
Near-Threshold Computing:
How Close Should We Get?

Alaa R. Alameldeen

Intel Labs

Workshop on Near-Threshold Computing

June 14, 2014

2 Workshop on Near-Threshold Computing ---- June 14, 2014

Overview

• High-level talk summarizing my architectural perspective on
near-threshold computing

• Near-threshold computing has gained popularity recently

– Mainly due to the quest for energy efficiency

• Is it really justified?

+ Reduces static and dynamic power

– Reduces frequency, adds reliability overhead

• The case for selective near-threshold computing

– Use it , but not everywhere

• Case Studies: VS-ECC and Mixed-Cell Cache Designs

3 Workshop on Near-Threshold Computing ---- June 14, 2014

Why Near-threshold Computing?

• Near-threshold computing has gained popularity recently.
Why?

– Mainly: Energy Efficiency

– Running lots of cores with fixed power budget

– Avoiding /delaying “dark silicon”

– Spanning market segments from ultra-mobile to super computing

• Theory:

– Dynamic power reduces quadratically with operating voltage

– Static power reduces exponentially with operating voltage

– The lower voltage we run, the less power we consume

4 Workshop on Near-Threshold Computing ---- June 14, 2014

But Obviously, It Is Not Free…

• Latency Cost:

 Lower voltage leads to lower frequency

– Cores run slower, taking longer to run programs

– Energy = Power x Time. Lower power doesn’t always translate to lower
energy

• Reliability Cost:

 Individual transistors and storage elements begin

 to fail due to smaller margins

– Whole structures may fail

– Lots of redundancy or other fault tolerance mechanisms
needed (i.e., more area, power, complexity)

5 Workshop on Near-Threshold Computing ---- June 14, 2014

Latency Cost

• A lower voltage drives lower frequency

• To the first order, at low voltages, V f

• Iron Law of processor performance:

 Instructions Cycles Time
Program Runtime = x x
 Program Instruction Cycle

• Lower frequency increases Time/Cycle, therefore
increases program runtime

6 Workshop on Near-Threshold Computing ---- June 14, 2014

Latency Impact on Energy Efficiency

• A program that runs longer consumes more energy

 Energy = Power x Time

 Program Energy = Average Power x Program Runtime

• Even if average power is lower, it’s possible energy will be
higher

7 Workshop on Near-Threshold Computing ---- June 14, 2014

And There is Also User Experience…

• Not too many users will be happy with slower execution

• Mobile users like longer battery life, but they absolutely
hate long wait times

– Especially if the system is idle most of the time

– Response time really matters when the system is active

• If voltage is too low, significant impact on user experience

8 Workshop on Near-Threshold Computing ---- June 14, 2014

Reliability Cost

• Getting too close to threshold significantly increases
failures for individual transistors and storage elements

• Getting too close to tail of the distribution

9 Workshop on Near-Threshold Computing ---- June 14, 2014

Example: SRAM Bit and 64B Failures

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.4 0.45 0.5 0.55 0.6

P
ro

b
a
b

il
it

y

Vcc

pBitFail

P(e=1)

P(e=2)

P(e=3)

P(e=4)

10 Workshop on Near-Threshold Computing ---- June 14, 2014

Cost of Lower Reliability

• We need to make sure the whole chip works even if
individual components fail

– That is, we need to build reliable systems from unreliable
components

• To improve reliability, we either increase redundancy or
add other fault tolerance mechanisms

– More power, area, $ cost

11 Workshop on Near-Threshold Computing ---- June 14, 2014

Simple Answer: TMR

• Basically, include three copies of everything, use majority
vote

• Extremely high cost

– More than 3x area increase

– More than 3x power increase

• But even that might not be sufficient

– Large structures may always fail, having three copies won’t
help

– Need to do at transistor/cell level

– Majority voting gets really expensive at that level

12 Workshop on Near-Threshold Computing ---- June 14, 2014

Another Answer: Error-Correcting Codes

• Applies only to storage or state elements

• At single-bit level, degenerates to TMR, but:

• Mostly area efficient if amortized across more bits

– A small number of bits needed to detect/correct errors in large
state elements

• But latency inefficient

– Error correction requirements increase with larger blocks

– SECDED on a 64B cache line may take a single cycle, but
4EC5ED might use ~ 15 cycles

• For logic elements, RAZOR-style circuits needed to reduce
overhead

13 Workshop on Near-Threshold Computing ---- June 14, 2014

This Seems Too Hard…

• So why not relax our reliability requirements instead?

