
EdgeCut: Fast and Low-overhead Access of User-associated
Contents from Edge Servers

Yi Liu
University of California Santa Cruz

yliu634@ucsc.edu

Minmei Wang
University of Connecticut

Shouqian Shi
University of California Santa Cruz

Yang Wang
The Ohio State University

Chen Qian
University of California Santa Cruz

cqian12@ucsc.edu

ABSTRACT

User-associated contents play an increasingly important role in

modern network applications. With growing deployments of edge

servers, the capacity of content storage in edge clusters significantly

increases, which provides great potential to satisfy content requests

with much shorter latency. However, the large number of contents

also causes the difficulty of searching contents on edge servers in

different locations because indexing contents costs huge DRAM

on each edge server. In this work, we explore the opportunity of

efficiently indexing user-associated contents and propose a scal-

able content-sharing mechanism for edge servers, called EdgeCut,

that significantly reduces content access latency by allowing many

edge servers to share their cached contents. We design a compact

and dynamic data structure called Ludo Locator that returns the IP

address of the edge server that stores the requested user-associated

content. We have implemented a prototype of EdgeCut in a real

network environment running in a public geo-distributed cloud.

The experiment results show that EdgeCut reduces content access

latency by up to 50% and reduces cloud traffic by up to 50% com-

pared to existing solutions. The memory cost is less than 50MB for

10 million mobile users. The simulations using real network latency

data show EdgeCut’s advantages over existing solutions on a large

scale.

CCS CONCEPTS

• Networks → Location based services.

KEYWORDS

Edge computing; Edge location service; User-associated data

ACM Reference Format:

Yi Liu, Minmei Wang, Shouqian Shi, Yang Wang, and Chen Qian. 2023.

EdgeCut: Fast and Low-overhead Access of User-associated Contents from

Edge Servers. In The Eighth ACM/IEEE Symposium on Edge Computing (SEC

’23), December 6–9, 2023, Wilmington, DE, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3583740.3628439

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC ’23, December 6–9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12. . . $15.00
https://doi.org/10.1145/3583740.3628439

Cloud servers

Location 2

upload

Edge server(s)accessusers

Location 1

upload

Edge server(s)accessusers

Content
sharing

https://www.app.com/userID/contentID

ISP

Infrastructure of the
network that runs
applications

User-associated contents

ISP

Private WAN

Figure 1: Infrastructure of edge content caching.

1 INTRODUCTION

User-associated contents have been playing an increasingly im-

portant role in modern network applications. Each user-associated

content is defined as a file directly related to an application user. The

user profiles, posts, and uploaded photos of online social networks

such as Facebook [9] and Twitter [39], documents of file synchro-

nization services such as Google Drive and Dropbox, and the videos

of video-sharing applications such as TikTok are all associated with

specific users and shared with other accounts interacting with these

users.

Content caching methods, such as web caches, content delivery

networks (CDNs) [21, 31], and edge service [27, 40], are widely

recognized as win-win solutions that reduce both service latency to

users and the traffic overhead of network servers and data centers.

For a local community, such as all users in a city, a content provider,

such as Facebook, Google, and CDNs, may deploy an edge cluster

including multiple servers (also called Points of Presence (PoPs))

that carry sufficient resources to store popular contents to allow

users and Internet Service Providers (ISPs) to access these contents

without reaching their data centers [27, 40]. Fig. 1 illustrates an

infrastructure of edge content caching. Edge servers are deployed by

network applications in different locations that are closer to users

than the cloud, thus the latency could be reduced significantly due

to content sharing.

As shown in Fig. 2 (a), in the classic edge caching service, when

an edge server receives a user’s data request, it searches the local

storage of the edge server or edge cluster. If there is no hit, the

edge server will forward the request to the cloud. Fig. 2 (b) shows

a method called edge content sharing, which further reduces the

228

2023 IEEE/ACM Symposium on Edge Computing (SEC)

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

access latency: if the edge server finds no hit in local storage, it

expands the search to edge servers and clusters in other locations

and could find another edge server that holds the requested content.

It then forwards the request to that edge server if it is closer to the

user than the cloud. Edge content sharing is not a new idea and

has been discussed before [8]. However, it is not widely used in

practical networks [27, 31, 40]. The main challenge is that searching

other locations requires either huge message costs to broadcast the

request to other servers [8] or a gigantic directory storing the

content-to-server mappings. Our experiments show that even with

compact data structures such as counting Bloom filters (CBFs) [8],

the DRAM cost per server is as high as 12GB to extend the search

for other locations, including 1 million users based on the real

distribution of contents generated by users [4].

We identify the major problem that is studied in this work: with

growing deployments of edge servers, the capacity of con-

tent storage in edge clusters significantly increases, which

provides potentially much higher hit rates of edge content

requests. However, the large amount of content also causes

difficulty in indexing, whichmakes it hard to find the correct

edge locations for content requests.

This work presents a novel solution for scalable edge content

access. We argue that a large amount of user-associated content pro-

vides a unique opportunity to enable edge content sharing with effi-

cient and scalable directories. Our solution is based on two facts. 1)

It has been reported that most accesses of contents associated with

a specific user 𝑢 happen in the physical regions close to the user’s

active areas [31, 39], i.e., the physical locations 𝑢 frequently log in.

For example, the users that frequently visit 𝑢’s contents could be
𝑢’s family members, friends, classmates, and colleagues. For video-
sharing applications, users in the same area (city, province/state, or

country) are more likely to visit their uploaded videos compared to

others. Hence caching 𝑢’s contents on the edge servers physically
close to𝑢’s active location can increase hit rates if content sharing is
allowed because most requests to 𝑢’s contents also happen in these
areas. 2) We allow all𝑢’s contents caching on the same edge server 𝑠
(or edge cluster). A large amount of user-associated data provides a

new yet not fully investigated opportunity for cache sharing within

a large network application: Maintaining these user-to-server map-

pings < 𝑢, 𝑠 > is more efficient than maintaining content-to-server

mappings. Moreover, our solution is easy to achieve consistency

because the frequency of user location changes is much lower than

that of content changes.

We develop an Edge Location Service (ELS), called EdgeCut,

that returns the responsible edge server of caching a user 𝑢’s con-
tents. We design a compact and dynamic data structure called Ludo

Locator to support queries of edge servers and simultaneously

distinguish mobile and non-mobile users. With Ludo Locator, for

each content request, an edge server can quickly get the IP of the

edge server that stores the content. We have implemented EdgeCut

in a real network environment running in CloudLab [1], a pub-

lic geo-distributed cloud. The extensive experiment results show

that EdgeCut can reduce content access latency by 60% or more

and reduce traffic to the cloud by up to 50%, compared to existing

solutions. The memory cost is less than 48MB for extending the

cache sharing scope of 10 million mobile users, less than 1% of the

memory cost of CBFs. Note that practical networks also include

user

1) Request
content c

2) Search local
edge server

3) No hit. Forward the
request to the cloud

(a) Classic edge caching service

user

1) Request
content c

2. Search local edge
server. If no hit, search
all edge servers

3b) If cloud is closer,
request the cloud

(b) Edge content sharing

3a) If a nearby edge
server holds c,
request the server

Figure 2: Edge content sharing can reduce access latency.

non-user-associated data, and they can be handled using state-of-

the-art caching methods. Hence this work is to complement existing

methods rather than replacing them.

There have been some works [29][8][38][33][11][37][35][36] to

solve the problem of accessing user data among geo-distributed

servers and edge servers. However, they either focus on design-

ing better data replication method [38][33][11] or using routing

schemes to find data [37][35]. They treat each content as an indi-

vidual one and do not deal with user-associated data. Hence they

cannot be used as an ELS. To our knowledge, there is no solu-

tion in the literature for memory-efficient ELS that can be

hosted on heterogeneous edge servers.

Our contributions are summarized as follows:

1). We design a new protocol called EdgeCut to provide an ELS

for user-associated contents. EdgeCut is the first ELS solution that

is efficient to run on every edge server.

2). We design Ludo Locator, an efficient key-value store to main-

tain the mappings of users to their responsible edge servers while

filtering non-mobiles users. It supports dynamic changes.

