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Overview 

• High-level talk  summarizing my architectural perspective on 
near-threshold computing 

• Near-threshold computing has gained popularity recently 

– Mainly due to the quest for energy efficiency 

• Is it really justified?  

+ Reduces static and dynamic power 

– Reduces frequency,  adds reliability overhead 

• The case for selective near-threshold computing 

– Use it , but not everywhere 

• Case Studies: VS-ECC and Mixed-Cell Cache Designs  
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Why Near-threshold Computing? 

• Near-threshold computing has gained popularity recently. 
Why? 

– Mainly: Energy Efficiency 

– Running lots of cores with fixed power budget 

– Avoiding /delaying “dark silicon”  

– Spanning market segments from ultra-mobile to super computing 

• Theory:  

– Dynamic power reduces quadratically with operating voltage 

– Static power reduces exponentially with operating voltage 

– The lower voltage we run, the less power we consume 
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But Obviously, It Is Not Free… 

• Latency Cost:  

  Lower voltage leads to lower frequency 

– Cores run slower, taking longer to run programs 

– Energy = Power x Time. Lower power doesn’t always translate to lower 
energy 

• Reliability Cost:  

  Individual transistors and storage elements begin  

  to fail due to smaller margins 

– Whole  structures may fail 

– Lots of redundancy or other fault tolerance mechanisms 
needed  (i.e., more area, power, complexity) 
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Latency Cost 

• A lower voltage drives lower frequency  

• To the first order, at low voltages, V  f 

• Iron Law of processor performance: 

  
     Instructions        Cycles              Time 
Program Runtime =                          x                         x   
      Program           Instruction        Cycle 

 

• Lower frequency increases Time/Cycle, therefore 
increases program runtime 
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Latency Impact on Energy Efficiency 

• A program that runs longer consumes more energy 

 

  Energy = Power x Time 

 

 Program Energy = Average Power x Program Runtime 

 

• Even if average power is lower, it’s possible energy will be 
higher 
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And There is Also User Experience… 

• Not too many users will be happy with slower execution 

 

• Mobile users like longer battery life, but they absolutely 
hate long wait times 

– Especially if the system is idle most of the time 

– Response time really matters when the system is active 

 

• If voltage is too low, significant impact on user experience 
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Reliability Cost 

• Getting too close to threshold significantly increases 
failures for individual transistors and storage elements 

• Getting too close to tail of the distribution 
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Example: SRAM Bit and 64B Failures 
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Cost of Lower Reliability 

• We need to make sure the whole chip works even if 
individual components fail 

– That is, we need to build reliable systems from unreliable 
components 

• To improve reliability, we either increase redundancy or 
add other fault tolerance mechanisms 

– More power, area, $ cost 
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Simple Answer: TMR 

• Basically, include three copies of everything, use majority 
vote 

• Extremely high cost 

– More than 3x area increase 

– More than 3x power increase 

• But even that might not be sufficient 

– Large structures may always fail, having three copies won’t 
help 

– Need to do at transistor/cell level 

– Majority voting gets really expensive at that level 
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Another Answer: Error-Correcting Codes 

• Applies only to storage or state elements 

• At single-bit level, degenerates to TMR, but: 

• Mostly area efficient if amortized across more bits 

– A small number of bits needed to detect/correct errors in large 
state elements 

• But latency inefficient 

– Error correction requirements increase with larger blocks 

– SECDED on a 64B cache line may take a single cycle, but 
4EC5ED might use ~ 15 cycles 

• For logic elements, RAZOR-style circuits needed to reduce 
overhead 
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This Seems Too Hard… 

• So why not relax our reliability requirements instead? 
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Approximate Computing to the Rescue 

• If reliability is not absolutely required, then we can take a 
best-effort approach 

• In other words 

– If something works correctly, great 

– If it doesn’t, the incorrect outcome might be good enough 

• Background: 

– Some applications don’t care for 100% accurate computations 

– Example: Individual pixels on a large screen 

– We could take advantage by using NTC for them 
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But It Sounds Too Good To Be True… 

