
Variation-Aware Application Scheduling
and Power Management for Chip Multiprocessors ∗

Radu Teodorescu and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

Abstract
Within-die process variation causes individual cores in a Chip

Multiprocessor (CMP) to differ substantially in both static power
consumed and maximum frequency supported. In this environ-
ment, ignoring variation effects when scheduling applications or
when managing power with Dynamic Voltage and Frequency Scal-
ing (DVFS) is suboptimal.

This paper proposes variation-aware algorithms for application
scheduling and power management. One such power manage-
ment algorithm, calledLinOpt, uses linear programming to find
the best voltage and frequency levels for each of the cores in the
CMP — maximizing throughput at a given power budget. In a 20-
core CMP, the combination of variation-aware application schedul-
ing andLinOpt increases the average throughput by 12–17% and
reduces the averageED2 by 30–38% — all relative to using
variation-aware scheduling together with a simple extension to In-
tel’s Foxton power management algorithm.

1. Introduction

As integrated-circuit technology continues to scale, process
variation — the divergence of process parameters from their nom-
inal specifications — is becoming an issue that cannot be ignored
at the architecture and system levels. Indeed, variation has major
implications, such as increased leakage power consumption in the
chips and limited processor frequency improvements [2].

In the context of Chip Multiprocessors (CMP), within-die pro-
cess variation in current and near-future technologies causes in-
dividual cores in the chip to differ substantially in the amount of
power that they consume and in the maximum frequency that they
can support. This effect, which has been reported elsewhere [11]
and will be confirmed in this paper, suggests that it is no longer
accurate to think of large CMPs as homogeneous systems.

In these environments, it is suboptimal to schedule applications
ignoring variation effects. Instead, if applications are scheduled in
a variation-aware manner, taking into account the different power
and frequency characteristics of each individual core, substantial
savings in power or large increases in throughput are attainable.
Similarly, it is suboptimal to perform power management based on
Dynamic Voltage and Frequency Scaling (DVFS) assuming that all

∗ This work was supported by the National Science Foundation under grants
CCR-0325603 and CNS-0720593, and by SRC GRC under grant 2007-HJ-
1592. Radu Teodorescu was supported by an Intel PhD Fellowship.

cores have the same properties. Instead, if DVFS is applied in a
per-core manner, fully aware of the heterogeneity of the cores, sub-
stantially more cost-effective working points can be obtained.

Interestingly, the technology for variation-aware application
scheduling and power management is now available. Indeed, so-
phisticated on-chip power monitors and controllers such as those in
Intel’s Foxton technology [22] can be used to measure and manage
the power heterogeneity of the cores. Moreover, the ability to sup-
port multiple on-chip frequency domains and change the frequency
of each core independently as in AMD’s Quad-Core Opteron [6]
can be used to exploit the frequency heterogeneity of the cores.

In this paper, we propose simple, variation-aware algorithms for
application scheduling in a CMP to save power or improve through-
put. Moreover, we complement these algorithms with variation-
aware power-management DVFS algorithms to maximize through-
put at a given power budget. One such power-management al-
gorithm, calledLinOpt, uses linear programming to find the best
voltage and frequency levels for each of the cores in the CMP.
LinOptruns on-line periodically, using profile information provided
by the chip manufacturer and by on-chip power and IPC sensors.
In a 20-core CMP, the combination of variation-aware application
scheduling andLinOpt increases the average throughput by 12–
17% and reduces the averageED2 by 30–38% — all relative to
using variation-aware scheduling together with a simple extension
to Foxton’s power management algorithm. Moreover,LinOpt’s
throughput is within 2% of that of a simulated annealing algorithm,
which has a computation time orders of magnitude higher.

This paper is organized as follows. Section 2 describes related
work; Section 3 gives background on process variation; Sections 4
and 5 describe the scheduling and power management algorithms;
Sections 6 and 7 evaluate them; and Section 8 concludes.