14 Workshop on Near-Threshold Computing ---- June 14, 2014

Approximate Computing to the Rescue

• If reliability is not absolutely required, then we can take a
best-effort approach

• In other words

– If something works correctly, great

– If it doesn’t, the incorrect outcome might be good enough

• Background:

– Some applications don’t care for 100% accurate computations

– Example: Individual pixels on a large screen

– We could take advantage by using NTC for them

15 Workshop on Near-Threshold Computing ---- June 14, 2014

But It Sounds Too Good To Be True…

• In reality, too many applications care about reliability

• And even applications that could tolerate errors need
some code to be reliable

– A pixel error on a bitmap is no big deal, but a pixel error in a
compressed image (e.g., jpeg) causes too much noise

– In a long sequence of computations, early computations need
accuracy while later can tolerate errors

• Too much overhead to allow NTC selectively

– Definitely needs programmer input

– Could lead to too fine-grain control of reliability

16 Workshop on Near-Threshold Computing ---- June 14, 2014

My Architectural Perspective

• Near-threshold computing is great if power savings
outweigh latency and reliability cost

• But in many cases, cost is too great

• So we shouldn’t give up on NTC, but only use it in places
where it helps

• Or alternatively, we shouldn’t get too close to threshold
to the point where costs outweigh benefits

• Selective NTC requires architectural support

17 Workshop on Near-Threshold Computing ---- June 14, 2014

Case Study: Mixed-Cell Cache Design

• Optimize only part of cache for low (or near-threshold)
voltage, using more reliable (bigger) cells

• Rest of cache uses normal cells

• During normal mode, all cache is active

• At low voltage, could only turn on reliable part

• Causes significant performance drawbacks

18 Workshop on Near-Threshold Computing ---- June 14, 2014

Speedup of Multi-Core over Single Core

0

0.5

1

1.5

2

2.5

3

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

e
s

4
1

6
.g

a
m

e
ss

4
2

9
.m

cf

4
3

3
.m

ilc

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lII

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
lix

4
5

6
.h

m
m

e
r

4
5

6
.G

e
m

sF
D

T
D

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.lb

m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

1
.w

rf

4
8

2
.s

p
h

in
x

3

4
8

3
.x

a
la

n
cb

m
k

G
m

e
a

n

2-core

4-core

S
p

e
e

d
u

p
 o

v
e

r
1

-c
o

re

Compared to 1P, 2P is 31% better, 4P is 37% better

19 Workshop on Near-Threshold Computing ---- June 14, 2014

4P has Much Better Performance than 1P,
But…

• Design is TDP-limited

– To activate 4 cores, need to run at Vmin

– Without separate power supplies, only robust cache lines will
be active

– 4P is where we really need the extra cache capacity for
performance

• Mixed caches include robust cells that could run at low
voltage, and regular cells that only work at high voltage

• Our Mixed-Cell Architecture:

– All cache lines are active at Vmin

– Architectural changes to ensure error-free execution

20 Workshop on Near-Threshold Computing ---- June 14, 2014

Mixed-Cell Cache Design

• Each cache set has two robust ways

• Modified data only stored in robust ways

• Clean data protected by parity

21 Workshop on Near-Threshold Computing ---- June 14, 2014

Mixed-Cell Architectural Changes

• Change cache insertion/replacement policy to allocate
modified data only to robust ways

• What to do for Writes to a Clean Line?

– Writeback (MC_WB): Convert dirty line to clean by writing back
its data to the next cache level (all the way to memory)

– Swap (MC_SWP): Swap newly-written line with the LRU robust
line, and write back the data for victim line to next cache level

– Duplication (MC_DUP): Duplicate modified line to another non-
robust line by victimizing line in its partner way

22 Workshop on Near-Threshold Computing ---- June 14, 2014

Changes to Cache Insertion/Replacement
Policies

Cache

Miss

Type?

Choose Victim from

Non-Robust Lines

Allocate New Line

in Victim’s Place

Read
Choose Victim

from All Lines in

Set

Choose Victim_2

from Robust Lines

Writeback

Victim’s Data

Write

Victim

Type?

