

Circuit Reliability: Mechanisms, Monitors, and Effects in Near-Threshold Processors

Chris H. Kim

University of Minnesota, Minneapolis, MN

chriskim@umn.edu www.umn.edu/~chriskim/

Scaling Challenges

Overcoming the Power Wall

 Proven solutions: Multi-core chips, dynamic voltage frequency scaling, clock gating, power gating, ...

Overcoming the Variability Wall

 Proven solutions: Variation aware design, memory assist/repair, lithography techniques, adaptive systems

UNIVERSITY OF MINNESOTA

Overcoming the Reliability Wall

 Possible solutions: Guardbanding, sensing and compensation, wear-leveling, failure resistant systems, ...

Outline

- Device Reliability Issues
- Reliability Monitors and Measurements
- Reliability Effects in NTV Processors
- Summary

Aging in CMOS Transistors

UNIVERSITY OF MINNESOTA

HCI, BTI, and TDDB in Digital Logic

 Transistors are exposed to different stress conditions during normal digital circuit operation

Practical Solutions for Preventing Aging Related Failures

- BTI and HCI
 - Gradual decline in performance
 - <u>Guard banding (static or dynamic), adjust Vmax</u>
 - CAD, firmware & architecture level support essential
- TDDB
 - Single incident may lead to outright system failure
 - Can happen anywhere inside a chip
 - Improve fabrication procedure, adjust Vmax
- Bottom line: Precise measurement and understanding of circuit degradation a key aspect of robust design

Transistor Lifetime Estimation

Extrapolate stress results with respect to:

- <u>Op. conditions</u> based on acceleration models
- <u>Larger chip areas</u> (e.g., Poisson scaling for TDDB)
- Lower percentiles based on chosen distribution

Benefits of In-Situ Reliability Monitors over Device Probing

- Information from actual circuits (test circuit must be representative)
- High (timing) precision + short measurement interrupt
- No expensive equipment
- Short test time and reduced test area
- Measurements at use condition → allows realistic lifetime projection
- Complements traditional probing methods

Usage Scenarios and Design Issues of In-situ Reliability Monitors

- Usage scenario 1: Process characterization and yield improvement
 - Early technology characterization is often performed before many metallization layers are being fabricated
 - Library cells may not be available (flip-flops, scan)
 - Device probing would still be a competitive solution for extracting analog parameters such as I–V or C–V
- Usage scenario 2: In-field monitoring and data collection
 - Workload unknown
 - Simple circuits are practical but they have limited capabilities
 - Firmware and architecture support needed

Usage Scenarios and Design Issues of In-situ Reliability Monitors

- Usage scenario 3: Sensor for real time aging compensation
 - Effectiveness versus overhead
 - Measurements are from a proxy circuit
 - Practical issues: type of sensor, temporal granularity, spatial granularity, communication with sensors, interface and protocol
 - Personally not a big fan

Outline

- Device Reliability Issues
- Monitors and Measurements
- Effects in NTV Processors
- Summary

Circuit Based Reliability Monitors (or Silicon Odometers)

Year	2007	2008	2009	2010	2011	2012
Die Photo						
Process	130nm	65nm	65nm	65nm	32nmSOI	32nmSOI
Odometer Projects	Original Silicon Odometer	All-In-One Odometer	Statistical, Duty-Cycle, and RTN Odometer	Interconnect Odometer	PBTI and SRAM Odometer	SRAM and RTN Odometer
Focused Reliability Issues	NBTI Induced Frequency Degradation	Separately Monitoring NBTI, HCI and TDDB	Statistical Behavior of NBTI; RTN on Logic Circuit	Impact of Interconnect on BTI and HCI Aging	Monitoring PBTI in HKMG Process; BTI Impact on SRAM Read/ Write	SRAM Timing Issues Due to BTI; RTN Impact on Ring Oscillator

Beat Frequency Silicon Odometer

- Beat frequency of two free running ROSCs measured by DFF and edge detector
- Benefits of beat frequency detection system
 - Achieve ps resolution with µs measurement interrupt
 - Insensitive to common mode noise such as temperature drifts
 - Fully digital, scan based interface, easy to implement

Beat Frequency Silicon Odometer Stressed ROSC (freq=f_{stress}) Beat **Phase** Frequency Comp. Counter Reference ROSC (freq= f_{ref}) **PC OUT** *f_{ref}* : 1.00GHz Output $(f_{beat} = f_{ref} - f_{stress})$ Count: **f**_{stress}: Ν 0.99GHz 100 0.98GHz 50

- Sample stressed ROSC output with reference ROSC
 - 1% frequency difference before stress \rightarrow N=100
 - 2% frequency difference after stress \rightarrow N=50
 - $-\Delta f$ or ΔT sensing resolution is >0.01%