2. Related Work

The contributions of this paper are related to several areas of
work, which we consider in turn.
Handling Core-To-Core Process Variation.Humenayet al. [11]
examine process variation in a CMP and point out the core-to-core
variation in frequency. They estimate the maximum difference in
core frequencies to be approximately 20%. They suggest Adaptive
Body Bias (ABB) and Adaptive Supply Voltage (ASV) to reduce
some of this variation — at the cost of increasing power variation.
Their work is complementary to ours. Donald and Martonosi [5]
also examine process variation in a CMP and focus on the core-to-
core variation in power. They suggest turning off cores that con-
sume power in excess of a certain computed value, with the goal of

maximizing the chip-wide performance/power ratio. We combine
application scheduling and global DVFS power management.

Scheduling for Heterogeneous Architectures. Balakrishnanet
al. [1] study how heterogeneous CMPs impact parallel workloads.
They suggest fine-granularity threading as a solution for alleviating
the performance instability caused by heterogeneous CMPs. Kumar
et al. [18] propose a CMP with different-complexity cores and the
same ISA. The goal is to reduce power consumption by using the
simpler, more power-efficient cores to run memory-bound applica-
tions. They schedule applications to cores based on application ILP,
and adapt to phase changes within an application. Our work consid-
ers design-identical cores that are affected by variation. Since we
do not know beforehand the power and frequency of each core, this
information is obtained post-manufacturing and is unique to each
CMP.

Scheduling for Power Management.Li and Martinez [19] opti-
mize a parallel workload running on a CMP by dynamically chang-
ing the number of active processors and the voltage and frequency
levels at which the CMP runs. They apply DVFS chip-wide rather
than independently per core, which reduces the flexibility and im-
pact of the optimization. Kadayifet al. [15] enable embedded sys-
tems to exploit the heterogeneity of workloads. Specifically, they
use the compiler to assign different voltages and frequencies to dif-
ferent processors depending on the characteristics of the workload.

Isci et al. [12] consider a 4-core CMP with core-level DVFS
(i.e., the voltage and frequency levels are changed independently
in each core). They examine different DVFS policies for high per-
formance and for power efficiency. Their solutions are primarily
based on the exhaustive search of the solution space. Because of
this, the solutions are not scalable to large systems. In this paper,
we consider a large CMP with process variation. As a result, both
application scheduling and power management have to be variation-
aware. Moreover, given the large design space, we need to use an
intelligent way to prune the design space.

Herbert and Marculescu [10] examine the tradeoffs of using dif-
ferent DVFS granularities (i.e., the number of cores in the same
voltage-frequency domain). They find that having a small number
of cores per domain produces the most complexity-effective design.

Other researchers like Heoet al. [9] and Stavrou and Tran-
coso [34] minimize power density or temperature hot spots by judi-
ciously scheduling jobs or migrating them from core to core.

In embedded systems, linear programming has been used to
solve the problem of scheduling tasks on CMPs [33]. The goal
is to minimize power while meeting strict timing constraints. Our
optimization approach is different, since we do not have timing con-
strains. Moreover, due to variation, our cores are heterogeneous.

Core-Level DVFS and Power Controllers. State-of-the-art pro-
cessor chips often have multiple voltages — for example, giving
memory arrays a slightly higher voltage than the core for reliability
reasons. However, the first general-purpose CMP to support a form
of core-level DVFS is the AMD Quad-Core Opteron [6]. In this
chip, the frequency of each core can be set independently, although
all cores have the same voltage. Currently, multiple on-chip volt-
ages are provided by off-chip voltage regulators, which are bulky
and costly. Recent work by Kimet al. [16] describes designs of
on-chip regulators. They are able to perform voltage changes in
nanoseconds rather than in microseconds, and consume little en-

ergy. Designs similar to these will enable wide use of core-level
DVFS.

Given the importance of power, power management control is
an area of high interest. Perhaps the most sophisticated design is
Intel’s Foxton technology [22], which has been implemented in the
Itanium II processor. Foxton is a control system that maximizes
performance while staying within target power and temperature.
It consists of power and temperature sensors, and a small on-chip
hardware controller. If the power consumption is less than the tar-
get, the controller increases the core voltage — and the frequency
follows. The opposite occurs if the power is over the target. Both
cores in the Itanium II have the same voltage and frequency.