Copy Victim_2 to

Victim’s Place

Allocate New Line

in Victim_2’s Place

Allocate New

Line in Victim’s

Place

Non-

Robust

Writeback

Victim_2’s Data

Robust

23 Workshop on Near-Threshold Computing ---- June 14, 2014

Cache Vmin for Mixed-Cell Caches

New MC_DUP and MC_SWP mechanisms are very close to
building the cache with only robust cells (but much larger
cache capacity)

1.E-09

1.E-06

1.E-03

1.E+00

0.55 0.6 0.65 0.7 0.75

BASE ROBUST

MC_DISABLE MC_DUP/SWP

Vmin (V)

P
ro

b
. o

f
F

a
ilu

re
 (

1
=

1
0

0
%

)

24 Workshop on Near-Threshold Computing ---- June 14, 2014

Evaluation

• Used CMP$im

• Cache configuration based on current Intel mainline cores

• Compared our mechanisms to baseline and prior MC
proposals

– ROBUST: Cache only uses robust cells, much smaller capacity
iso-area

– MC_Disable: Only 1/4 of cache is operational at Vmin

• Used 4-program mixes from SPEC workloads

25 Workshop on Near-Threshold Computing ---- June 14, 2014

0.8

0.9

1

1.1

1.2

1.3

1.4

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

G
m

e
a

n

MC_WB MC_SWP MC_DUP

S
p

e
e

d
u

p
 v

s.
 M

C
_

D
IS

A
B

L
E

Multi-core (4P) Performance

Geomean 17% speedup for MC_SWP over MC_DISABLE

26 Workshop on Near-Threshold Computing ---- June 14, 2014

Mixed-Cell Cache Summary

• Philosophy: Only part of cache is reliable enough to operate
at near-threshold

• A multi-core system (at Vmin) needs larger cache capacity

• Our mixed-cell architecture preserves cache capacity at
Vmin

– Improves performance

– Reduces dynamic energy

• Could be extended to other parts of the memory hierarchy,
and newer memory technologies

27 Workshop on Near-Threshold Computing ---- June 14, 2014 27

Case Study: VS-ECC

• Large caches and memories limit voltage scaling

– Many cells fail at low voltages

– Need to account for weakest cell

• Error-Correcting Codes (ECC) allow lower voltages by

recovering from (multiple) failures

• Uniform ECC increases latency, power & area

 Our Proposal: Variable-Strength ECC (VS-ECC)

– Better performance, power and area vs. uniform ECC

– Allocates ECC budget to lines that need it

– Online testing identifies lines needing more protection

28 Workshop on Near-Threshold Computing ---- June 14, 2014

 VS-ECC Motivation

• Most cache lines have 0-1 failures if we don’t get too close to threshold

• But some lines (especially for large caches) have more failures

 28

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

P
ro

b
a
b

il
it

y

Vcc

pBitFail

P(e=1)

P(e=2)

P(e=3)

P(e=4)

64B lines

29 Workshop on Near-Threshold Computing ---- June 14, 2014

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.4 0.45 0.5 0.55 0.6

P
ro

b
a
b

il
it

y

Vcc

pBitFail

P(e=1)

P(e=2)

P(e=3)

P(e=4)

VS-ECC Motivation

• Need a strong ECC code to protect worst lines

• Uniform ECC for all lines is expensive AND unnecessary

29

64B lines

30 Workshop on Near-Threshold Computing ---- June 14, 2014 30

Prior Low Voltage Solutions

• Uniform-Strength Error Correction Codes

– SECDED (Single Error Correction, Double Error Detection)

– DECTED (Double Error Correction, Triple Error Detection)

– Two-dimensional ECC: Kim et al., MICRO 07

– Multi-bit segmented ECC (MS-ECC): Chishti et al., MICRO 09

• Architectural solutions for persistent failures

– Word Disable: Wilkerson et al., ISCA 08, Roberts et al., DSD 07

– Bit Fix: Wilkerson et al., ISCA 08

• Circuit Solutions: Larger cells, alternative cell designs

 All use same level of protection for all cache lines

31 Workshop on Near-Threshold Computing ---- June 14, 2014 31

Variable-Strength ECC (VS-ECC)