• In reality, too many applications care about reliability 

• And even applications that could tolerate errors need 
some code to be reliable 

– A pixel error on a bitmap is no big deal, but a pixel error in a 
compressed image (e.g., jpeg) causes too much noise 

– In a long sequence of computations, early computations need 
accuracy while later can tolerate errors 

• Too much overhead to allow NTC selectively 

– Definitely needs programmer input 

– Could lead to too fine-grain control of reliability 
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My Architectural Perspective 

• Near-threshold computing is great if power savings 
outweigh latency and reliability cost 

• But in many cases, cost is too great 

• So we shouldn’t give up on NTC, but only use it in places 
where it helps 

• Or alternatively, we shouldn’t get too close to threshold  
to the point where costs outweigh benefits 

• Selective NTC requires architectural support 
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Case Study: Mixed-Cell Cache Design 

• Optimize only part of cache for low (or near-threshold) 
voltage, using more reliable (bigger) cells 

• Rest of cache uses normal cells 

• During normal mode, all cache is active 

• At low voltage, could only turn on reliable part 

• Causes significant performance drawbacks 
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Speedup of Multi-Core over Single Core 
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Compared to 1P, 2P is 31% better, 4P is 37% better 



 

19   Workshop on Near-Threshold Computing   ---- June 14, 2014 

4P has Much Better Performance than 1P, 
But… 

• Design is TDP-limited 

– To activate 4 cores, need to run at Vmin 

– Without separate power supplies, only robust cache lines will 
be active 

– 4P is where we really need the extra cache capacity for 
performance 

• Mixed caches include robust cells that could run at low 
voltage, and regular cells that only work at high voltage 

• Our Mixed-Cell Architecture: 

– All cache lines are active at Vmin 

– Architectural changes to ensure error-free execution 
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Mixed-Cell Cache Design 

• Each cache set has two robust ways 

• Modified data only stored in robust ways 

• Clean data protected by parity 
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Mixed-Cell Architectural Changes 

• Change cache insertion/replacement policy to allocate 
modified data only to robust ways 

• What to do for Writes to a Clean Line? 

– Writeback (MC_WB): Convert dirty line to clean by writing back 
its data to the next cache level (all the way to memory) 

– Swap (MC_SWP): Swap newly-written line with the LRU robust 
line, and write back the data for victim line to next cache level 

– Duplication (MC_DUP): Duplicate modified line to another non-
robust line by victimizing line in its partner way 
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Changes to Cache Insertion/Replacement 
Policies 
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Cache Vmin for Mixed-Cell Caches 

New MC_DUP and MC_SWP mechanisms are very close to 
building the cache with only robust cells (but much larger 
cache capacity) 
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Evaluation 

• Used CMP$im 

• Cache configuration based on current Intel mainline cores 

• Compared our mechanisms to baseline and prior MC 
proposals 

– ROBUST: Cache only uses robust cells, much smaller capacity 
iso-area 

– MC_Disable: Only 1/4 of cache is operational at Vmin 

• Used 4-program mixes from SPEC workloads 
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Mixed-Cell Cache Summary 

• Philosophy: Only part of cache is reliable enough to operate 
at near-threshold 

• A multi-core system (at Vmin) needs larger cache capacity 

• Our mixed-cell architecture preserves cache capacity at 
Vmin 

– Improves performance 

– Reduces dynamic energy 

• Could be extended to other parts of the memory hierarchy, 
and newer memory technologies 
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Case Study: VS-ECC 

• Large caches and memories limit voltage scaling 

– Many cells fail at low voltages 

– Need to account for weakest cell 

• Error-Correcting Codes (ECC) allow lower voltages by 

recovering from (multiple) failures 

• Uniform ECC increases latency, power & area 

 Our Proposal: Variable-Strength ECC (VS-ECC) 

–  Better performance, power and area vs. uniform ECC 

–  Allocates ECC budget to lines that need it 

–  Online testing identifies lines needing more protection 
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 VS-ECC Motivation 