3. Background: Process Variation
Process variation refers to changes in transistor parameters be-

yond their nominal values, and results from manufacturing diffi-
culties in very small feature technologies [2]. For the purposes of
modeling and analysis, variation is generally broken down into die-
to-die (D2D) and within-die (WID). WID variation can be further
divided into systematic and random effects. In this work, we focus
on WID variation, which has a direct effect on core-to-core varia-
tion in power and frequency within a CMP.

Several transistor parameters are affected by variation. Of
key importance are the threshold voltage (Vth) and the effective
gate length (Leff). These parameters directly impact a transistor’s
switching speed and leakage power. The higher theVth andLeff
variation is, the higher the variation in transistor speed across the
chip is. This typically results in slow processors, since the slower
transistors end up determining the frequency of the whole proces-
sor. In a CMP, the result is that different cores support different
frequencies. Also, asVth varies, transistor leakage varies across
the chip. However, low-Vth transistors consume more power than
high-Vth transistors save. As a result, with variation, chips con-
sume substantially more leakage power. In a CMP, different cores
leak different amounts.

Chip manufacturers hardly release any measurements on process
variation for current or future technologies. As a result, we rely on
statistical models of variation (e.g., [11, 20, 21, 28, 30, 37]) driven
by values projected by the ITRS [14]. In this paper, we use the
VARIUS model [30, 37], which we briefly summarize here.

To model systematic variation, the chip is divided into a grid.
Each grid point is given one value of the systematic component of
the parameter — assumed to have a normal distribution withµ = 0
and standard deviationσsys. Systematic variation is also character-
ized by a spatial correlation, so that adjacent areas on a chip have
roughly the same systematic component values. The spatial cor-
relation between two points~x and~y is expressed asρ(r), where
r = |~x − ~y|. To determine howρ(r) changes fromρ(0) = 1
to ρ(∞) = 0 asr increases, the spherical function is used. The
distance at which the function converges to zero is when there is
no significant correlation between two transistors. Such distance is
calledφ.

Random variation occurs at the level of individual transistors. It
is modeled analytically with a normal distribution withµ = 0 and
standard deviationσran. Since the random and systematic com-
ponents are normally distributed and independent, their effects are
additive, and the totalσ is

√
σ2

ran + σ2
sys. In the model,Vth and

Leff have different values ofσ.

Algorithms to Minimize Power

Random Map threads on cores randomly
VarP Map threads randomly on cores with lowest static power
VarP&AppP Map threads with highest dynamic power on cores with lowest static power

Algorithms to Maximize Performance

Random Map threads on cores randomly
VarF Map threads randomly on cores with highest frequency
VarF&AppIPC Map threads with highest IPC on cores with highest frequency

Algorithms to Maximize Performance at a Power Budget (Ptarget)

Random+Foxton* Map threads on cores randomly and reduce (Vi,fi) of cores round robin to meetPtarget

VarF&AppIPC+Foxton* Map threads on cores withVarF&AppIPCand reduce (Vi,fi) of cores round robin to meetPtarget

VarF&AppIPC+LinOpt Map threads on cores withVarF&AppIPCand useLinOpt to meetPtarget

VarF&AppIPC+SAnn Map threads on cores withVarF&AppIPCand useSAnnto meetPtarget

Table 1. Algorithms for application scheduling and power management.

4. Application Scheduling and Power Manage-
ment under Process Variation

In an environment with process variation, each processor in a
CMP typically consumes a different amount of power and can sup-
port a different maximum frequency. Given that the core-to-core
differences can be substantial, it makes sense to schedule applica-
tions and perform power management as if the variation-affected
CMP was a heterogeneous system.

In this environment, there are two high-level design issues (Ta-
ble 2). The first is whether the different cores of the CMP have
to cycle at the same frequency (Uniform Frequency) or not (Non-
Uniform Frequency). The second is whether the frequency and
voltage of the cores can be changed dynamically (DVFS) or not
(No DVFS). For these configurations, we present a set of simple
variation-aware algorithms for application scheduling and power
management, aimed at minimizing power or maximizing perfor-
mance. Note that the scheduling algorithms are intended to comple-
ment the other scheduling criteria used by the OS, such as priority,
fairness, or starvation-avoidance. In the following, we assume that
the number of threads is less than or equal to the number of cores.