• Key idea: Provide strong ECC protection only for lines that
need it

– But still provide single-error correction for soft errors

• VS-ECC achieves lower voltage at minimum cost

• Three variations are explored

• Need to identify which lines need stronger protection

32 Workshop on Near-Threshold Computing ---- June 14, 2014

Design 1: VS-ECC-Fixed

 Fixed number of regular and extended ECC lines

 Regular lines protected by SECDED

 Extended ECC lines use 4-bit correction

SECDED

ECC bits

32

33 Workshop on Near-Threshold Computing ---- June 14, 2014

 Add a disable bit to each line

 Lines with 3 or more errors are disabled

 Lines with zero errors use SECDED, 1-2 errors use 4-bit
correction

Design 2: VS-ECC-Disable
 SECDED

ECC bits

33

34 Workshop on Near-Threshold Computing ---- June 14, 2014

Cache Characterization

• We need to classify cache lines based on their number of
failures

• Manufacturing-time testing expensive & needs non-

volatile on-die storage for fault map

• Proposal: Online testing on 1st transition to low voltage

34

35 Workshop on Near-Threshold Computing ---- June 14, 2014

Online Testing at Low Voltage

• Cache is still functional during testing, but with reduced
capacity

• Divide cache to working part (protected by 4-bit ECC) and

part under test, then switch roles

• Use standard testing patterns, store error locations in tag

• Note: Not all VS-ECC designs require the same testing
accuracy

– Optimizing test time is an opportunity for future work

35

36 Workshop on Near-Threshold Computing ---- June 14, 2014 36

Simulated Configurations

• Baseline

– 2MB 16-way L2 (12 cycles), SECDED ECC to recover from non-

persistent errors (1 cycle)

• Uniform-strength ECC

– DECTED: 1 cycle, corrects one persistent error per line

– 4EC5ED: 15 cycles, corrects up to three persistent errors per line

– MS-ECC: 64-bit segments, 4 corrections/segment, corrects up to
three persistent errors per segment, cache becomes 1MB 8-way

• Variable-strength ECC

– VS-ECC-Fixed: 12 lines with SECDED (1 cycle), 4 with 4EC5ED (15

cycles)

– VS-ECC-Disable: VS-ECC-Fixed+disable lines with ≥ 3 errors

37 Workshop on Near-Threshold Computing ---- June 14, 2014

Results: Reliability

37

• VS-ECC has similar voltage scaling to 4EC5ED

• VS-ECC-Disable achieves lowest voltage

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0.4 0.5 0.6 0.7 0.8

2MB SECDED

DECTED

4EC5ED

VS-ECC-Fixed

MS-ECC

VS-ECC-Disable

Supply Voltage (V)

P
ro

b
a

b
ili

ty

Vmin set at

1/1000 cache

failure probability

38 Workshop on Near-Threshold Computing ---- June 14, 2014 38

Results: Performance at Low Voltage

Similar IPC to baseline, better than uniform ECC

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

D
H

F
S

P
E

C

IS
P

E
C

G
M

M
M

O
F

F

P
R

O
D

S
E

R
V

W
S

K
E

R
N

G
M

E
A

N

2MB Base

VS-ECC-Dis

4EC5ED

MS-ECC N
o
rm

a
liz

e
d
 I

P
C

39 Workshop on Near-Threshold Computing ---- June 14, 2014

VS-ECC Summary

• Near-threshold computing needs strong ECC capability in
large caches

• Uniform ECC techniques are expensive (performance,
power, area)

• Variable-Strength ECC provides strong protection only to
lines that need it

• VS-ECC + Line Disable is the most cost-effective
mechanism

• But it really needs practical online testing mechanisms

39

40 Workshop on Near-Threshold Computing ---- June 14, 2014

Key Messages

• Near-threshold computing : Sometimes benefits outweigh
costs, and some other times they don’t

• It’s better to use near-threshold computing selectively
rather than for everything

• Alternatively, we should not get too close to threshold,
only as long as benefits outweigh costs

40

41 Workshop on Near-Threshold Computing ---- June 14, 2014

Acknowledgments

• Samira Khan (Intel/CMU)

• Chris Wilkerson (Intel)

• Ilya Wagner (Intel)

• Zeshan Chishti (Intel)

• Jaydeep Kulkarni (Intel)

• Wei Wu (Intel)

• Shih-Lien Lu (Intel)

• Daniel Jiménez (Texas A&M)

• Nam S. Kim (Wisconsin)

• Hamid Ghasemi (Wisconsin)

41

