
Prototyping Architectural
Support for Program

Rollback Using FPGAs
Radu Teodorescu and Josep Torrellas

http://iacoma.cs.uiuc.edu

University of Illinois at Urbana-Champaign

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Motivation

• Problem:

• Software bugs – major cause of system failure

• Production software is hard to debug

• Continuous debugging is needed

• Software-based dynamic monitoring tools

• Can catch a wide range of bugs

• Orders of magnitude slowdowns

2

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Motivation
• Alternative solutions

• Hardware support for debugging

• Low overhead

• Exiting support is still modest

• Our system:

• Hardware-assisted, lightweight debugger

• Monitoring, detection and recovery from bugs in
production systems

3

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Contributions
• We implemented a hardware prototype of a

debugging-aware processor

• We show that simple changes to a general purpose
processor can provide powerful debugging primitives

• We run experiments on buggy programs

• Implementation technology: FPGA

• Ideal platform for rapid prototyping

• Validate design, measure hardware overheads, run
realistic experiments

4

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Debugging Production Code

• Applications run in multiple states:

• Normal

• Speculative (can be undone)

• Re-execute

• Transition between states is
controlled by software

5

Dynamic execution

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Debugging Production Code

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC)

num++;

num=1;

exit_spec(flag);

Rollback

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC)
{
 info_collect();
}

Replay

exit_spec(flag);

enter_spec();

6

Re-execute

Normal

Speculative

Dynamic execution

num=1;
...
p=m[a[*x]]+&y;
...
num++;

Original code Instrumented code

num=1;

p=m[a[*x]]+&y;
...

num++;

if(pstate()==REEXEC)
{
 info_collect();
}

exit_spec(flag);

enter_spec();

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

System Implementation

7

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

checkpointed state

Hardware Extensions

• Undo program execution

• Large code sections

• Small overhead

• Software control

• Lightweight checkpointing

• Hardware support needed:

• Register checkpointing

• Speculative data cache

CPU

Data Cache

Memory

8

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Register Checkpointing

• Needed to allow restoration of processor state

• Beginning of speculative execution

• Register file is copied into a shadow register file

• End of speculative execution

• Commit: discard checkpoint

• Rollback: restore registers & PC from checkpoint

9

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Speculative Data Cache

• Holds both speculative and non-
speculative data

• Each line has a “speculative” bit

• Cache walk: merging or invalidating lines

• Speculative lines cannot be evicted

TAGSPEC DIRTY

data cache line

10

DATA

Line A

Data cache

CPU

Line B

CPU
Rollback

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Software Control

• Give the compiler control over speculative execution

• Control instructions:

• Begin speculation

• End speculation (commit or rollback)

• We use SPARC’s special access load

• LDA [r0] code, r1

11

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Begin Speculative Execution

Data CacheCPU

Cache
Controller

Register
Checkpoiting begin checkpoint

checkpoint done

release pipeline

12

Speculative

Normal

Re-execute

IF ID EX MEM WB

BS BS BS BS BS
STALL!

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

 Limits

• Size of the speculative window is affected by:

• Cache size and associativity - cache overflow

• I/O operations cannot be rolled back

• In both cases exceptions are raised

• Early commit

• OS intervention: buffer speculative state or I/O
instructions

13

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Experiments and Results

14

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Processor Prototype

• LEON2 - SPARC V8 compliant processor

• Single issue, 5-stage pipeline

• Windowed register file

• 2-32 sets, 16 registers

• L1 instruction and data caches

• 1-4 sets, up to 64KB/set

• Synthesizable, open source VHDL code

15

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Experimental Infrastructure

• System on a chip: PCI, Ethernet and serial interfaces

• Development tools

• RTL Simulation - ModelSIM

• Synthesis - Xilinx ISE 6.1

• Development board:

• Xilinx Virtex II XC2V3000, 64 Mbytes SDRAM

• Linux embedded

16

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Deployment

Processor
Netlist

J
T
A
G

Binaries Communication
Tool

PCI

C
O
M

Output
Terminal

17

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Hardware Overhead
Configurable Logic Blocks

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4KB 8KB 16KB 32KB 64KB

Data Cache Size

C
L

B
s

base base+reg_ckpt base+reg_ckpt+spec_cache

ba

Average overhead 4.5%

18

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Buggy Applications

• Applications with known bugs

• Manually instrument the code

• Detection window contains:

• bug location

• bug manifestation

• Determine if we can roll back the buggy code section

• Test configuration: 32KB data cache, 4KB instruction

19

DETECTION WINDOW

bug manifestation

bug location

Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Buggy Applications

Application Bug Description Successful
rollback

Dynamic
Instructions

ncompress-4.2.4 Input file name longer than 1024 bytes
corrupts stack return address Yes 10653

polymorph-0.4.0 Input file name longer than 2048 bytes
corrupts stack return address No 103838

tar-1.13.25 Unexpected loop bounds causes heap
object overflow Yes 193

man-1.5h1 Wrong bounds checking causes static
object corruption Yes 54217

gzip-1.2.4 Input file name longer than 1024 bytes
overflows a global variable Yes 17535

20

Architectural Support for Program RollbackRadu Teodorescu - University of Illinois

Conclusions

• We implemented a hardware prototype of a processor
with software controlled speculative execution

• We show that simple changes to a general purpose
processor can provide powerful debugging primitives

• Obtained an estimate of the hardware overhead and
run experiments on buggy programs

• We are looking at the integration of our hardware
with compiler and operating system support

21

Prototyping Architectural
Support for Program

Rollback Using FPGAs
Radu Teodorescu and Josep Torrellas

http://iacoma.cs.uiuc.edu

University of Illinois at Urbana-Champaign

22