3). We implement a prototype of EdgeCut in CloudLab [1], a

public geo-distributed cloud, for evaluation. We use different traffic

datasets collected in the real world to show EdgeCut’s performance

on a large scale. The results show that EdgeCut can reduce content

access latency by up to 50% compared to a recent solution that uses

3x storage resources. EdgeCut also reduces the cloud access rate by

30% to 50%.

The paper is structured as follows. We present the system model

and problem statement in Section 2. The full design of the EdgeCut

is presented in Section 3. We show the evaluation results in Section

4. Section 5 presents the related work, and Section 6 concludes the

work.

229

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Home
Location

(HL) Resident
Location (RL)

Visit
Location

(VL)

Cloud Content
Requester (CR)

Edge server
that stores the

mobile user
data

oud

Figure 3: Several locations associated with one mobile user.

2 MODELS AND PROBLEM STATEMENT

2.1 System model

We consider the scenario in which application users carrying end

devices generate, share, and request contents under the edge com-

puting infrastructure [7]. The contents discussed in this work are

all user-associated and each content ID is queried along with its

user ID 𝑈 𝐼𝐷 . Fig. 1 shows the system model, including five main

components.

1)Network application. The network application runs services

that provide contents to end users, such as social networks, video

streaming, and file sharing. It can be a single large application such

as Twitter and Facebook, or a multi-tenant content provider such

as AWS. The network application maintains the cloud and edge

clusters, which are connected by its private WAN.

2) Locations. Each location is an area including multiple users

and one edge server cluster. The size of each location is determined

by the network application and is typically a city or county.

3) End users. Users carrying devices request contents from edge

or cloud servers. Each user has a global-unique UID, assigned when

the user registers, and the location of registration is called its home

location (HL), as shown in Fig. 3. An HL covers an area where the

content provider deploys at least one edge server or edge cluster.

Hence users within a certain geographic area share the same HL.

The user’s HL would be encoded and put into UID as a prefix by the

servers when they register. Since users do not always stay in their

HLs, a user could be active in another geographic location for a long

time until present and such location is called its resident location

(RL). Such users are called the mobile users. A mobile user’s active

location is the RL and a non-mobile user’s active location is the HL.

Hence the contents of a mobile user are cached at an edge server

in his RL and the contents of a non-mobile user are cached in his

HL. When a user log-on in a new location, this location is marked

as its visit location (VL). If he stays in the VL for a sufficiently long

time, e.g., more than one month, the VL becomes his new RL. A

user 𝑢 can also be a content requester (CR) to request the content

associated with another user 𝑣 . A content request will first be sent

to an edge server to check if the request can be satisfied by the

cache. If not, the edge server will use EdgeCut to search other edge

servers or cluster that is responsible for caching 𝑣 ’s contents.
4) Edge servers. A server cluster including at least one edge

server is deployed in each location by the network application to

provide caching service to users in that location [7]. For each region,

Content
Requester

(CR)
Local edge
data server

Data Request
for User u

u is a non-
mobile user

u is a
mobile user

HL edge data
server

RL edge data
server

Cloud server

Figure 4: The workflow of EdgeCut.

there is one control program that is responsible for managing the

cached content of its edge servers, which can co-locate with an

edge server.

5) Cloud servers. Cloud servers are the archive of user contents.

A content request can always be satisfied by the cloud, but the

cloud is remote to most users.

2.2 Problem statement

We target the problem of efficiently accessing cached user-associated

contents from edge servers via edge content sharing. Each content

request will be first sent to a local edge server of the content re-

quester (CR). For user-associated content, the server can get the

user ID (UID) with the associated content. To serve the request, the

main challenge is to obtain the IP address of the nearby edge server

that is responsible for caching the contents of that user, called the

server IP (SIP) of that UID. The edge server could be either located

in the HL for non-mobile users or RL for mobile users. Hence every

edge server should be able to resolve the above information for

an arbitrary UID. Note that if the request is forwarded to SIP and

the content is cached within the edge cluster containing SIP, we

consider the server with SIP can search its edge cluster and return

the content to the requester. We do not discuss how contents are

stored and searched within an edge cluster. EdgeCut relies on exist-

ing protocols to handle these tasks, such as the consistent hashing

method used in Akamai edge clusters [21].

3 DESIGN OF EDGECUT

3.1 System Overview

EdgeCut includes one control program running in each edge clus-

ter and one ELS program on every edge server. Fig. 4 shows the

overview of the EdgeCut protocol. The workflow for a CR to request

the content associated with user 𝑢 is as follows.

Step 1. The CR sends the request for the queried content to his

edge data server. The server gets theUID of𝑢 along with the content
ID and makes a query to the ELS program on its local memory. The

result is a tuple < 𝑓 , 𝑆𝐼𝑃 > where 𝑓 is a 𝑘-bit fingerprint of a UID
computed by a hash function, and SIP is an IP address.

Step 2. The local edge server uses the fingerprint 𝑓 in the query
result of Step 1 to determine if 𝑢 is a mobile user.

Step 3. Case 1: If the fingerprint matches the hash of UID, 𝑢
is a mobile user. Then SIP represents the preferred server (edge

230

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Ludo
locatorInsert/Delete

<UID, SIP>

Control
program

Edge
servers

Update <UID, SIP>

RL table RTT table

Ludo Separator
0 1 0 1 0 0 1 0

Registration
table

Initialize Ludo locator
and separator

Figure 5: System overview.

server or cloud) that stores the contents of user 𝑢. Whether an edge

server is preferred to the cloud can be defined by the provider. For

example, the edge server is preferred if the RTT to it is less than 𝛼
times the RTT to the cloud where 𝛼 is a parameter such as 0.8. Note

that SIP can be a virtual IP of the cloud that will be resolved later by

its load balancer. The local edge server then forwards the content

request to SIP, and that storage server will return the requested

content to the CR. Case 2: If the fingerprint does not match, 𝑢 is

a non-mobile user. In that case, the SIP field will not be used. The

edge server will forward the request to the HL edge server of the

user or cloud, whichever is preferred. The HL of the user can be

retrieved from its UID.

The key ideas of these design choices are: 1) managing content

cache on the granularity of the user level rather than the content

level, to reduce complexity; 2) separating the protocols for mobile

and non-mobile users; 3) locating mobile user’s RL using a memory-

efficient lookup table. These design choices are based on the fact that

the number of users is much smaller than the number of contents

[4], mobile users can be easily located based on their UID, and RL

lookups need to be performed in an efficient way.

3.2 Overview of data structures in EdgeCut

To complete the workflow discussed above, each edge server main-

tains two memory-compact and dynamic data structures developed

by us, called Ludo Locator and Ludo Separator, as shown in Fig. 5.

Ludo Locator maintains the < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pairs for all mobile users

and provides the result < 𝑓 , 𝑆𝐼𝑃 > of querying a𝑈 𝐼𝐷 . The design
of Ludo Locator is motivated by a recent key-value lookup engine

called Ludo hashing [28]. We use Ludo hashing because it supports

key-value lookups with memory efficiency and fast speed. The

memory benefits of Ludo come from the feature that it does not

store the keys. In our context, the keys are UIDs that could be very

long compared to the SIP. Hence, avoiding storing the UIDs in the

search engine is an ideal design choice. However, Ludo hashing has

a limitation that prevents it from being directly used in EdgeCut:

It returns an arbitrary result for any 𝑈 𝐼𝐷 that is not included in

it – in the case of EdgeCut, querying a non-mobile user will get a

wrong SIP. Hence, we develop the Ludo Locator that can identify

non-mobile users. To further decrease the miss-classification of

non-mobile users, we develop the Ludo Separator.

Both Ludo Locator and Ludo Separator are constructed in the

control program, and the control program sends them to edge

servers via a software interface. For an edge cluster, one control

program is sufficient to manage the data structures on all servers.

Hence, such construction-query separation significantly reduces

the average resource overhead on each server. The control program

maintains three tables. 1) The registration table stores all users that

use this region as HL, RL, or VL and the time they have been staying

in this region. 2) The RL table stores the𝑈 𝐼𝐷𝑠 of all mobile users
and their RLs and the SIP of the edge server that stores the user

contents. 3) The RTT table stores the round trip time (RTT) to every

other region of the service provider and each region is identified

by the IP address of its control program. All control programs will

periodically synchronize the RL information of the mobile users

while measuring the RTTs using these messages.

