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Challenges to scaling

Manufacturing process Environmental

Sub-wavelength lithography Temperature variation

Dopant density fluctuations Supply voltage fluctuations

1.80
1.75{

<«— Vmax: reliability & power

<4—— Vmin: frequency

Supply voltage (V)

Time (usec)
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I§  Variation in transistor parameters

pdf 4

switching speed

leakage power

AMD Quad-core Intel 80-core
Opteron Polaris
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One generation of process technology
is lost to process variation.
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Normalized Leakage (l;,,)
Shekhar Borkar et al, Intel, DAC 2003
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Variation components

fast, leaky

die-to-die .
transistors

within-die

slower, less leaky
transistors
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Addressing parameter variation

computing stack

Variation reduction

Variation tolerance

dynamic fine-grain body biasing

Runtime system

variation tolerance

Microarchitecture

variation reduction

Circuits

T

reduce power speed up
of high power cells slow cells

variation-aware application
scheduling and power management

L2 Cache
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Runtime system

variation tolerance

Microarchitecture

variation reduction

Circuits

Outline

® [wo solutions:

® Dynamic fine-grain body biasing [MICRO’07]

® Variation aware scheduling and power management

[ISCA’08]
® FEvaluation

® Future work
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Outline

® Dynamic fine-grain body biasing

[ variation reduction }
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Body biasing

® A voltage is applied between source/drain and substrate of a group
of transistors

® Forward body bias (FBB) Frequency ‘.‘ Leakage ‘.‘

® Reverse body bias (RBB) Frequency l Leakage ‘

® Key knob to trade off frequency for leakage power

BB DVFS

Leakage
power

Dynamic

Frequency bower

Frequency
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Static fine-grain body biasing (S-FGBB)

[Tschanz et al, Intel]

RBB
reduces static power
of leaky cells

FBB

— speeds up
slow cells

FGBB

Leakage
power

® The result is reduced WID variation Frequency

® improved processor frequency, lower power

® Additional control over a chip’s frequency and power
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Static fine-grain body biasing

BB values fixed for the lifetime
of the chip

Worst case conditions
(temperature, power) are
assumed

S-FGBB has to be conservative
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Dynamic fine-grain body biasing
(D-FGBB)

® Significant temperature variation:

® Space:across different cores

® Time:as the activity factor of the workload
changes

® Circuit delay increases with temperature:

slow

uii)

/

= >
delay
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Dynamic fine-grain body biasing

Target: Frmax

Higher power
consumption

S-FGBB
BB - fixed

average T Target: Frmax
|

Lower power
consumption

D-FGBB

BB - variable
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Dynamic fine-grain body biasing

The goal of D-FGBB is to keep the body bias
optimal as temperature changes
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Finding the optimal BB

® Dynamically measure the delay of each BB cell

® Delay sampling circuit:

-

CLK

) )
Critical Path Replica J Phase Detector
J

)

delay sampling circuit

® BB for each cell is adjusted as temperature changes

® Until optimal delay is reached
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D-FGBB environments

environment goal

Standard Improve frequency and power

High performance Maximize frequency

Low power Minimize leakage power
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Standard environment

Average conditions (Tayg) S-FGBB finds and sets Fmax

D-FGBB saves leakage power compared
to S-FGBB at Frmax
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D-FGBB Summary

D-FGBB is very effective at reducing WID variation:

frequency

I
0.5

leakage power

NoBB

1.037

1.000

'_;%,.

154

0.962

ude " .

0.925

r

0.887

0.8507

F

_?Q

0.812

I I
0.5 1.0

leakage power

S-FGBB

1.037

1.000
0.962
0.9257

0.8877]
0.850‘!

i‘

0.812

0 0.5 1.0

leakage power

D-FGBB

® 40% lower leakage

® |0% higher frequency
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Outline

® [wo solutions:

® Dynamic fine-grain body biasing

[ variation tolerance j

® Variation aware scheduling and power management

[ISCA’08]
® FEvaluation

® [uture work
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Motivation

® |arge CMPs will have significant core-to-core variation

® Ve model a 20-core CMP 32nm

L2 Cache

Leakage
power

Frequency

2X

L2 Cache

Design-identical cores will have
significantly different properties
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How can we exploit this variation?