Uniform Frequency Non-Uniform Frequency

No Name:UniFreq Name:NUniFreq
DVFS – Minimize Power – Minimize Power

– Maximize Perform.
Name:UniFreq+DVFS Name:NUniFreq+DVFS

DVFS – Maximize Perform. – Maximize Perform.
at a Power Budget at a Power Budget

Table 2. CMP configurations for application scheduling and
power management under variation.

4.1. UniFreq: Uniform Frequency & No DVFS

In this configuration, although different cores support different
maximum frequencies, all cores run at the frequency of the slowest
one. Moreover, frequency does not change dynamically. We call
this configurationUniFreq (Table 2). The only inter-core variation
is in power consumption. Since all cores run at the same frequency,

the goal of the scheduler is to minimize the power consumption at
the given frequency.

The top part of Table 1 shows three possible algorithms that the
scheduler can use in this configuration to minimize power. InRan-
dom, threads are mapped on cores randomly. This is our baseline.
In VarP, the cores are ranked by their static power consumption
from lowest to highest. Then, theN threads are randomly mapped
on the topN cores (one thread per core). Finally, inVarP&AppP,
in addition to ranking the cores as before, the threads are ranked
by their dynamic power consumption from highest to lowest. Then,
the highest-power threads are mapped on the lowest-power cores.
The intuition is to “even out” the power consumption across cores,
avoiding hot spots. Because of the exponential dependence of leak-
age on temperature, keeping the power consumption (and tempera-
ture) as uniform as possible saves power.

The configuration in Table 2 where the frequency is uniform
and there is DVFS is calledUniFreq+DVFS. It is a generalization
of UniFreq, where the goal is now to maximize performance at a
given power budget. We can use the same scheduling algorithms as
in UniFreq — e.g., mapping the threads with the highest dynamic
power on the cores with the lowest static power — and then reduce
the frequency and voltage until the power budget is met. Since most
aspects of this configuration are covered in the other configurations,
we do not consider it further in this paper.

4.2. NUniFreq: Non-Uniform Frequency & No
DVFS

In the NUniFreq configuration (Table 2), different cores run at
different frequencies — the highest that each supports. However,
frequencies do not change dynamically. In this configuration, two
simple scheduling goals are to minimize power or to maximize per-
formance.

To minimize power, we use theVarPor VarP&AppPalgorithms
discussed in the previous section. To maximize performance, we
use the algorithms in the middle of Table 1. InVarF, the cores are
ranked by the maximum frequency they support, from highest to
lowest. Then, theN threads are randomly mapped on the topNcores
(one thread per core). InVarF&AppIPC, in addition to ranking the
cores as before, the threads are ranked by their average IPC from
highest to lowest. Then, the highest-IPC threads are mapped on
the highest-frequency cores. The intuition is that low-IPC threads

typically benefit less from high frequency — because they are often
memory-bound.

4.3. NUniFreq+DVFS: Non-Uniform Frequency &
DVFS

In this configuration, different cores run at different frequencies
and DVFS can be applied independently to each core. We call this
configurationNUniFreq+DVFS(Table 2). In this configuration, the
most obvious optimization goal is to maximize performance at a
given power budget. Given the complexity of this environment,
where the algorithms for scheduling and for power management
interact, a global optimization solution is required.

The lower part of Table 1 shows possible algorithms to max-
imize performance at the target power. To simplify the problem,
we construct each algorithm in two steps. First, we select one of
the scheduling algorithms that maximizes performance (VarF or
VarF&AppIPC), to map the threads to cores. Then, we use a power
management algorithm to find the best (Vi,fi) pair for each active
corei, that maximizes overall performance while keeping the total
power no higher thanPtarget.

Because of the non-linear dependence of power onV, and the
exponential size of the search space, finding the optimal solution to
the second part of the problem is very expensive. Previous solutions
that have looked at global optimization of DVFS on CMPs [12]
have used anexhaustivesearch through the solution space. This
is feasible only for very small systems and does not scale. For a
system like the one we evaluate (a 20-core CMP with many per-
core voltage-frequency pairs), exhaustive search is too expensive.