At the initialization of an edge server, the control program will

compute its Ludo Locator and Ludo Separator, which are used to

provide lookup services to tell 1) whether the user of the requested

content is mobile, 2) if yes, what is the SIP of its RL, 3) whether

the edge server should forward the request to that SIP instead of

forwarding it to the cloud. The edge server directly receives these

two data structures from the control program. After initialization,

any changes of the < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pairs can be updated by each

edge server locally. The control program only needs to tell each

server to insert or delete certain pairs. Such a design reduces the

communication cost between the control program and servers.

When a CR wants to access content that is associated with user𝑢,
the content request is first forwarded to the edge data server in the

region where the CR resides. On the edge server, Ludo Locator can

provide a fast lookup service for the SIP of 𝑢, which contains the IP
address of the edge server or cloud server, whichever is closer to the

CR. The lookup result allows the edge server to forward the content

request to that server. Each mobile user’s location pair is stored in

this table. The details of the Ludo Locator will be presented in the

following part.

The locations of mobile users change dynamically, so the control

program of each location maintains a registration table that stores

the starting time of each mobile user arriving at that location. The

control program maintains and updates the location status of each

mobile user – determines whether this location is the user’s VL

or RL – according to the arrival time. The user-to-RL mappings

of all mobile users are stored in the RL table. When there is a

change in a user’s RL, this information should be forwarded to

control programs of all edge locations, which triggers the updates

of their RL tables. When there is a change to the RL table, the

control program can insert or delete user-location pairs to/from

Ludo Locator. In addition, each control program also maintains the

RTT estimations for communicating with all other edge control

programs, and these estimations can be used to determine the

network distances to other locations and whether other locations

should be chosen favorably over the cloud if a request should be

forwarded. The RTT estimations are computed using the moving

average method like that in the TCP protocol and stored in the RTT

table.

Ludo Separator is a memory-efficient (2,1)-Cuckoo filter [12]

running on each edge server to further reduce the false positives

caused by the Ludo Locator while distinguishing mobile users from

non-mobile users, assisting to provides a more accurate ELS for

users. The detailed design of the Ludo Separator is presented in

Sec. 3.5.

231

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Look up

Bloomier filter

Two arrays A and B.
Get b=A[h(k)]
B[h’(k)], b {0, 1}

hash seeds

0

1

2

3

4

Compute = ,
{0, 1, 2 ,3}

Find the
value in
slot

A

B

Figure 6: Ludo hashing

Another advantage of EdgeCut is the ability to remove non-

mobile users from the whole user set without storing their keys.

However, the number of users is so large that just using a fingerprint

of a certain length of bits will result in a large number of false posi-

tives. The core structure of the Ludo separator is the (2,1)-Cuckoo

filter, which can make the number of false positives decrease expo-

nentially with a linear increase in memory usage. The reduction

of the false positive rate provides accurate location information of

mobile user contents, thus reducing invalid data access times and

reducing the burden on the communication network.

3.3 Ludo Locator

One challenge for providing a memory-efficient ELS on each edge

server is finding a space-efficient data structure to store UID-to-SIP

mappings and support fast lookup.

We briefly introduce Ludo hashing before presenting our design.

The proposed Ludo Locator is motivated by a recently developed

data structure called Ludo hashing [28], which Ludo Hashing is a

key-value lookup engine with small memory cost, > 50% smaller

compared with several known compact data structures such as

Cuckoo hashing and Bloomier filters [28] while supporting a fast

key-value pair updates.

Fig. 6 shows the structure of Ludo hashing, which is a tuple

〈𝑂,𝑇 , ℎ0, ℎ1,H〉, where 𝑂 is an Othello lookup structure [41] that

maintains two bitmaps 𝐴 and 𝐵 and returns 1-bit value to indicate

whether the value 𝑣𝑘 of a key 𝑘 is stored in the bucket ℎ0 (𝑘) or
ℎ1 (𝑘) of 𝑇 . Here, 𝑇 is a (2,4)-cuckoo hash table [25] that stores the

values of keys. H is a universal hash function family. The index

𝑡 in the bucket is determined by comping 𝑡 = H𝑠 (𝑘) (𝑡 ∈ 0, 1, 2, 3)
where 𝑠 is the seed stored in each bucket. Ludo hashing does not
need to store keys. For each key 𝑘 , Ludo hashing first queries the
Othello structure to get whether the value is stored in the bucket

ℎ0 (𝑘) or ℎ1 (𝑘). Then Ludo hashing will extract the seed 𝑠 in the
target bucket and compute the index 𝑡 = H𝑠 (𝑘). Finally, the value
stored in the slot 𝑡 will be returned as the value 𝑣𝑘 . Ludo hashing is
memory-efficient, which only costs (3.76+ 1.05𝑙) bits per key-value
item for 𝑙−bits values, providing > 50% space reduction compared

to existing solutions. Ludo hashing is fast in lookups and updates.

The time of item lookup and deletion is 𝑂 (1) and the time of item

insertion is amortized 𝑂 (1) [28].

For EdgeCut, the ‘key’ in our context is the UID of a mobile

user, and the ‘value’ is the IP address of the edge server or cloud,

whichever is preferred. The limitation of directly applying Ludo

Look up

Bloomier
Filter

0

1

2

3

4

142.250.1.10110110101
10-bit fingerprint 32-bit IP address

Fingerprint matches:
forward the request to
the IP

Fingerprint does not match:
forward the request to the HL
of UID

Figure 7: The workflow of Ludo Locator

hashing in EdgeCut is that the Ludo hashing cannot tell whether

the given UID is for a mobile user or a non-mobile user. Since non-

mobile users are not stored in the table, by querying a UID of a

non-mobile user, Ludo hashing will return an arbitrary SIP. The

incorrect SIP for a non-mobile user will bring extra response time

and traffic. One intuitive solution to solve this issue is to place a

Bloom filter [10] that stores the user IDs of mobile users before

querying the Ludo hashing to filter non-mobile users. However,

Bloom filters introduce extra memory costs and memory accesses.

Instead, we present a solution that still uses three memory accesses

per lookup in the Ludo hashing.

Ludo Locator is designed to identify non-mobile users while

using less memory and fewer memory accesses compared to putting

a Bloom filter. Instead of storing a value, Ludo Locator stores a tuple

in each table slot. The tuple includes two fields: (1) a fingerprint

field, also called user check code, which is a 𝑙𝑐−bits value, and (2) the
SIP. The fingerprint stores the partial hash valueH𝑠 (𝑈 𝐼𝐷), where
H is the uniform hash function used in calculating the slot index.

Hence there is no extra step of hash computation. Fig. 7 shows the

slot format in Ludo Locator. To query a UID, Ludo Locator finds

the corresponding slot and gets the tuple. Then it compares the

fingerprint withH𝑠 (𝑈 𝐼𝐷). If they match, Ludo Locator concludes
that the user is a mobile user and the SIP can be used for forwarding.

Otherwise, the user is regarded as a non-mobile user. The content

request can be forwarded to the edge server of the user’s HL. Recall

that the HL ID is stored along with every UID. Hence each edge

server also stores a small hash table for HL ID to HL IP mappings.

Such a table can be implemented with a standard Cuckoo hash table

[25].

We should point out that due to hash collisions, different users

may have the same fingerprint. If a non-mobile user is mapped

to a slot and the fingerprint matches its UID, we call this a false

positive (FP). The FP rate of an arbitrary non-mobile user for Ludo

Locator is 2𝑙𝑐 where 𝑙𝑐 is the length of each fingerprint. We set the

default 𝑙𝑐 to be 10 bits in our design, leading to an FP rate as low as

1/1024, which can be further reduced by the design presented in

Sec. 3.5. Suppose that a non-mobile user 𝑢 is incorrectly identified

as a mobile user𝑀 ; Ludo Locator will return the SIP of𝑀 . In this

case, the target edge server unlikely stores the contents of 𝑢 and

will forward the request to the cloud. Note that for all mobile users,

all results provided by Ludo Locator are correct.

