randomly separate AVSpeech
test dataset into two subsets and choose 3000 pairs from each
for validation and testing. We combine the selected speech sig-
nal pairs using a signal-to-inference ratio (SIR) drawn from (-
2.5, 2.5) dB. For the background noise, we randomly choose
3-second signals from AudioSet [22] noise collection, which
consists of nearly 1.7 million 10-second segments comprising
526 distinct forms of noise. We then select a signal-to-noise ra-
tio (SNR) value between (-2.5, 2.5)dB and add the chosen noise

with this SNR to the mixed-talkers signal.

3.2. Pre-processing and augmentation

In our study, we utilize an audio sampling rate of 8kHz and a
video frame rate of 25 fps. During the training process, we ad-
just the maximum of the time-domain mixture to one and apply
the same scaling factor to each of the clean sources.

We crop speaker faces from the video stream employing
MediaPipe [23] library with a margin of 10 pixels. Then, we
resize each cropped image to 160×160 px. We use RGB im-
ages and scale them to range [-1, 1] range. In each epoch, we
sample a 3-second segment from the synthetic mixtures. This
corresponds to 3×8000 audio samples and 3×25 video frames.

We also employ Dynamic mixing (DM) data augmentation
approach, as outlined in [13]. This technique involves the gen-
eration of new mixtures on-the-fly using random single-talker
sources. Additionally, we augment the video stream by shifting
the video by (-5,+5) frames in time. This augmentation tech-
nique aims to improve the model’s ability to handle scenarios
in which the audio and video streams may not be perfectly syn-
chronized.

3.3. Experiments Settings

We use 256 convolutional filters with a kernel size of 16 sam-
ples and a stride factor of 8 samples for the audio encoder. The
kernel size and stride values of the video encoder are shown in
Fig. 2. We employ a bidirectional LSTM at the last layer of the
video encoder with a hidden state size of 384. After concate-
nating two speakers encoded features, this results in a feature
vector of size 384× 2.

In the training phase, we utilize the Adam optimizer [24]
with a learning rate of 1.5× 10−4. When the validation perfor-
mance does not improve for five consecutive epochs, we reduce
the learning rate by half. We use a batch size of 2 and train the
model on 8 nodes with 4 GPUs on each node (32 GPUs in total).
To speed up training and minimize memory usage, we utilize
automatic mixed precision. We employ SI-SNR via utterance-
level permutation invariant loss [25] to train the model.
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Table 1: Audiovisual speaker separation results on the
AVSpeech [3] dataset with noise signals from AudioSet [22]. SI-
SDRi: scale-invariant signal-to-distortion ratio improvement.
Higher is better.

SNR sch. Fusion SI-SDRi

Audio Only [13] ✗ - 11.22
Ephrat et al. [3] ✗ LSTM 10.71

✗ LSTM 11.51
Proposed ✓ LSTM 13.15

✓ Attentive 13.35

3.4. Experiments Results

3.4.1. Audiovisual fusion mechanism and SNR scheduler

We present the result of speaker separation on AVSpeech [3]
test dataset in Table 1. In this table, we compare the results of
our proposed audiovisual model, which features a fusion block
and SNR scheduler, to two other models: an audio-only model
with a structure similar to ours [13], and an audiovisual model
with an LSTM block as the fusion layer [3].

To create the test mixture, we utilize the methodology out-
lined in the paper by [3]. This involves choosing 2000 pairs
of random audio clips, with ith audio signal pair denoted as
si1 and si2. Additionally, we select a noise signal, denoted as
ni, from the AudioSet noise dataset. We then combine the
audio clips and noise signal by adding them together with a
weighting factor of 0.3, resulting in the ith mixed audio signal
simix = si1 + si2 + 0.3ni.

To evaluate the impact of the fusion block and SNR sched-
uler, we present the results of our proposed structure with three
different configurations. As shown in Table 1, incorporating
the SNR scheduler has a significant impact on model perfor-
mance. Moreover, the performance of the audio-only model is
comparable with the audiovisual model when it is trained with-
out employing the SNR scheduler technique. This is showing
that in this case, the model is not able to leverage visual modal-
ity. However, when we employ the SNR scheduler technique
the performance improves significantly. To examine the fusion
block’s effect on the model performance, we present the out-
comes of the model using an LSTM and attentive fusion block
in Table 1. We observe that the attentive fusion block, com-
bined with the SNR scheduler, further improves the model per-
formance.

3.4.2. Comparison with prior works

We present a comparison of our results with those of state-
of-the-art models on three audiovisual datasets, which can be
found in Table 2. Mandarin dataset [26] comprises 320 video
recordings of a Mandarin speaker uttering sentences, with each
sentence consisting of 10 Chinese characters. Each utterance
was recorded in a noise-free environment, with the speaker di-
rectly facing the camera. LRS3 [27] test set includes videos
from TED and TEDx talks of 451 speakers with a total duration
of 1 hour. VoxCeleb2 [28] test set contains in-the-wild video
clips of celebrities with 118 distinct identities. This dataset in-
cludes several challenging scenarios such as varied video qual-
ity, low lighting, and recordings made from a side view.

Our approach is similar to that of [3, 8], where we train the
model on the AVSpeech dataset and test it on the other datasets
to assess both performance and cross-corpus generalization ca-

pability. To evaluate the results, we use Perceptual Evaluation
of Speech Quality (PESQ) [29], Signal-to-Distortion Ratio, and
Short-Time Objective Intelligibility (STOI) [30] metrics. Result
of VisualVoice [8] on LRS3 dataset in this table is from [31].

Table 2(a) presents the results of our model on the Man-
darin dataset [26]. It is important to note that this dataset com-
prises single-talker noisy mixtures and is utilized as a baseline
for evaluating audiovisual models on the speech enhancement
task. To assess our model’s performance in this situation, we
train the model using one-talker signals mixed with background
noise.

As presented in Table 2, our proposed model and training
technique consistently outperforms the other methods on speech
enhancement and speaker separation tasks.

Table 2: Comparison with privoius works

(a) Mandarin (Enhancement) [26]
PESQ SDR

Noisy 2.09

Gabbay et al. [32] 2.25 -
Hou et al. [26] 2.42 2.8
Ephrat et al. [3] 2.50 6.1
VisualVoice [8] 2.51 6.69

Proposed 2.67 7.42

(b) LRS3 [27]
PESQ SDR

Noisy 1.30

Lee et al. [9] 2.01 9.78
VisualVoice [8] 2.41 -

Proposed 2.81 10.02

(c) VoxCeleb2 [28]
PESQ SDR STOI

Noisy 2.13 0.05 0.70

VoVit [11] - 10.03 0.87
VisualVoice [8] 2.83 10.2 0.87

Proposed 2.94 11.52 0.88

4. Conclusion
This study focuses on audiovisual speaker separation in noisy
environments. We have proposed a time-domain audiovisual in-
tegration model for single-channel speaker separation. The pro-
posed method incorporates a MaskNet architecture with dual-
path attention and a 3D Encoder for audio and visual process-
ing. We have also presented a new training strategy called SNR
scheduler to increase visual utilization in audiovisual integra-
tion. The resulting model achieves better separation results
than recent baselines on several commonly used audiovisual
datasets. Future work will include the development of causal
speech enhancement and speaker separation and expanding the
proposed architecture to incorporate multi-channel acoustic fea-
tures.
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