

ABORATORY

Limitations of NTC: Soft Errors

- · Cause: Radiation-induced transient charge within a logic path which is ultimately latched by a F/F
- · More-than-ECC (Error Correcting Codes) needs to be done to mitigate soft errors for logic
- Soft Error Rate (SER) for logic at NTV is shown experimentally to be comparable to the SER for memory circuits [2]
 - Critical charge Q_{crit} needed to cause a failure decreases as V_{DD} is scaled. The SER has an exponential dependence on critical charge.
 - + For 40nm and 28nm nodes, SER doubles when V_{DD} is decreased from 0.7V to 0.5V
- · Soft Error masking mechanisms for logic paths
 - Logical Masking: fewer gate in critical path to regain lost throughput, less chance of the pulse being masked by logical computation of other gates in the path.
 - · Electrical Masking: large pulse transients are created, as compared to supply voltage
 - · Latching-window masking: lowered operating frequency has positive impacts here
- Non-planar devices offer a means to reduce SER.
 - 22nm Tri-gate technology is shown to reduce neutron and alpha particle induced SER at nominal voltage by 4-fold and 10-fold respectively compared to a 32nm planar process [3]
- Reduced pipeline depths, technology scaling, and NTV can be anticipated to have detrimental effects on logic SER

ABORATORY

Limitations of NTC: Process Variations

• Near-Threshold Computing provides *Energy-Efficiency*

- >10X Performance Loss \rightarrow Parallelization [11], Device optimization [1]
- (add-on) 5X Impact of Performance Variation → Cost of Design Margins?
- Nanoscale CMOS devices have Performance variability caused due to manufacturing-induced Process Variations (PV) [12].
 - For example, Random Dopant Fluctuations (RDF) are due to implanted impurity fluctuation and cause local variation (intra-die) in the threshold voltage of the transistors → *Increase in Delay Margins*
 - Impact of Technology Scaling: RDF magnified as number of dopant atoms is fewer so addition or deletion of just a few impurity atoms significantly alters transistor properties
- Operation near the threshold voltage of the transistors further exacerbates the process variability [1],[13]

Experimental Setup

- MCNC benchmark circuits c880, i5
- 45nm-based NanGate open source library [16]
- Synopsys Design Compiler used for synthesis
- Worst-case Test Vectors are generated using Synopsys TetraMax
- Synthesized netlists are imported into HSPICE for Monte-Carlo simulations
- Voter delay is not considered to make direct comparison to simplex systems

COMPUTER ARCHITECTURE LABORATORY

Energy Consumption of *N*-MR systems

- How much Voltage Margin (VM) expressed as ΔV_{DD} needs to be included for N-MR system?
- Even though *N*-MR systems exhibit higher mean delays, the reduced variance necessitates only a slight VM to meet the delay target of the simplex system
- On average 2mV increase in V_{DD} is satisfactory to operate a TMR arrangement based on i5 circuit at comparable delay

Benchmark →	c880		i5	
Simplex, V _{DD} (NTV)	N=3	N=5	N=3	N=5
0.55 V	3.03X 🔨	5.06X	3.02X	5.05X
0.6 V	3.03X	5.05X	3.02X	5.04X
0.65 V	3.02X	5.04X	3.02X	5.04X
0.7 V	3.01X	5.03X	3.01X	5.02X

Results of VM: Increased Variability

- The mean delays for the 22nm (45nm) node with N = 3 & N = 5 are 1.16X (1.06X) and 1.24X (1.09X) the mean delay for a simplex system respectively at the same voltage of 0.55V
- The 22nm node-based 5MR system requires 3.94% more energy consumption than a similar configuration at 45nm
- At NTV of 0.5V for simplex arrangement, a 11mV increase in V_{DD} is required for the TMR arrangement for same performance

Technology Node→	45nm		22nm	
simplex, V _{DD} (NTV)	N=3	N=5	N=3	N=5
0.5 V	3.04X	5.07X	3.17X	5.30X 🛉
0.55 V	3.03X	5.05X	3.14X	5.27X
0.6 V	3.03X	5.04X	3.13X	5.26X
0.65 V	3.02X	5.03X	3.12X	5.23X
0.7 V	3.01X	5.02X	3.10X	5.16X