Lookup overhead. Each query lookup of the Ludo Locator

requires only four hash computations, two for the Othello lookup,

232

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

one for calculating the bucket index ℎ𝑏 , and one for the slot index
H inside the bucket. The fingerprint computation reuses the partial

result ofH . If the seed for one bucket overflows, additional 1 or 2

hash computations are needed to get the result from the fallback

table, but the probability of bucket overflow is low (less than one

out of a million, according to our experiments).

Insertion and deletion overhead. Ludo Locator updates dy-

namic changes of mobile users’ RL information. Once a non-mobile

user becomes a mobile user, or a new mobile user joins the system,

the user’s < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pair is inserted into the table. The inser-

tion time consists of 1) an update to the Othello structure in (𝑂 (1))

time; 2) an update in the (2,4)-Cuckoo table contained in the Ludo

Locator in 𝑂 ((𝑚/𝑚 − 𝑛)𝑂 (log(log(𝑚/𝑚−𝑛)))), where𝑚 is the num-

ber of buckets in the Cuckoo table and 𝑛 is the number of mobile
users; 3) the edge control program broadcasts the insertion update

information to the other regions. A similar but simpler process is

conducted for a deletion operation.

Selection of SIP in Ludo Locator. The control program con-

structs Ludo Locator for edge servers from the RL table that stores

the full mappings of UIDs to their SIPs in RL. It needs to decide

which IP address should be put into the SIP field for each mobile

user with UID, specifically, the SIP of RL or the IP address of the

cloud. Both are correct locations that store the contents of UID.

Whether an edge server is preferred to the cloud can be defined by

the network application. A possible condition can be the RTT to

the edge server is less than 𝛼 times the RTT to the cloud, where 𝛼
is a constant such as 0.8.

3.4 Update and consistency of Ludo Locator

Mobile users may also move to other locations and their RLs may

change. How to handle the dynamics to maintain correct lookup

tables is a challenge.

The control program tracks the mobile users in its location using

the registration table. When a mobile user visits the location, the

registration table records its visited time associated with its UID.

The time will be used for tracking if the user’s VL should be changed

to its RL. When a non-mobile user changes to a mobile user or a

user’s VL changes to its RL, an update is necessary to edge servers

to reflect the correct mobile user to SIP mapping.

The edge data server only needs to store one table, maintaining

the mobile user ID and its associated RL edge data server IP. How-

ever, if the network latency required for the edge control server in

this region to communicate with the cloud server is lower, then the

value saved in the RL field is the IP address of the cloud server.

RL insertion.When a user 𝑢 moves into a new location 𝑟 , the
location is marked as its VL, and the location’s control program

records it in the registration table. The contents generated by 𝑢 are

cached by an edge server 𝑠 in 𝑟 , and 𝑠 also forwards the contents
to 𝑢’s corresponding server 𝑠′ in its RL or HL by looking up Ludo
Locator. When the control program in 𝑟 finds that the time 𝑢 has
been in this area exceeds a predefined threshold 𝑇𝑖𝑛 , it determines
that it becomes the RL for 𝑢. The edge server 𝑠 in 𝑟 will be the new
corresponding server of 𝑢 and notify the current RL edge server 𝑠′

to stop caching more 𝑢’s contents and migrate the existing cached
contents of 𝑢 to 𝑠 . The IP address of 𝑠 will be the SIP of 𝑢. The
control program notifies all edge servers in 𝑟 to perform an insert

operation of < 𝑈 𝐼𝐷𝑢 , 𝑆𝐼𝑃𝑠 > in their Ludo Locator, where 𝑆𝐼𝑃𝑠 is
the IP of 𝑠 . The control program also synchronizes this information

with other locations. The control program of every other region

will tell its edge servers to insert < 𝑈 𝐼𝐷𝑢 , 𝑆𝐼𝑃 >, where 𝑆𝐼𝑃 is the

IP address of 𝑠 or the cloud, whichever is preferred.
Note there is no difference in the RL insertion process for the

case of 𝑢 moving from its HL to an RL or the case of moving from

a previous RL to a new RL. If a previous mapping of 𝑢 exists in

Ludo Locator, it will be replaced by the new one. If no mapping of

𝑢 exists, a new one will be inserted. In the end, the resulting Ludo

Locator is the same in the two cases.

RL deletion. RL deletion happens in only one case: a mobile

user becoming non-mobile. When a mobile user 𝑢 returns to its HL

𝑟 , an edge server 𝑠 of 𝑟 starts to store new contents generated by

𝑢. When 𝑢 stays in its HL for a longer time than the threshold 𝑇𝑑 ,
the control program of 𝑟 will notify the current RL edge server to
stop caching more 𝑢’s contents and migrate the existing cached
contents of 𝑢 to 𝑠 . The mapping of 𝑢 in the control program of

every location will be deleted. EdgeCut supports quick deletion

operations by simply deleting an entry from the control program

and removing 𝑢’s fingerprint in Ludo Locator.
Consistency.Maintaining consistency ensures the lookup re-

sults of the Ludo Locator reflect the actual edge servers that store

the requested contents. If a mobile user 𝑢 moves from an RL to a

VL and stays long enough, the VL becomes the new RL, and the

previous RL should retire. EdgeCut will request the RL server 𝑠′ to
stop caching more contents of 𝑢 and migrate the existing contents

to the VL edge server 𝑠 . The migration should be complete before
the changes to Ludo Locator take effect. During this period, any

changes about 𝑢’s contents that are sent to 𝑠′ will be forwarded to
𝑠 .

If user data that has been copied to the VL server is written,

the RL edge control server can act as an anchor node to inform

the VL edge data server to modify the corresponding value. The

write operation in these two servers can be asynchronous because

any concurrent writes to the same content are subject to the last

writes to the RL edge data server until the RL value is changed.

Copying before RL value modification in the Ludo table ensures

the consistency of data before and after the user moves. The same

is true for mobile user deletions and new insertions. For the consis-

tency of the Ludo Locator table, an edge control server sends the

update information to other edge control servers once there is an

RL insertion, update, and deletion.

Size setting of Ludo Locator. The load factor is defined as

the number of key-value mappings over the total number of slots

in a data structure such as Cuckoo hashing, Ludo hashing, and

Ludo Locator. It has been shown that insertions never fail when

the load factor of Ludo is <97% [28]. It proves in theory that the

insertion would always be successful asymptotically when the load

factor is <98.03% [15]. In our implementation, as long as the load

factor of a Ludo Locator is below 97%, reconstruction will not be

triggered. Otherwise, the control program will start reconstructing

the Ludo Locator by increasing its size by 10% for all edge servers

in its location.

233

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

Mobile
user A

Static
user B

Ludo Locator
00 10 01 11 10 00 11 10

Non-mobile
user B

1 + 142.250.1.1101 001
6-bit FP 1-bit Flag & 32-bit IP Addr

(2,1)-Cuckoo filter

Figure 8: Construction of the Ludo Separator.

3.5 Ludo Separator

When the number of non-mobile users is large, Ludo Locator’s

fingerprint-based approach still produces false positives that cate-

gorize some of them as mobile users (shown in Section 4). However,

a unique feature that can be utilized by EdgeCut is that, once a false

positive is detected by an edge server, it can be recorded and later

queries of the same non-mobile user will not cause a false positive

again.

Towards this goal, we design Ludo Separator, a secondary data

structure based on a (2,1)-Cuckoo filter [12], i.e., a Cuckoo hash

table that uses two alternate buckets for each key and each bucket

stores the fingerprint of the key mapped to this bucket. To query

a UID, Ludo Separator fetches two buckets and checks if one of

the fingerprints matches the fingerprint of the UID. If there is a

match, Ludo Separator returns a positive result, otherwise it returns

a negative result. In addition, the SIP field in Ludo Locator includes

an extra flag bit to indicate a collision in this slot. Suppose that

one slot in the Ludo Locator stores the fingerprint and the SIP

corresponding to a mobile user 𝑎, and a non-mobile user 𝑏 is also
mapped to this slot, and they happen to have the same fingerprint.