ROSC Based Aging Sensor Comparison

System	Single ROSC	2 ROSC, simple	2 ROSC, beat freq.
Block Diagram	Stress ROSC ◆ Counter = Variable N2 →	T1 = constant Ref. ROSC T2 = degrades Stress ROSC Variable N2 Counter = Variable N2	T1 = constant Ref. ROSC T2 = degrades Stress ROSC $f_{Pc} = f_{ref} - f_{stress}$
Function	Count Stress ROSC periods during externally controlled meas. time	Count Stress ROSC periods during N1 periods of Ref. ROSC	Count Ref. ROSC periods during one period of PC_OUT
Features	Simple; compact	Simple; immune to common mode variations	High resolution w/ short meas. time; immune to common mode variations
Issues	Voltage and temp. varations; meas. time vs. resolution tradeoff; requires absolute timing reference (e.g. oscilloscope)	Meas. time vs. resolution tradeoff	Requires extra circuits (e.g., Phase Comp., edge detector, etc)
Meas. time for 0.01% max res. *	30 µs	30 µs	0.3 µs
Meas. error wrt. common mode variations **	+10.18% / -8.57%	+0.26% / -0.38%	+0.06% / -0.07%

*ROSC period = 3 ns ** simulated with +/- 4% \triangle VCC

Separately Monitoring NBTI and PBTI

PBTI becoming an important concern in high-k metal-gate

- **Conventional Ring Oscillator (ROSC)** ulletcan only provide overall frequency degradation information due to combined NBTI and PBTI effects
- New RO structure separates NBTI and \bullet **PBTI effects**

J. Kim, et al., IBM, IRPS 2011

Vstr

UNIVERSITY OF MINNESOTA

Separately Monitoring BTI and HCI

UNIVERSITY OF MINNESOTA

Separately Monitoring BTI and HCI

- Backdriving action equalizes BTI in both BTI_ROSC and DRIVE_ROSC
- Negligible HCI in BTI_ROSC: only 3-5% of the switching current in the DRIVE_ROSC
- Fresh power gates are used for frequency measurements

Temp. and Voltage Dependencies

- HCI slightly reduced with temperature
 Due to reduced drain current
- Both mechanisms degrade with stress voltage
 - Point when HCI begins to dominate pushed out in time by >1 order of magnitude at 1.8V vs. 2.4V

- Interconnect affects the voltage and current shapes
 - Increased transition time (decreased slew rate)
 - Increased current pulse; decreased current peak value
- BTI and HCI have different sensitivities to bias conditions

Interconnect Aging Monitor

Process	65nm LP CMOS
Core / IO Supplies	1.2V / 2.5V
Stress Voltage	1.8V, 2.4V
Active Area	0.182mm ²
Interconnect Layer	M2, W=100nm, double shielded w/ 100nm spacing
Δf Resolution	> 0.016%
Meas. Interrupt	< 3µs

- Serpentine wires for a dense chip implementation
- Ground shielding on both sides for reducing noise

X. Wang, et al., IRPS 2012, TVLSI 2014

BTI and HCI Aging: With Interconnect

- BTI aging decreases with interconnect length
- HCI degradation peaks at L=500µm

BTI Aging vs. Interconnect Length

- BTI induced frequency degradation decreases with longer interconnect
- Longer transition time → shorter PMOS stress duration → Less BTI aging

HCI Aging vs. Interconnect Length

- HCI aging exhibits a non-monotonic behavior with respect to interconnect length
 - Current pulse width increases
 - Current peak decreases

Statistical Behavior of Aging

- Finite number and random spatial distribution of discrete charges → NBTI & HCI variation
- Inversely proportional to A_{GATE} → worse with scaling
- Small number of aging measurements not sufficient to characterize aging

Statistical Reliability Monitor

- Need stressed & reference ROSC frequencies to be close
- Difficult, costly to tune each stressed ROSC
- Use multiple ref. ROSCs with different frequencies
- Cover the frequency distribution of the stressed array

J. Keane, et al., IEDM 2010, JSSC 2011

65nm Test Chip Data

- Fresh and post-stress ROSC frequency PDFs
- No significant correlation of the frequency shift with fresh frequency

SRAM Memory Design Challenges at Low Supply Voltages

- Ratio-ed operation leads to poor noise margin at low voltages for 6T SRAM cells
- Conflicting requirements: a stronger access transistor improves write margin but worsens read margin

Impact of BTI on SRAM Read

Read

Cell recovers on a fail

Impact of BTI on SRAM Write

Write

Cell recovers on a pass

Representative SRAM Reliability Macro

- Represents a product SRAM sub-array
- BIST function done by on-chip FSM with supply switches