Conclusions and Future Work

- Redundancy provides a degree of freedom for increased reliability by diminishing the supply voltage
- · Feasible when resulting increase in delay is tolerable
- Further study worthwhile to determine resilience provided by *N*-MR systems at NTV due to other noise sources such as:
 - Variation in supply voltage V_{DD} and Temperature
 - Expect a further variation of 2X [1] (detrimental effect anticipated)
 - Aging-induced variations [13]
 - Lower Voltage and Junction temperatures will lower aging effects such as Bias-Temperature Instability <u>(beneficial effect anticipated)</u>
 - Lower temperature and currents help to reduce interconnect defects due to Electromigration *(beneficial effect anticipated)*

24

ABORATORY

25

- [2] A. Dixit and A. Wood, "The impact of new technology on soft error rates," in Reliability Physics Symposium (IRPS), 2011 IEEE International, pp. 5B.4.1–5B.4.7, April 2011
- [3] S. Jahinuzzaman et al, "Alpha-particle Induced Soft Error Rates in 22nm Bulk Tri-Gate Technologies," 4th Annual IEEE Santa Clara Valley Soft Error Rate Workshop, 2012
- [4] J. Celis et al., "Methodology for designing highly reliable fault tolerance space systems based on COTS devices," in Systems Conference (SysCon), 2013 IEEE International
- [5] R. Al-Haddad et al., "Sustainable modular adaptive redundancy technique emphasizing partial reconfiguration for reduced power consumption," International Journal of Reconfigurable Computing, vol. 2011, 2011
- [6] Q. Zhou and K. Mohanram, "Gate sizing to radiation harden combinational logic," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25, no. 1, pp. 155– 166, Jan 2006
- [7] K.-C. Wu and D. Marculescu, "Power-aware soft error hardening via selective voltage scaling," in Computer Design, 2008. IEEE International Conference on, Oct 2008,
- [8] C. Wilkerson, A. Alameldeen, and Z. Chishti, "Scaling the memory reliability wall," Intel Technology Journal, vol. 17, no. 1, pp. 18–34, 2013

UCF	References (2/2)	COMPUTER ARCHITECTURE LABORATORY
• [[• []	9] A. Seyedi, et. al, "Circuit design of a novel adaptable and reliable L1 data cache," 23rd ACM nternational Conference on Great Lakes Symposium on VLSI, pp. 333–334, 2013 10] C. Engelmann et al., "The case for modular redundancy in large-scale high performance computing systems," in Proceedings of the IASTED International Conference on Parallel and	Λ
• [′ a	Distributed Computing and Networks (PDCN) 2009, vol. 641, Feb 2009. 11] E. Krimer et al., "Synctium: a nearthreshold stream processor for energy-constrained para applications," IEEE Computer Architecture Letters, vol. 9, no. 1, pp. 21–24, 2010.	llel
• [′ fl T	12] Y. Ye et al., "Statistical modeling and simulation of threshold variation under random dopar luctuations and line-edge roughness," Very Large Scale Integration (VLSI) Systems, IEEE Fransactions on, vol. 19, no. 6, pp. 987–996, 2011.	nt
• [′ F	13] H. Kaul et al., "Near-threshold voltage (NTV) design: Opportunities and challenges," in Proceedings of the 49th Annual Design Automation Conference, ser. DAC '12, 2012, pp. 1153-	-1158
`]• A	14] S. Seo et al., "Process variation in near-threshold wide simd architectures," in Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, 2012.	
• [' v	15] U. Karpuzcu et al., "Coping with parametric variation at near-threshold voltages," Micro, IE vol. 33, no. 4, pp. 6–14, 2013.	EE,
• [′ e	16] W. Zhao and Y. Cao, "New generation of predictive technology model for sub-45nm design exploration," in Proceedings of the 7th International Symposium on Quality Electronic Design,	n 2006.
		26