Our approach is to reduce the problem to a linear optimization
problem, and then use linear programming [24] to solve it. We
call our algorithmLinOpt. Moreover, we also compareLinOpt to a
more complex non-linear algorithm based on simulated annealing
(SAnn), which provides a solution that is very close to the optimal
one.

Overall, we examine the following algorithms (Table 1). InRan-
dom+Foxton*, we map threads on cores randomly. Then, from
among the active cores, we select one core at a time in a round-
robin manner, and reduce that core’s (Vi,fi) one step. We stop
when the chip-widePtarget constraint is satisfied and a per-core
power constraint (Pcoremax) is satisfied for all cores. This power
management algorithm is the simplest one, and a small extension
over the one implemented by the Foxton controller in the Itanium
II [22] — where the two cores have the same (V,f) pair. We use
Random+Foxton*as our baseline algorithm.

In the other algorithms, we map threads on cores using
VarF&AppIPC and then use different power management algo-
rithms to set the (Vi,fi) pair for each active corei. Specifically,
we considerVarF&AppIPC+Foxton*, VarF&AppIPC+LinOpt, and
VarF&AppIPC+SAnn. To be effective, bothLinOpt andSAnnhave
the same goal as theVarF&AppIPCscheduling algorithm, namely
to maximize performance. In the following, we present theLinOpt
andSAnnalgorithms.

4.3.1. LinOpt: Power Management Using Linear Pro-
gramming

Linear programming [24] is a mathematical technique for solv-
ing linear optimization problems of the following form: forN in-

dependent variablesx1, ..., xN , maximize the objective function:

g = a1x1 + a2x2 + ... + aNxN

subject toN primary constraintsx1 ≥ 0, x2 ≥ 0, ..., xN ≥ 0 and
to any number of additional constraints of the form:

b1x1 + b2x2 + ... + bNxN + b ≤ B

wherea1..N , b1..N , b andB are problem-specific constants.
The problem we want to optimize is the following. Given a set

of N coresC1..N that can each run atM different voltage levels
V1..M (each with its corresponding frequency), find the best selec-
tion of voltage levels (v1, ..., vN) for coresC1..N that maximizes
the average throughput (TP) subject to the following constraints:
(i) the total chip power is less thanPtarget and (ii) the power of
each core is less thanPcoremax.

We would like to express this problem as a linear optimization
problem. To do this, we need to make sure that the objective func-
tion as well as all the constraint inequalities are linear functions.
This requires some approximation.

We start with the objective function, which is the average
throughputTP, measured in millions of instructions per second
(MIPS). If we calltpi the throughput of corei, we have:

TP =
tp1 + tp2 + ... + tpN

N

We expressTPas a linear function of the variables we are trying
to find, namely the set of optimal voltage levels (v1, ..., vN) for the
cores. By definition,tpi = fi × ipci, wherefi is the frequency
of corei andipci is the IPC of the thread running oni. Now, fi

is largely a linear function ofvi — with parameters that depend on
the core used. Moreover, to a first approximation, we can assume
thatipci is not a function of the frequency. In reality, of course, the
IPC changes with frequency — mostly because of off-chip accesses.
However, we can neglect this dependence because the change in
a thread’s IPC as we vary frequency is typically smaller than the
change in IPC across threads. Consequently, we can writetpi =
aivi, whereai is a constant that depends on the thread and on the
core. We obtain, for a given assignment of threads to cores:

TP =
a1

N
v1 +

a2

N
v2 + ... +

aN

N
vN

wherev1..N are the set of voltages we are trying to find. Next,
we define the constraints of the optimization problem. Two trivial
sets of constraints are the upper and lower bounds on the values of
v1..N :

v1, v2, ...vN ≤ Vhigh and v1, v2, ...vN ≥ Vlow

Next, we define the main constraint, which specifies that the to-
tal CMP power is less thanPtarget. For this, we need to express the
total power of each corei as a linear function of supply voltage as
pi = bivi + ci, wherebi andci are both core- and thread-specific
constants. In reality, the total power of a core is clearly not a linear
function of supply voltage — dynamic power is quadratic in supply
voltage (or cubic, if we add the corresponding change in frequency)
and static power is more than linear. However, in practice, the solu-
tions that we obtain with this linear approximation are good. They

satisfy the power constraints with little slack and provide a per-
formance very close to that obtained with more time consuming,
non-linear formulations. This will be shown in Section 7.5.