® Current CMPs run at the frequency of the slowest core

® We can run each core at the maximum
frequency it can achieve L2 Cache

® |5% average frequency increase

® Heterogeneous system L2 Cache

® Variation-aware scheduling

® Variation-aware power management
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Variation-aware scheduling

Applications

® Variation in core frequency and power

® Application behavior ~_ "

® dynamic power consumption -

® instructions per cycle (IPC) L2 Cache

® System goals:

® reduce power

. L2 Cache
® improve performance
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Variation-aware scheduling

Variation-aware scheduling algorithms:

* Reduce power: High IPC

Assign applications with high dynamic power c | @
to low power cores (VarPower)

L2 Cache

* Improve performance:

Assign high |IPC applications to high
frequency cores (VarPerf) L9 Cache
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Variation-aware power management

® Dynamic voltage and frequency scaling (DVFS)

® Core-level control over voltage and frequency

® The challenge:

® Find optimal (V,F) for each core 5 Cach

e[l [ [
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DVFS under variation
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1 Optimization problem

Given a mapping of threads to

cores (VarPerf): best (V,,Fi) of each core

CI‘CZ‘C3‘C4‘C5 V,F‘V,F‘V,F‘V,F‘V,F

L2 Cache
c7 | c8 | ©9 VF | VF | VVF | VF | VIF
ci2 | ciz | ci4 VF | VVF | VF | VVF | ViIF

L2 Cache

cie | c17 | cis | c19 | c20 V,F ‘ V,F ‘ V,F ‘ V,F ‘ V,F

® Goal: maximize system throughput (MIPS)

e Constraint: keep total power below budget

50W /5W |00W
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50W /5W |00W
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Possible solutions

LinOpt

® Exhaustive search: too expensive

® Simulated annealing (SAnn)
® not practical at runtime

® Linear programming (LinOpt)
® simpler, faster

® requires some approximations
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LinOpt problem definition

Linear programming:

® Maximize objective function: f(xi,...,xn), with x,...,.x» independent

® Subject to constraints such as: g(xi,...,xn) < C

® fgare linear functions

Variables: voltages V|,..,V, for all cores

Objective function: maximize throughput

® Throughput (MIPS) = Frequency X IPC = {(V,,..,V»)
Constraint: keep power under Pearget

® Power = g(V)
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LinOpt implementation

® LinOpt works together with the OS scheduler
® OS scheduler maps applications to cores (e.g. VarPerf)

® LinOpt then finds (V,F) settings for each core

® LinOpt runs periodically as a system process

L2 Cache

® oOna Spare core
C8

® Power management unit (PMU)

PMU L2 Cache

® on-chip microcontroller (Foxton)

Clé ‘ Cl7 ‘ Cl8 ‘ Cl9 ‘ C20

® LinOpt uses profile information as input
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LinOpt implementation

best (V,,F) of each core
Post-manufacturing profiling

VE [ vEvE] Ve ] ve

[Each core: frequency, static power

V.F ] ViF | ViF | VIF | VF
Dynamic profiling VE|VF|VFE|VF|VF

[Each app: dynamic power, |IPC

V,F | VF | VIF

LinOpt

|Oms

OS scheduling interval
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Outline

® [wo solutions:

Runtime system ® Dynamic fine-grain body biasing

Microarchitecture ® Variation aware scheduling and power management

® FEvaluation

Circuits

® Future work
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Evaluation infrastructure

Process variation model - VARIUS [IEEE TSM’08]
® Monte Carlo simulations for 200 chips

SESC - cycle accurate microarchitectural simulator
HotlLeakage, SPICE model - leakage power