Then the flag bit is set to 1 to indicate that there is a potential false

positive so the edge server will further lookup 𝑏 in Ludo Separator.
The construction of the Ludo Separator is as shown in Fig. 8.

When a local edge server 𝑠 processes the request of a content of a
non-mobile user 𝑢 but encounters a false positive, it will forward
the request to an edge server 𝑠′ that does not store 𝑢’s contents. 𝑠′

will report this false positive to 𝑠 , so 𝑠 should insert the element
𝑢 into Ludo Separator and set the collision flag bit of the slot in

the Ludo Locator to 1. In Ludo Separator, each bucket contains a

2-bit fingerprint. If there is again a fingerprint match of 𝑢 in Ludo

Separator, EdgeCut can conclude that𝑢 is a false positive and thus is
a non-mobile user. Otherwise,𝑢 will be forwarded to 𝑠′ because it is
not a false positive. After every insertion, the edge server broadcasts

its Ludo Separator to all edge servers within the same cluster, to

make all Ludo Separators consistent.

The (2,1)-Cuckoo filter can be used during the construction.

When a CR wants to request the user’s data, the edge data server

first checks whether the flag bit is “1" after finding the SIP corre-

sponding to the user ID. If the flag bit is “1", then the user ID needs

to be checked in the Cuckoo filter again using the new identifier.

In summary, the fingerprint of the Ludo Locator removes most

non-mobile users, and the second filter – Ludo Separator removes

collisional mobile users. Thus, the false positive rate will be greatly

reduced, and the separation of mobile users and non-mobile users

will be completed more thoroughly. The evaluation results show

the false positive rate using Ludo Locator plus Ludo Separator is

more than 80% lower compared to using Ludo Locator only with

more memory cost.

We conduct the following analysis on the false positive rate by

using both Ludo Locator and Ludo Separator.

Suppose there are 𝑛 mobile users and𝑚 non-mobile users and

we assume the ratio of them is 𝛽 , which means𝑚 = 𝛽𝑛. As for the
locator-only approach, the length of the fingerprint is 𝑙1. For the
Ludo Separator approach, the length of a fingerprint in the Ludo

Locator is 𝑙2 and a fingerprint in (2,1)-Cuckoo filter is 𝑙3 bits. For
the locator-only approach, the memory cost is: 𝑛 · (32 + 𝑙1) and its
false positives only come from non-mobile users is:𝑚 · 1

2𝑙1
.

As for the Ludo Separator, its memory cost consists of the Ludo

Locator and the additional (2,1)-Cuckoo filter, The length of the

Cuckoo filter follows the setting in [12]. Thus its memory cost can

be expressed as: (𝑙2 + 1 + 32) · 𝑛 +
𝑙3

2𝑙2−1
· 𝑛. The false positives of

Ludo Separator come from the mobile users whose𝑈 𝐼𝐷 pass the

Ludo Separator and are identified as non-mobile users: 𝑛 · 1
2𝑙2

· 1
2𝑙3

+

𝑜 (𝑛 · (1
2𝑙2

)2), where 𝑜 (𝑛 · (1
2𝑙2

)2) represents the probability of cases

that two or more non-mobile users are mapped to the same slot

with one mobile user and their fingerprints are all the same. Since

the value is very small, we ignore the calculation here.

Suppose the memory cost of these two schemes same, then the

𝑙1, 𝑙2, and 𝑙3 will follow this equation: 𝑙1 = 𝑙2 +
𝑙3

2𝑙2−1
+ 1. Thus, when

𝛽 is greater than 2
1+

𝑙3

2𝑙2−1
−𝑙3

, the Ludo separator will outperform

the fingerprint-based approach in the number of false positives.

3.6 Scalability.

When the number of mobile users reaches the threshold of the load

factor (e.g., 0.85) of the registration table or there is a deadlock

encountered when inserting a new UID, the registration table main-

tained in the control program (shown in Fig. 5) would be enlarged.

Then, all < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pairs will be inserted into the new empty

table again. However, new < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pair insertion would be

halted during registration table resizing. Even if the mobile users’

registration is not a time-sensitive task (e.g., transaction system),

the time and CPU overhead for migrating all current < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 >
pairs into an empty table is large. To reduce the halted time for the

registration table when resizing, we leverage the extendible hash-

ing scheme to reduce the number of migrated pairs. In extendible

hashing, there is only one registration table with the fixed size first;

when the number of < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 > pairs in it reaches a threshold,

there is another table would be created with the same size, and all

the UID ending with the "0" would stay in the original table. The

left pairs whose UID ends with "1" will move to the new split one.

When both of them become full, two new registration tables would

be created to have the pairs whose UID ends with "10" and "11", and

the UID ending with "01" and "00" will stay in the original tables

and keep going. Then, there is always the power of two registration

tables kept in the control program, and only half of < 𝑈 𝐼𝐷, 𝑆𝐼𝑃 >
pairs would be moved to the new registration tables.

3.7 Data privacy.

From a trustworthy edge computing perspective [32], the protec-

tion of user-associated data is of paramount importance due to the

234

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

MASS
Cluster

WISC
Cluster

Machine in Utah

(a) The network topology consists of 9 machines from
MASS, WISC and Utah clusters in the CloudLab.

(b) Average latency of accessing user-associated content.

Figure 9: Results from EdgeCut prototype implementation.

sensitive and private nature of the information involved. Safeguard-

ing this data is crucial to ensure individuals maintain control over

their personal information. It is important to note that in this partic-

ular context, the focus is on the content and data published by the

user. The EdgeCut framework enables CR to query user-associated

content based on the user’s unique identifier (𝑈 𝐼𝐷). Throughout
the entire data query process, the user’s identity, who publishes

the content, remains undisclosed to the CR system. This privacy

assurance is achieved through the implementation of a control pro-

gram running in the application layer. By operating at this layer, the

control program guarantees that the user’s information is not ex-

posed to the CR. Additionally, content owners retain the authority

to establish access permissions for other users attempting to access

their content through the use of metadata. This feature empowers

content owners to set appropriate levels of authorization, granting

or denying access to specific individuals or groups as they see fit.

By emphasizing privacy protection, incorporating control mech-

anisms, and empowering content owners with access authority,

the framework aligns with trustworthy edge computing principles,

providing users greater control and security over their personal

data.

4 EVALUATION

We evaluate the performance of our EdgeCut against a few state-of-

the-art methods that can be utilized for edge content access, by both

the prototype implementation and simulations with real network

datasets.

4.1 Application workloads

The user-associated content is indexed with the 𝑈 𝐼𝐷 . We use the

YCSB workload [26] to generate 10M distinct keys as 𝑈 𝐼𝐷 for all

users, which are spread in the whole network uniformly. In the

latency measurement, we randomly select 10K users as CRs. For

each CR’s workload, we generate 1K𝑈 𝐼𝐷 as their content access

workload in the YCSB suite with the distributions of uniform and

Zipfian-0.9. In the following evaluation, we will change the mobile

users ratio in each CR’s workload to get the average latencies, which

will be treated as the lookup latency.

4.2 Methods to compare with

We compare EdgeCut with the following three approaches in the

evaluation:

1). Direct cloud access (denoted as “Cloud”): A naïve ap-

proach that directly queries the cloud to get every content.

2). Proactive replication: In the proactive replication scheme

[13][14], edge servers provide content access based on the “cell

structures”, and proactively replicate data to the different number

of edge servers in the adjacent cells. For our evaluation, we replicate

user contents from each edge server into 2 adjacent hexagonal cells.

When a CR requests a mobile user’s data, the local edge server will

access one of these three servers.

3). Portkey [24]: This method is an adaptive placement for

a distributed KV store in the case of dynamic edge networks. In

Portkey, all KV pairs are grouped with the hash function. The main

strategy is to place different KV pair groups in the edge server

where it can achieve low latency. The optimal placement for each

KV pair group comes from the analysis of the workload and the

applied greedy algorithm. In our implementation, the “optimal"

location for each KV pair group is set on the edge server where

users request them most.

4.3 Implementation and prototype evaluation

We implement the EdgeCut protocol as a prototype system run-

ning in CloudLab [1], a public geo-distributed cloud. The prototype

consists of 9 machines from 3 different clusters located in Mas-

sachusetts (MA), Wisconsin (WI), and Utah (UT). As shown in Fig.