P. Jain, et al., IEDM, 2012

Aging Monitor in IBM Microprocessors Pongfei Flu, Keith Jenkins, IBM, IRPS 2013

- Implemented on IBM's z196 Enterprise systems for long term degradation under real-use conditions.
- Over 500 days worth of ring oscillator degradation data from customer systems
- Other companies have aging monitors too, but they tend not to publish their work

Aging Monitor in IBM Microprocessors Pongfei Flu, Keith Jenkins, IBM, IRPS 2013

- Time-zero problem: Some time will elapse between applying voltage (burn-in, test, operation) and making the first measurement → time-zero frequency is completely unknown → incorrect time slope of 0.42
- Use fitting parameters assuming $\Delta f = A(t-t_o)^n At^n \rightarrow \text{time slope of } 0.172$

Aging Monitor in IBM Microprocessors Pongfei Flu, Keith Jenkins, IBM, IRPS 2013

Design Considerations	Examples of Practical Issues	Aging Sensor Implementation in IBM z196 Server [3]
Type of Sensor	BTI, HCI, TDDB, RTN, transient errors, memory bit failures, etc.	Ring Oscillator based BTI monitor for long- term frequency degradation measurement
Temporal Granularity	Sensing period, threshold setting, dynamic range, etc.	Sampling period: once a week
Spatial Granularity	Per CPU/GPU/memory, per functional unit, per sub-block, etc.	Total: 5 sensors per chip; One sensor per core (x4 cores) plus one sensor in L2 cache
Stress and Measurement Condition	AC vs. DC, accelerated vs. usage condition, fast measurement	AC stress, usage condition, 0.5ms measurement time
Communication	Between data gathering sensor, across sensors, between sensors and processor	Sensors are integrated with IBM z196 pervasive infrastructure with firmware support
Interface and Protocol	Interrupt based, polling, event alarms, performance counter based, etc.	Interrupt based in-field frequency degradation measurement
Testing and Calibration	Similar to any other on-chip monitor circuit	Time 0 frequency shift unknown since first sample is taken after some stress

Outline

- Device Reliability Issues
- Monitors and Measurements
- Effects in NTV Processors
- Summary

DVFS Systems in ISSCC 2014

22nm Intel Haswell processor N. Kurd, *et al.*, ISSCC, 2014 22nm IBM POWER8 processor Z. Toprak-Deniz, *et al.*, ISSCC, 2014

 Latest trends: On-chip distributed VRM (fast transients, supply noise suppression), per-core DVS, NTV/Turbo

- Constant V_{DD}: Frequency degrades with stress
- High V_{DD} to low V_{DD}: Freq. dips due to lower V_{DD} followed by recovery
- Low V_{DD} to high V_{DD} : Freq. jumps and then degrades

- Constant V_{DD}: Frequency degrades with stress
- High V_{DD} to low V_{DD}: Freq. dips due to lower V_{DD} followed by recovery
- Low V_{DD} to high V_{DD} : Freq. jumps and then degrades

Modeling Approach using Superposition

C. Zhou, et al., IRPS 2014

BTI Recovery Model using Superposition

- Stress model: tⁿ (power law)
- Recovery model derived from superposition property: ΔV_{T,recovery}(t) = tⁿ-(t-t₀)ⁿ

Translating V_T Shift to Delay Shift

Pull-down Delay

Pull-up Delay

Android Development Board for Collecting DVFS Traces

	Processor	ARM Cortex A15
	System	Samsung Exynos
	System	5410 SoC
	Process	28nm
Exvnos 5410 SoC	Frequency	0.8 – 1.8 GHz
	Voltage	0.9 – 1.25 V
	DVFS meas.	National Instr.
Sense Resistor		DAQ
	Sampling	1000 samples
	frequency	per second
	Linux kernel	v 3.4.5
	Operating	Android v 4 2 2
	system	

- V_{DD} and operating frequency collected in real time
- Navigating websites, running benchmark applications

Sample Waveform and Estimated Frequency Shift

- High V_{DD} duration: Freq. degrades with time
- Low V_{DD} duration: Freq. shift dips and then recovers

Applying Model to Other DVFS Traces

- Worst case frequency dip
 - 3D-raytrace: Δf=1.0% at t=6s when V_{DD} drops by 29% after staying in high V_{DD} mode for 5.8s

Summary

- Power wall (2000) → Variability wall (2010) → Reliability wall (2020)
 - Example: NTV + RDF + BTI
- Aging sensor deployed for the first time in a commercial processor (IBM z systems)
- Per-Core DVFS with sub-microsecond ramp time becoming a standard feature in new processors
- Turbo boost + NTV: Best of both worlds in terms of power and performance, but presents new reliability challenges