Hotspot - temperature estimation

Mix of SPECint and SPECfp benchmarks
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Dynamic fine-grain body biasing

® 4-core CMP

® 45nm technology, 4GHz

® We evaluate FGBB at different granularities
(1-144 cells)

FGBB16 FGBB64 FGBB144
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D-FGBB Standard

Leakage
reduction

42%

D-FGBB144 A < >@ S-FGBB144

D-FGBB64 A ® S-FGBBe4 More BB cells result in

D-FGBBI6 A ® S-FGBBIG higher frequency and lower
leakage

>N
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D-FGBB1 A<

0.75

Leakage
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Other environments

® D-FGBB High Performance: 7-10% frequency increase
compared to S-FGBB

® D-FGBB Low Power - 10-50% leakage reduction
compared to S-FGBB
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T Variation-aware scheduling and power
management

® 20-core CMP

L2 Cache

® 32nm technology, 4GHz

C8

Cl3

L2 Cache

® Multiprogrammed workload: 1-20 applications

® from a pool of SPECint and SPECfp benchmarks
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Power management schemes

Goal: - maximize throughput

Constraint: - keep power below budget (75W)

Foxton+: baseline
VarPerf+LinOpt: proposed scheme

VarPerf+SAnn: approximate upper bound
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Throughput improvements

1'7%

4 Threads 8 Threads | 6 Threads 20 Threads

" Foxton+ 8 VarPerf+LinOpt B VarPerf+SAnn

® VarPerf+LinOpt: |12-17% over Foxton+

® LinOpt: within 2% of SAnn
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To sum up...

How much of the performance/power have we recovered?

variation-aware scheduling

dynamic fine-grain body biasing and power management

1.0

o

©
o
©

o
©
o
©

Frequency
Throughput

©
N
o
~

Leakage Power

o
o

0.6

0.5 0.5 0.5
" No Variation ™ No Variation o
WID Variation WID Variation " No Variation
B D-FGBB Standard B D-FGBB Standard WID Variation
B D-FGBB HiPerf B D-FGBB LowPower B VarPerf+LinOpt
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To sum up...

How much of the performance/power have we recovered?

variation-aware scheduling

dynamic fine-grain body biasing and power management

1.0

o

FaW a

Both techniques recover most of the

losses caused by process variation
o 0.9

o
0

o
©

Frequency

o
~

0.7

o
o

0.6

0.5 0.5 0.5
" No Variation ™ No Variation o
WID Variation WID Variation " No Variation
B D-FGBB Standard B D-FGBB Standard WID Variation
B D-FGBB HiPerf B D-FGBB LowPower B VarPerf+LinOpt
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Outline

® [wo solutions:

® Dynamic fine-grain body biasing

® Variation aware scheduling and power management

® FEvaluation

® Future work

Intel 80-core Polaris
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Future work

® Semiconductor roadmaps predict:
® |Inm - |28 billion transistor chips
® Hundreds of cores on a die

® Reliability problems will get worse

® some cores will fail immediately

® others over time

Architectural Techniques to Address Parameter Variation Radu Teodorescu




Future work

Integrated approach to system reliability

application hardening
Software

migration, adaptation Compiler

—————
———

Operating system
detection, correction
— Microarchitecture
environment sensin o
1 Circuits

timing errors
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Future work

Integrated approach to system reliability

application hardening

Software

Integrated solutions - key to tackling the
daunting reliability challenges of future
systems.

detection, correction & 4

migration, ad:

Microarchitecture

environment sensing Circuit
ircuits

timing errors
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Other work

Hardware support for on-line software debugging

® Prototype of a processor with fast, software controlled
checkpointing and rollback, in FPGA [FCCM’05][WCED’05]

[BUGS’05][Micro Magazine’06]

-Hardware implementation of a data race detection algorithm
HPCA’07]

_og-based architectures for lightweight monitoring of production
code [ASID’06]
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