9a, four physical servers are used in each of MA and WI as an edge

cluster: three computers are used as edge servers connected to one

physical machine as the control program. In addition, we also use a

machine in UT as the cloud. We use Redis [5] to store user IDs and

a random string (1KB) as value, the ZeroMQ [6] will be leveraged

to complete communication between machines.

In EdgeCut, All UID-to-SIP mappings are stored in Ludo Locator,

running on each edge server in MA and WI. Each edge server per-

forms queries of contents from different mobile users 10 thousand

times and sends the content requests to the targeted servers indi-

cated by the SIPs. Each successful content request starts with the

requester sending the request and finishes at the requester receives

the requested content. Meanwhile, we record the response latency

for these content requests and calculate the average response la-

tency and throughput of satisfying content requests on each edge

server.

235

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

Num. of users 100K 1M 5M 10M

CBF (content-level) [8, 21] 1190 11870 59360 118710

EdgeCut (user-level) (this work) 0.5 5.1 25.1 50.2

Table 1: Memory cost (in MB) for content-level and user-level

indexing structures.

In the proactive replication approach, we store three copies of

each content in another 2 adjacent edge servers. Also, CR can reach

any of these three replicas (including HL) to access queried data.

In Portkey, we cached the mobile user’s contents in the edge

server based on the analysis of CRs’ workloads. The location of the

edge server is closer to the CR that queries this mobile user’s con-

tents most frequently. Note that all UIDs are hashed into different

groups to be placed on different servers, so the cached edge server

may not be the closest location for CRs to access the user-associated

content.

We distribute all users in the above two clusters and generate

queried workloads for randomly selected CR from the YCSB work-

load with the Zipfian distribution with a constant 0.9 [17, 19, 20].

For mobile users, their RL and HL are uniformly distributed in two

distinct clusters. Fig. 9b shows the latency of completing content

requests on each edge server. No error bars are drawn in the figures

because the variations are too small to see. EdgeCut can achieve

0.5x latency compared to direct cloud access when the mobile users

ratio is more than 60. For mobile users, CR can get a closer SIP

from the Cloud or RL cached server for the queried 𝑈 𝐼𝐷 via the

Ludo locator. For non-mobile users, HL or Cloud will be chosen to

access data based on the round trip table. Portkey can choose an

edge server for caching all user-associated data in a user group, but

that may not be a closer choice for each queried user data.

4.4 Simulations with real network datasets

We use the network latency datasets [43] based on PlanetLab [3]

and the Seattle topology [2] for evaluation. The PlanetLab dataset

collects the pair-wise RTTs among 490 nodes over 18 time slices

in the PlanetLab network. The Seattle dataset consists of pair-wise

RTTs among 99 nodes in 688 time slices. We choose one node as

the cloud and others as edge clusters. We use one workstation with

two Intel E5-2660 v3 10-Vore CPUs at 2.60GHz, 160GB 2133MHz

DDR4 memory, and 25MB LLC to run the simulations.

It is well known that contents have different popularity and

both content popularity and user activities may be described as

Zipfian distribution [17]. We generate two types of content request

workloads in both uniform and Zipfian distributions to show that

Edgecut can be widely applied in different scenarios based on YCSB

workload [26], which is a common setting [20]. For the uniform

distribution workload, each user’s contents have the same probabil-

ity of being accessed by others. The Zipfian distribution (constant

0.9) workload includes a small part of popular UIDs.

4.4.1 Evaluation of Ludo Locator. We implement Ludo Locator

using C++ code and compare it with two data structures used for

recent indexing solutions named Cuckoo Summary (CS) [37] and

counting Bloom filters (CBF) [21]. In our implementation, each CBF

(a) Memory cost. (b) Lookup throughput.

Figure 10: Performance comparison for Ludo Locator,

Cuckoo summary and counting Bloom filters.

(a) The false positives rate. (b) The memory cost.

Figure 11: Evaluation of Ludo Separator against locator-only

approaches.

is constructed by an edge cluster based on the mobile users it is

responsible to [21]. CBFs will be synchronized among edge clusters.

Memory cost. Fig. 10a shows the memory cost comparison of

the three methods. Ludo Locator costs smaller memory than CS, in

particular around 25% less for 10M mobile users, and significantly

smaller memory than CBF, around 66% less. Note the memory cost

of CBF in Fig 10a is for user-level indexing, while the original

design of CBF is for content-level indexing. Table 1 shows the

comparison of the Ludo Locator and content-level indexing using

CBFs. The content-level indexing requires over 12GB for 1 million

users based on the real distribution of the number of contents per

user per year [4]. We find that content-level indexing requires 2000x

more memory and hence is impossible to support cache sharing in

modern edge computing. User-level content caching is a preferred

solution.

Lookup throughput. We evaluate the lookup throughput in

millions of queries per second (Mqps) of the data structures for

the three indexing methods. We vary the number of mobile users

from 100K to 10M. The test dataset contains 10K UIDs that could be

repeatable. Each point value is the average time of 5 runs. Fig. 10b

shows that CS achieves slightly faster throughput than Ludo Loca-

tor. However, Ludo Locator achieves around 2Mqps, way more than

sufficient to support queries on the edge server. Hence, the through-

put Ludo Locator and CS do not make significant differences. Both

of them are much faster than CBF.

4.4.2 Evaluation for Ludo Separator. In this section, we compare

the approach of the Ludo Locator plus Ludo Separator (denoted

236

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

(a) Latency with uniform distribution in Seattle topology. (b) Latency with Zipfian distribution in Seattle topology.

(c) Latency with uniform distribution in PlanetLab topol-
ogy.

(d) Latency with Zipfian distribution in PlanetLab topol-
ogy.

Figure 12: Comparison of content access latency.

as Ludo Separator in short) with the locator-only approach. The

performance metrics include the number of false positives, false

positive rate, and memory cost.

Ludo Separator is used in a two-layer data structure, including

Ludo Locator and Ludo Separator, which is a (2,1)-Cuckoo filter.

Ludo Locator can filter out most non-mobile users, and the Cuckoo

filter can remove the mobile users that are false positives introduced

by fingerprint collisions in the Ludo Locator. After this two-layer

screening, the number of false positives can be reduced significantly.

As for the fingerprint-based approach, it can use more bits for

fingerprints in Ludo Locator to reduce the false positive rate.

We vary the number of mobile users from 100K to 2M and test

with 4x non-mobile users. We assume EdgeCut uses 6-bit finger-

prints in the Ludo Locator and 2-bit fingerprints in Ludo Separator

for the solution that combines them. We compare the locator-only

approach by varying the length of the fingerprint from 8 bits to

10 bits. As shown in Figs. 10a, Ludo Separator achieves the lowest

false positives compared to all three versions of Ludo Locator-only

approaches. We set 1M mobile users and compare the memory

cost of all approaches. From Fig.11b, the memory costs of the Ludo

Separator with (6+2) bits are smaller than that of the locator-only

approach (8 bit). Combining the results of the Ludo Separator with

(6+2) bits and the locator-only approach (8 bit) from all three figures

in Fig. 11, we find that Ludo Separator costs lower memory while

achieving a lower false positive rate with its two-layer design.

4.4.3 Evaluation for network latency. We test the latency of con-

tent accesses by comparing EdgeCut with Cloud and Proactive

Replication. Lower latency infers the edge cache-sharing method

with a higher fit rate. We implement EdgeCut with different mo-

bile user ratios from 20% to 100%. In our benchmark, the CRs are

randomly chosen on different servers. We also assign each CR with

10K queried users’ IDs. We generate 1K 𝑈 𝐼𝐷 as the queried work-

load based on the YCSB suite with the distributions of uniform and

Zipfian-0.9.

