Mitigating Parameter Variation with Dynamic Fine-Grain Body Biasing^{*}

Radu Teodorescu, Jun Nakano, Abhishek Tiwari and Josep Torrellas University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

*to appear in MICRO-40, December 2007

Motivation

- Technology scaling continues
- More and more transistors every generation!
- However...
- Chips are increasingly affected by parameter variation

Parameter Variation

- Process variation
 - Manufacturing at low feature sizes
- Temperature variation
 - Uneven activity distribution
- Supply voltage variation
 - IR drop, di/dt noise

Intel Corp.

Effects of Parameter Variation

- Higher power consumption
- Lower frequency
- Uncertainty in the design process

Outline

- A Model of Process Variation
- **Dynamic Fine-Grain Body Biasing**
- Evaluation
- Conclusions

Outline

- A Model of Process Variation
- Dynamic Fine-Grain Body Biasing
- Evaluation
- Conclusions

A Model For Process Variation

- Fast, simple and parameterizable model
- We model two key process parameters:
 - Transistor critical dimension (L_{eff}) and threshold voltage (V_{th})
- We also model temperature effects

Variation Components

- Granularity:
 - Within die
 - Die-to-die

Die-to-die

- WID variation:
 - Systematic variation
 - Random variation

8 Radu Teodorescu

A Model For Process Variation

• Variation in any parameter P:

 $\Delta P = \Delta P_{D2D} + \Delta P_{WID} = \Delta P_{D2D} + \Delta P_{rand} + \Delta P_{sys}$

We focus on WID variation

- D2D is a chip-wide offset to ΔP_{WID}
- Random and systematic components
 - Modeled as normal distributions
 - Treated separately impact different levels of the microarchitecture

Systematic Variation

- We divide the chip into a grid of points
 - Each point has one random value of ΔP_{sys}
- Multivariate normal distribution ($\mu_{sys}=0, \sigma_{sys}$)
 - Characterized by a correlation function:

$$corr(P_{\vec{x}}, P_{\vec{y}}) = \rho(r) ; r = |\vec{x} - \vec{y}|$$

- Correlation is position independent and isotropic
- For $\rho(r)$ we choose the spherical model

Spherical Model

Stronger correlation

Weaker correlation

Matches measured data [Friedberg et al. 05]

Random Variation

- Random variation transistor level
- We model it analytically as a normal distribution
- Both ΔP_{rand} and ΔP_{sys} are normal and independent with σ_{rand} and σ_{sys}

$$\sigma_{total} = \sqrt{\sigma_{rand}^2 + \sigma_{sys}^2}$$

Outline

- A Model of Process Variation
- Dynamic Fine-Grain Body Biasing
- Evaluation
- Conclusions

Body Biasing

- Well known technique for V_{th} control
- A voltage is applied between source/drain and substrate of a transistor

• Forward body bias FBB -
$$V_{th} \downarrow$$
 - Freq \uparrow - Leak \uparrow

- Reverse body bias RBB V_{th} 1 Freq 4 Leak 4
- Useful knob to control frequency and leakage

Body Bias Design Space

Time Space	Static BB fixed for chip lifetime	Simple adaptation FBB in active mode RBB in standby	Dynamic BB changes with T and workload
Chip-wide	 D2D variation [Intel Xscale] 	 D2D variation, power, performance [Intel's 80-core chip] 	
Fine-grain	 WID variation [Tschanz et al] 	 WID variation, power, performance 	 WID variation T variation (space and time)

15 Radu Teodorescu

Body Bias Design Space

Time Space	Static BB fixed for chip lifetime	Simple adaptation FBB in active mode RBB in standby	Dynamic BB changes with T and workload
Chip-wide	 D2D variation [Intel Xscale] 	 D2D variation, power, performance [Intel's 80-core chip] 	
Fine-grain	• WII <mark>S-FGBB</mark> [Tschanz et al]	 WID variation, power, performance 	 WID variation T variation (space and time)

15 Radu Teodorescu

Body Bias Design Space

Time Space	Static BB fixed for chip lifetime	Simple adaptation FBB in active mode RBB in standby	Dynamic BB changes with T and workload
Chip-wide	 D2D variation [Intel Xscale] 	 D2D variation, power, performance [Intel's 80-core chip] 	
Fine-grain	• WI[<mark>S-FGBB</mark> [Tschanz et al]	• WID variation, power, performance	 WID variation T D-FGBB (space and τime)

Motivation for D-FGBB

- Body bias trades off frequency for leakage
- **Optimal** body bias:

The **lowest** FBB or **highest** RBB s.t. circuit delay meets frequency target

• Therefore optimal BB changes with temperature

I6 Radu Teodorescu

Motivation for D-FGBB

Switching Frequency

Ņ

50

Vth = 0.120V

Vth = 0.135V Vth = 0.150V

Vth = 0.165VVth = 0.180V

60

70

80

Temperature (C)

- Body bias trades off frequency for leakage
- **Optimal** body bias:

The lowest FRR or highest RRR s.t. circuit d target body bias optimal as T changes

- Circuit delay changes with temperature
- Therefore optimal BB changes with temperature

90

100

Finding the Optimal BB

- Measure the delay of each BB cell
- Critical path replicas to sample cell delay
- Phase detector "times" the critical path replica
 - If slow FBB signal raised
 - If fast RBB signal raised

Applying Fine Grain BB

18Radu Teodorescu

Applying Fine Grain BB

18Radu Teodorescu

Applying Fine Grain BB

18Radu Teodorescu

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

Improving a Chip's Operating Point

21 Radu Teodorescu

Intel PhD Fellowship Forum, October 2007

Improving a Chip's Operating Point

• Post-manufacturing calibration phase:

- 1. Bring chip to T_{cal}
- 2. Set target frequency F_{cal}^{0} , and run at full load
- 3. BB is adjusted automatically
- 4. Measure total power P_{cal} : if $P_{cal} < P_{target}$, $F_{cal}^1 = F_{cal}^0 + +$, else $F_{cal}^1 = F_{cal}^0 - -$
- 5. Repeat if needed, until $P_{cal} \approx P_{target}$
- F_{cal}ⁱ becomes the chip's frequency

22 Radu Teodorescu

D-FGBB Adapts to Changes in T

• Calibration temperature T_{cal} is conservative

• Average T much lower:

Functional Units

D-FGBB Saves Leakage Power

- S-FGBB finds and sets F_{cal}
- D-FGBB adjusts dynamically to T changes to save power while running at F_{cal}

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

D-FGBB Improves Performance

- Average power P_{avg}<P_{max}
- D-FGBB is used to push the chip to F_{avg}>F_{cal}, as long as P<P_{max}

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

27 Radu Teodorescu

Intel PhD Fellowship Forum, October 2007

D-FGBB Saves Leakage Power

- The chip runs at its original Forig
- D-FGBB adjusts dynamically to T changes to save power while running at Forig

Outline

- A Model of Process Variation
- Dynamic Fine-Grain Body Biasing
- Evaluation
- Conclusions

Evaluation Infrastructure

- Statistical package R to generate variation maps for 200 chips
- SESC cycle accurate microarchitectural simulator - execution time, dynamic power
 - Mix of SPECint and SPECfp benchmarks
- HotLeakage, SPICE model leakage power
- Hotspot temperature estimation

Evaluation Infrastructure

Evaluation Methodology

- 4-core CMP, based on Alpha 21364
- 45nm technology, 4GHz
- V_{th} variation: $\sigma_{Vth}/\mu_{Vth}=0.3-0.12$, $\sigma_{sys}=\sigma_{rand}$
- L_{eff} variation $\sigma_{\text{Leff}} = \sigma_{\text{Vth}}/2$
- $V_{dd}=1V$, $V_{th0}=150mV$, $V_{bb}=\pm500mV$

CMP Architecture

Body Bias Cells

- We partition each core into BB cells
- Shapes and sizes follow functional units

34

Variation Impact

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

36 Radu Teodorescu

S-FGBB Improves the Chip's Operating Point

D-FGBB Reduces Leakage

Number of BB Cells

- Large leakage reduction after binning: 28-42%
- More BB cells result in higher savings

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

D-FGBB Improves Frequency

- Average frequency improvement 7-9% over S-FGBB and 7-16% over NoBB
- More BB cells result in higher increase

40 Radu Teodorescu

Intel PhD Fellowship Forum, October 2007

Power Cost

Significant power cost, but still within the power budget

4I Radu Teodorescu

Applications of D-FGBB

Operating environments	S-FGBB	D-FGBB
Normal	Improve chip operating point	Save leakage power
High Performance	Improve chip operating point	Increase average frequency
Low Power	Save leakage power	Save leakage power

42 Radu Teodorescu

Intel PhD Fellowship Forum, October 2007

D-FGBB Reduces Leakage

Number of BB Cells

- Large leakage reduction at constant frequency: 10-51% vs. S-FGBB and 12-69% vs NoBB
- More BB cells result in higher savings

Combining D-FGBB with DVFS

- D-FGBB targets leakage power
- DVFS targets mostly dynamic power
- Can they be combined effectively?

Combining D-FGBB with DVFS

- D-FGBB scales well with DVFS
- S-FGBB does not scale unless calibrated at multiple voltages

Conclusions

- D-FGBB is an effective and versatile tool to address parameter variation
- We show three scenarios:
 - Normal: 28-42% leakage savings vs. S-FGBB
 - High performance: 7-9% frequency increase
 - Low power: 10-51% leakage reduction vs. S-FGBB
- Combines well with DVFS

More in our MICRO 2007 paper

http://iacoma.cs.uiuc.edu

- More details on the variation model
- A solution for combining D-FGBB with DVS
- Estimated overheads of D-FGBB
- More implementation details

Thank you! Questions?

