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Motivation

• Problem:

• Software bugs – major cause of system failure

• Production software is hard to debug 

• Continuous debugging is needed

• Software-based dynamic monitoring tools

• Can catch a wide range of bugs 

• Orders of magnitude slowdowns
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Motivation
• Alternative solutions

• Hardware support for debugging

• Low overhead

• Exiting support is still modest

• Our system:

• Hardware-assisted, lightweight debugger

• Monitoring, detection and  recovery from bugs in 
production systems
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Contributions
• We implemented a hardware prototype of a 

debugging-aware processor

• We show that simple changes to a general purpose 
processor can provide powerful debugging primitives

• We run experiments on buggy programs

• Implementation technology: FPGA

• Ideal platform for rapid prototyping

• Validate design, measure hardware overheads, run 
realistic experiments
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Debugging Production Code

• Applications run in multiple states: 

• Normal

• Speculative (can be undone)

• Re-execute

• Transition between states is 
controlled by software

5

Dynamic execution



Radu Teodorescu - University of Illinois Architectural Support for Program Rollback

Debugging Production Code

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC) 

num++;

num=1;

exit_spec(flag);

Rollback

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC) 
{
 info_collect();
}

Replay

exit_spec(flag);

enter_spec();
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Re-execute

Normal

Speculative

Dynamic execution

num=1;
...
p=m[a[*x]]+&y;
...
num++;

Original code Instrumented code

num=1;

p=m[a[*x]]+&y;
...

num++;

if(pstate()==REEXEC) 
{
 info_collect();
}

exit_spec(flag);

enter_spec();
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System Implementation
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checkpointed state

Hardware Extensions

• Undo program execution

• Large code sections

• Small overhead

• Software control

• Lightweight checkpointing

• Hardware support needed:

• Register checkpointing 

• Speculative data cache 

CPU

Data Cache

Memory
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Register Checkpointing

• Needed to allow restoration of processor state

• Beginning of speculative execution

• Register file is copied into a shadow register file

• End of speculative execution

• Commit: discard checkpoint

• Rollback: restore registers & PC from checkpoint
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Speculative Data Cache

• Holds both speculative and non-
speculative data

• Each line has a “speculative” bit

• Cache walk: merging or invalidating lines

•  Speculative lines cannot be evicted

TAGSPEC DIRTY

data cache line
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DATA

Line A

Data cache

CPU

Line B

CPU
Rollback
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Software Control

• Give the compiler control over speculative execution

• Control instructions:

• Begin speculation

• End speculation (commit or rollback)

• We use SPARC’s special access load

• LDA [r0] code, r1
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Begin Speculative Execution

Data CacheCPU

Cache 
Controller

Register 
Checkpoiting begin checkpoint

checkpoint done

release pipeline
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Speculative

Normal

Re-execute

IF ID EX MEM WB

BS BS BS BS BS
STALL!
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 Limits

• Size of the speculative window is affected by:

• Cache size and associativity - cache overflow

• I/O operations cannot be rolled back

• In both cases exceptions are raised

• Early commit

• OS intervention: buffer speculative state or I/O 
instructions
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Experiments and Results
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Processor Prototype

• LEON2 - SPARC V8 compliant processor

• Single issue, 5-stage pipeline

• Windowed register file 

• 2-32 sets, 16 registers

• L1 instruction and data caches 

• 1-4 sets, up to 64KB/set

• Synthesizable, open source VHDL code
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Experimental Infrastructure

• System on a chip: PCI, Ethernet and serial interfaces

• Development tools

• RTL Simulation - ModelSIM

• Synthesis - Xilinx ISE 6.1

• Development board:

• Xilinx Virtex II XC2V3000,  64 Mbytes SDRAM

• Linux embedded 
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Deployment

Processor 
Netlist
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Binaries Communication 
Tool

PCI
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Output 
Terminal
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Hardware Overhead
Configurable Logic Blocks
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Buggy Applications

• Applications with known bugs

• Manually instrument the code

• Detection window contains:

• bug location

• bug manifestation 

• Determine if we can roll back the buggy code section

• Test configuration: 32KB data cache, 4KB instruction
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bug manifestation
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Buggy Applications

Application Bug Description Successful 
rollback

Dynamic 
Instructions

ncompress-4.2.4 Input file name longer than 1024 bytes 
corrupts stack return address Yes 10653

polymorph-0.4.0 Input file name longer than 2048 bytes 
corrupts stack return address No 103838

tar-1.13.25 Unexpected loop bounds causes heap 
object overflow Yes 193

man-1.5h1 Wrong bounds checking causes static 
object corruption Yes 54217

gzip-1.2.4 Input file name longer than 1024 bytes 
overflows a global variable Yes 17535
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Conclusions

• We implemented a hardware prototype of a processor 
with software controlled speculative execution

• We show that simple changes to a general purpose 
processor can provide powerful debugging primitives

• Obtained an estimate of the hardware overhead and 
run experiments on buggy programs

• We are looking at the integration of our hardware 
with compiler and operating system support
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