Figs. 12a and 12b show the latency of the Seattle topology with

uniform and Zipfian distributions, respectively. Figs. 12c and 12d

show the latency of the PlanetLab topology with uniform and Zip-

fian distributions, respectively. In most cases, EdgeCut provides

lower latency than the other three schemes, especially when the ra-

tio of edge users is large. The reason is that the Ludo locator enables

users to access the targeted mobile user’s content from the closer

𝑆𝐼𝑃 for each CR. In Portkey, even if the cached user data is placed

in an edge server in a hashing group based on the analysis of CRs’

workloads. However, each group contains many users’ data; thus

it is not optimal for all CRs to get data from a closer place. In the

proactive replicas approach, user data is copied to the edge servers

that are adjacent to HL and cannot reduce the latency for a CR that

is far from them. Low latency means that the time taken for a user’s

request to reach the server and for the server to respond is minimal.

The reduction of the latency provided by EdgeCut can enhance user

satisfaction. Also, due to the different node geo-distributions in the

Seattle and PlanetLab networks, the RTTs in these two datasets are

different. Therefore, in the simulation results, the average latency

of the PlanetLab network is lower than that of the Seattle network.

4.4.4 Cross-area traffic rate. Cross-area traffic refers to the data

traffic that needs to be transmitted between different geographical

237

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

(a) Cross-area traffic (uniform) (b) Cross-area traffic (zipfian)

(c) Cross-area traffic (uniform) (d) Cross-area traffic (zipfian)

Figure 13: Cross-area traffic rate comparison.

areas or regions. In the context of the given statement, cross-area

traffic specifically refers to content requests that are satisfied by

edge servers located far away, resulting in longer latency. To eval-

uate the distribution of content requests among edge servers, the

metric of cross-area traffic rate is used. This metric measures the

proportion of content requests that are satisfied by distant edge

servers or the cloud, leading to higher latency.

In our evaluation, cross-area traffic is defined as one with a

latency longer than 120 ms by analyzing the network latency from

CR to the targeted user-associated data. Fig. 13 shows the cross-

area traffic rate of the three methods in both Seattle and PlanetLab

topologies with different workloads, with different mobile users

ratios. In all cases, EdgeCut can reduce the cross-area traffic rate by

5% to 30% compared to other methods. Hence, more requests are

satisfied by EdgeCut on nearby servers.

4.4.5 Cloud access rate. Reducing cloud traffic load has emerged

as a crucial objective in the realm of edge computing, prompting

the pursuit of various solutions such as edge caching. EdgeCut can

also be employed as a user-associated data caching approach to

alleviate the burden on cloud resources by storing and delivering

mobile users’ data at the network edge.

We show the cloud access rate of the three methods in Fig. 14.

The cloud approach enables CR to request data from the cloud

server each time. Thus, the cloud traffic reaches 100%, as shown in

the red dot line. Again, with both uniform and Zipfian workloads,

EdgeCut always achieves the lowest cloud access rate and reduces

the metric by 20% to 50% compared to Proactive Replication, despite

the latter using the 3x storage resource.

5 RELATEDWORK

Reducing network latency and cloud bandwidth cost of content

accesses is a crucial issue. Edge caching is one promising approach

to achieve so [23].

Data Caching in Edge Computing. Xia et al. [34] models the

collaborative edge data caching problem (CEDC) as a constrained

optimization problem and proves it is NP-complete. They also pro-

pose an online algorithm, called CEDC-O, to solve this problem

based on Lyapunov optimization. Zhang et al.[42] investigates

delay-optimal cooperative edge caching in large-scale user-centric

mobile networks. By proactively storing files at base stations (BSs)

and utilizing cooperative caching, the study aims to reduce end-to-

end delay and alleviate backhaul pressure and proposes a greedy

content placement algorithm based on optimal bandwidth alloca-

tion. Gabry et al. [16] focuses on optimizing content placement in

wireless edge caching to maximize energy efficiency in heteroge-

neous networks. By minimizing key metrics like expected backhaul

rate and energy consumption through convex optimization, the

study highlights a tradeoff between these factors. However, even

if there are optimizations to solve the placement problem for data

in edge computing, the Ludo locator proposed in this work can

always enable the user to access them with a memory-efficient data

structure.

Edge Location Services. The location service enables users to

locate the specific edge servers that store the content they are re-

questing. In a recent study by Xie et al. [35], they introduced a highly

efficient data indexing framework called HDS. This framework di-

vides the forwarding of data access requests into two categories:

238

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

(a) Cloud access rate (Seattle, uniform) (b) Cloud access rate (Seattle, Zipfian)

Figure 14: Comparison of cloud access rate.

inter-region and intra-region. The index of data items is stored in

the Cuckoo Summary, which is maintained in the regional data

center. COIN [37] is another efficient routing method that focuses

on finding cached content. It leverages virtual coordinates on P4

switches to optimize the routing process. However, both HDS and

COIN rely on content-level indexing, which limits their ability to

handle a large number of users and content effectively. In con-

trast, EdgeCut addresses the scalability issue by utilizing user-level

indexing and caching properties. By leveraging these techniques,

EdgeCut is able to provide a solution that overcomes the challenges

posed by a large user base and a vast amount of content.

User Profile Replication. User profiles, which are essential

user-associated data, have been extensively studied in the context

of mobile networks [30]. In their work, the authors approach the

user profile replication problem by formulating it as a flow network

problem [18] in order to optimize the minimum communication

latency to a replica. They also propose a replication mechanism

that takes into account calling and user mobility patterns, resulting

in faster location lookup.

Building upon this research, Shivakumar et al. [29] presents a

novel replication mechanism for user profiles, leveraging known

calling and user mobility patterns to enhance the speed of loca-

tion lookup. However, in the context of the future era of software-

defined networking and edge computing, there is a shift towards

storing user profiles on local edge servers. Consequently, our pri-

mary focus is on efficiently determining user location while ensur-

ing network scalability.

Nevertheless, in modern network applications, the indexing of

user-associated data poses a challenging problem that existing

works have yet to resolve.

Data replication provides several benefits, including load balanc-

ing, consistency maintenance, and fast access by duplicating data

across different geo-distributed servers. Mansouri et al. [22] intro-

duced a Dynamic Popularity Aware Replication Strategy (DPRS)

that utilizes access history to prefetch popular data adaptively.

For mobile edge computing, Farris et al. [13] proposed a re-

active/proactive data replication approach based on mobile user

movement patterns. They formulate the data replication selection

policy as an optimization problem, considering two metrics: Reac-

tive Migration (RM) times and Numbers of Service Replicas (NSR).

However, this approach often results in storing user data in more

than three adjacent edge data servers, which is unnecessary in terms

of memory consumption in the future. In Section 4, it is demon-

strated that despite proactive replication storing more copies of

data, EdgeCut still outperforms it in terms of access latency.

Edge data store. Edge data stores [24] play a pivotal role in

edge computing by providing localized storage and efficient data

access at the network edge. These data stores address the challenges

incurred by latency and bandwidth limitations often encountered

in edge computing environments.

An edge data store typically comprises a distributed storage sys-

tem deployed in proximity to the devices and users generating the

data. It enables the storage and retrieval of frequently accessed data

or pertinent subsets of data that require rapid processing or delivery.

We can apply different key-value store engines or data structures as

the backend of the edge server. In EdgeCut, we leverage the Ludo

locator and Ludo separator as two main structures. The indexing

structure that is more memory efficient is the preferred feature for

edge servers because the capacity is limited in edge servers.

Another benefit of edge stores is data privacy and security: With

edge data stores, sensitive data can be stored and processed locally,

reducing the risk of data breaches and ensuring compliance with

privacy regulations. This localized approach enhances data privacy

and security byminimizing data exposure to external networks. Our

future work would focus more on how to construct and maintain

trustworthy edge data stores.

6 CONCLUSION

This paper introduces EdgeCut, a scalable protocol that facilitates

edge location services for accessing user-associated content. A key

innovation of this work is Ludo Locator, an efficient key-value store

that maintains UID-SIP mappings, filters non-mobile users, and

supports dynamic changes. Additionally, we have developed a data

structure named Ludo Separator, which significantly reduces the

false positive rate of filtering while consuming minimal memory.

To evaluate the effectiveness of EdgeCut, we have implemented a

prototype in CloudLab, a public geo-distributed cloud platform. Fur-

thermore, we have conducted simulations using diverse large-scale

datasets collected from real-world scenarios. The results demon-

strate that EdgeCut can reduce content access latency by up to 30%

compared to a recent solution that requires three times the storage

resources. Additionally, EdgeCut reduces the cloud access rate by

20% to 50%. Notably, EdgeCut exhibits low overhead when deployed

on edge servers.