• Most cache lines have 0-1 failures if we don’t get too close to threshold 

• But some lines (especially for large caches) have more failures 
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VS-ECC Motivation 

• Need a strong ECC code to protect worst lines 

• Uniform ECC for all lines is expensive AND unnecessary 

29 

64B lines 
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Prior Low Voltage Solutions  

• Uniform-Strength Error Correction Codes 

– SECDED (Single Error Correction, Double Error Detection) 

– DECTED (Double Error Correction, Triple Error Detection) 

– Two-dimensional ECC: Kim et al., MICRO 07 

– Multi-bit segmented ECC (MS-ECC): Chishti et al., MICRO 09 

• Architectural solutions for persistent failures  

– Word Disable: Wilkerson et al., ISCA 08, Roberts et al., DSD 07 

– Bit Fix: Wilkerson et al., ISCA 08 

• Circuit Solutions: Larger cells, alternative cell designs 

 All use same level of protection for all cache lines 
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Variable-Strength ECC (VS-ECC)  

• Key idea: Provide strong ECC protection only for lines that 
need it 

– But still provide single-error correction for soft errors 

• VS-ECC achieves lower voltage at minimum cost 

• Three variations are explored 

• Need to identify which lines need stronger protection 
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Design 1: VS-ECC-Fixed 
 

 Fixed number of regular and extended ECC lines 

 Regular lines protected by SECDED 

 Extended ECC lines use 4-bit correction 

 

SECDED 

ECC bits 
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 Add a disable bit to each line 

 Lines with 3 or more errors are disabled 

 Lines with zero errors use SECDED, 1-2 errors use 4-bit 
correction 

Design 2: VS-ECC-Disable 
 SECDED 

ECC bits 

33 
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Cache Characterization 

• We need to classify cache lines based on their number of 
failures 

• Manufacturing-time testing expensive & needs non-

volatile on-die storage for fault map 

• Proposal: Online testing on 1st transition to low voltage 

 

34 
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Online Testing at Low Voltage 

• Cache is still functional during testing, but with reduced 
capacity 

• Divide cache to working part (protected by 4-bit ECC) and 

part under test, then switch roles 

• Use standard testing patterns, store error locations in tag 

• Note: Not all VS-ECC designs require the same testing 
accuracy 

– Optimizing test time is an opportunity for future work 
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Simulated Configurations 

• Baseline  

– 2MB 16-way L2 (12 cycles), SECDED ECC to recover from non-

persistent errors (1 cycle) 

•  Uniform-strength ECC 

– DECTED: 1 cycle, corrects one persistent error per line 

– 4EC5ED: 15 cycles, corrects up to three persistent errors per line 

– MS-ECC: 64-bit segments, 4 corrections/segment, corrects up to 
three persistent errors per segment, cache becomes 1MB 8-way 

• Variable-strength ECC  

– VS-ECC-Fixed: 12 lines with SECDED (1 cycle), 4 with 4EC5ED (15 

cycles) 

– VS-ECC-Disable: VS-ECC-Fixed+disable lines with ≥ 3 errors 
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Results: Reliability 

37 

• VS-ECC has similar voltage scaling to 4EC5ED 

• VS-ECC-Disable achieves lowest voltage 
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Results: Performance at Low Voltage 

Similar IPC to baseline,  better than uniform ECC 
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VS-ECC Summary 

• Near-threshold computing needs strong ECC capability in 
large caches 

• Uniform ECC techniques are expensive (performance, 
power, area) 

• Variable-Strength ECC provides strong protection only to 
lines that need it 

• VS-ECC + Line Disable is the most cost-effective 
mechanism 

• But it really needs practical online testing mechanisms 

39 
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Key Messages 

• Near-threshold computing : Sometimes benefits outweigh 
costs, and some other times they don’t 

• It’s better to use near-threshold computing selectively 
rather than for everything 

• Alternatively, we should  not get too close to threshold, 
only as long as benefits outweigh costs 

40 
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