239

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We sincerely thank our anonymous shepherd and reviewers for

their insightful suggestions. Y. Liu, S. Shi, M. Wang, and C. Qian

were partially supported by NSF Grants 2322919, 2114113, 1932447,

and 1750704. Y. Wang was supported by NSF grant 2118745.

REFERENCES
[1] [n. d.]. https://cloudlab.us/.
[2] [n. d.]. https://seattle.poly.edu/.
[3] [n. d.]. https://www.planet.com/.
[4] [n. d.]. https://www.statista.com/statistics/744126/facebook-user-posts-per-

month/.
[5] [n. d.]. Redis. https://github.com/redis/redis.
[6] [n. d.]. ZeroMQ. https://github.com/zeromq/libzmq.
[7] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. 2017. Mobile edge

computing: A survey. IEEE Internet of Things Journal 5, 1 (2017), 450–465.
[8] J Almeida, AZ Broder, P Cao, and L Fan. 1998. A scalable wide-area web cache

sharing protocol. SIGCOMM98 (1998).
[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload Analysis of a Large-Scale Key-Value Store. In In Proc. of ACM
SIGMETRICS.

[10] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen-
macher. 2002. Network applications of bloom filters: A survey. In Internet Mathe-
matics. Citeseer.

[11] I-R Chen and Baoshan Gu. 2003. Quantitative analysis of a hybrid replication with
forwarding strategy for efficient and uniform location management in mobile
wireless networks. IEEE Transactions on Mobile Computing 2, 1 (2003), 3–15.

[12] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
75–88.

[13] Ivan Farris, Tarik Taleb, Miloud Bagaa, and Hannu Flick. 2017. Optimizing service
replication for mobile delay-sensitive applications in 5G edge network. In 2017
IEEE International Conference on Communications (ICC). IEEE, 1–6.

[14] Ivan Farris, Tarik Taleb, Antonio Iera, and Hannu Flinck. 2017. Lightweight
service replication for ultra-short latency applications in mobile edge networks.
In 2017 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[15] Daniel Fernholz and Vijaya Ramachandran. 2007. The k-orientability thresholds
for G n, p. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Citeseer, 459–468.

[16] Frédéric Gabry, Valerio Bioglio, and Ingmar Land. 2016. On energy-efficient
edge caching in heterogeneous networks. IEEE Journal on Selected Areas in
Communications 34, 12 (2016), 3288–3298.

[17] Maria Kihl, Robin Larsson, Niclas Unnervik, Jolina Haberkamm, Ake Arvidsson,
and Andreas Aurelius. 2014. Analysis of Facebook content demand patterns. In
2014 International Conference on Smart Communications in Network Technologies
(SaCoNeT). IEEE, 1–6.

[18] Darwin Klingman, Albert Napier, and Joel Stutz. 1974. NETGEN: A program
for generating large scale capacitated assignment, transportation, and minimum
cost flow network problems. management science 20, 5 (1974), 814–821.

[19] Jun Li, Hao Wu, Bin Liu, Jianyuan Lu, Yi Wang, Xin Wang, Yanyong Zhang,
and Lijun Dong. 2012. Popularity-driven coordinated caching in named data
networking. In Proceedings of the eighth ACM/IEEE symposium on Architectures
for networking and communications systems. 15–26.

[20] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. {DistCache}: Provable Load Balancing
for {Large-Scale} Storage Systems with Distributed Caching. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). 143–157.

[21] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review 45, 3 (2015), 52–66.

[22] Najme Mansouri and Mohammad M Javidi. 2018. A new prefetching-aware data
replication to decrease access latency in cloud environment. Journal of Systems
and Software 144 (2018), 197–215.

[23] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
2017. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials 19, 4 (2017), 2322–2358.

[24] Joseph Noor, Mani Srivastava, and Ravi Netravali. 2021. Portkey: Adaptive
key-value placement over dynamic edge networks. In Proceedings of the ACM
Symposium on Cloud Computing. 197–213.

[25] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[26] Jinglei Ren. 2016. YCSB-C. https://github.com/basicthinker/YCSB-C.
[27] B. Schlinker et al. 2017. Engineering Egress with Edge Fabric: Steering Oceans of

Content to the World. In Proc. of ACM SIGCOMM.

[28] Shouqian Shi and Chen Qian. 2020. Ludo hashing: Compact, fast, and dynamic
key-value lookups for practical network systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–32.

[29] Narayanan Shivakumar, Jan Jannink, and Jennifer Widom. 1997. Per-user profile
replication in mobile environments: Algorithms, analysis, and simulation results.
Mobile Networks and Applications 2, 2 (1997), 129–140.

[30] Narayanan Shivakumar and Jennifer Widom. 1995. User profile replication for
faster location lookup in mobile environments. In Proceedings of the 1st annual
international conference on Mobile computing and networking. 161–169.

[31] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante.
2009. Drafting Behind Akamai: Inferring Network Conditions Based on CDN
Redirections. IEEE/ACM TRANSACTIONS ON NETWORKING (2009).

[32] Tian Wang, Lei Qiu, Arun Kumar Sangaiah, Anfeng Liu, Md Zakirul Alam
Bhuiyan, and Ying Ma. 2020. Edge-computing-based trustworthy data collec-
tion model in the internet of things. IEEE Internet of Things Journal 7, 5 (2020),
4218–4227.

[33] Shiow-yang Wu and Yu-Tse Chang. 2006. A user-centered approach to active
replica management in mobile environments. IEEE Transactions on Mobile Com-
puting 5, 11 (2006), 1606–1619.

[34] Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, and Hai
Jin. 2020. Online collaborative data caching in edge computing. IEEE Transactions
on Parallel and Distributed Systems 32, 2 (2020), 281–294.

[35] Junjie Xie, Deke Guo, Xiaofeng Shi, Haofan Cai, Chen Qian, and Honghui Chen.
2020. A fast hybrid data sharing framework for hierarchical mobile edge com-
puting. In IEEE INFOCOM. IEEE, 2609–2618.

[36] Junjie Xie, Chen Qian, Deke Guo, Xin Li, Shouqian Shi, and Honghui Chen. 2019.
Efficient Data Placement and Retrieval Services in Edge Computing. In IEEE
ICDCS. IEEE.

[37] Junjie Xie, Chen Qian, Deke Guo, Minmei Wang, Shouqian Shi, and Honghui
Chen. 2019. Efficient indexing mechanism for unstructured data sharing systems
in edge computing. In IEEE INFOCOM. IEEE, 820–828.

[38] Jianliang Xu, Bo Li, and Dik Lun Lee. 2002. Placement problems for transparent
data replication proxy services. IEEE Journal on Selected areas in Communications
20, 7 (2002), 1383–1398.

[39] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Analysis of
Hundreds of In-memory Key-value Cache Clusters at Twitter. ACM Transactions
on Storage (2021).

[40] Kok-Kiong Yap et al. 2017. Taking the Edge off with Espresso: Scale, Reliability
and Programmability for Global Internet Peering. In Proc. of ACM SIGCOMM.

[41] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. 2018. Memory-efficient
and ultra-fast network lookup and forwarding using Othello hashing. IEEE/ACM
Transactions on Networking 26, 3 (2018), 1151–1164.

[42] Yuming Zhang, Bohao Feng, Wei Quan, Aleteng Tian, Keshav Sood, Youfang
Lin, and Hongke Zhang. 2020. Cooperative edge caching: A multi-agent deep
learning based approach. IEEE Access 8 (2020), 133212–133224.

[43] Rui Zhu, Bang Liu, Di Niu, Zongpeng Li, and Hong Vicky Zhao. 2016. Network la-
tency estimation for personal devices: A matrix completion approach. IEEE/ACM
Transactions on Networking 25, 2 (2016), 724–737.

240

Authorized licensed use limited to: The Ohio State University. Downloaded on February 28,2024 at 15:25:15 UTC from IEEE Xplore. Restrictions apply.