Because of variation, we cannot generate thep = f(v) function
analytically. Instead, we experimentally measure the power of a
thread-core pair at three voltage levels, namelyVlow, Vhigh and
Vmid (the average of the two). Then, as shown in Figure 1, we find
the values of the constantsbi andci that minimize the differences
dErr for all three points.

dErr

dErr

dErr

Voltage

Power

Real

Linear approximation

Vlow Vmid Vhigh

Figure 1. Linear approximation of the power dependence on
voltage.

ThePtarget constraint equation can then be written as follows,
where all thec1..N constants are folded intoc:

b1v1 + b2v2 + ... + bNvN + c ≤ Ptarget

Finally, the last set of constraints specifies that the powerp1..N

of each core should be less thanPcoremax:

bivi + ci ≤ Pcoremax,∀i ∈ 1..N

There are several techniques for solving linear programming
problems. We choose the Simplex method [24] because it is rel-
atively straightforward to implement and, in practice, it is often fast
to compute.

The inputs toLinOptare the constantsa1..N , b1..N andc1..N , as
well as the power constraintsPtarget andPcoremax. In Section 5,
we show how we use profiling to compute these constants. The
output ofLinOpt is the best voltage for each core (v1, ..., vN).

4.3.2. Other Global Optimization Solutions

We also examine solving the optimization problem of Sec-
tion 4.3.1 using a non-linear algorithm. We choose simulated an-
nealing (SAnn) — a well-known probabilistic algorithm for solving
global optimization problems [17]. The goal ofSAnnis the same as
the one used withLinOpt: maximize throughput under power con-
straints. For a given mapping of threads to cores, the search space
of theSAnnalgorithm consists of all possible combinations of volt-
age levels (and their corresponding frequency levels) for each of the
cores.

Unlike LinOpt, SAnncomputes the power at each voltage level
accurately, without the linear approximation. This should allow
SAnnto generate a better solution. However, unlike linear pro-
gramming, simulated annealing may not find the global optimum

and, instead, produce a local optimum. In practice, the results of
Section 7 show thatSAnnproduces better results thanLinOpt. How-
ever,SAnnis orders of magnitude slower thanLinOpt, which makes
it impractical for on-line use.

5. System Implementation

Our target system is a CMP with many cores — 20 in our evalua-
tion. The algorithms for application scheduling and power manage-
ment of Section 4 are run by supervisor code. The power manage-
ment algorithm can be run by either a core or a Power Management
Unit (PMU) as in the Itanium II [22]. The application schedul-
ing and power management algorithms may use profile information
about core frequency and power, or application dynamic power and
IPC. In what follows, we briefly outline the frequency, voltage and
power control, and the profiling support.

5.1. Frequency, Voltage and Power Control

A CMP with per-core frequency control requires separate PLLs
to generate the clock signal for each core. These PLLs are con-
trolled independently. Moreover, there is a synchronization mech-
anism between the different frequency domains, such as FIFO
buffers. All this support is already present in AMD’s Quad-Core
Opteron [6].

To support per-core voltage control, the CMP needs per-core
power grids and voltage regulators that generate the different volt-
ages. Currently, such regulators are on the board, but new tech-
nologies will soon make it possible to place them on the processor
package or even on the die [16]. In this case, voltage transition
speeds will be orders of magnitude faster. In this paper, however,
we conservatively assume that the voltage and frequency transition
speeds are those of current systems such as Xscale [4].

To run a power management algorithm such asLinOpt, we need
on-chip sensors that provide power consumption information as in
Itanium II [22], on a per-core basis. If a PMU is used to run the
algorithm, a simple on-chip design like the controller in Itanium II
can be used. Such a design consumes less than 0.5W and takes up
less than 0.5% of the die area.

Figure 2 shows a timeline of the execution of the algorithms.
At every OS scheduling interval, the OS revisits its assignment
of threads to cores using one of the scheduling algorithms — for
instance,VarF&AppIPC. At more frequent intervals, e.g., every
10ms, theLinOptalgorithm runs and sets the cores to the best(V, f)
pairs.

OS scheduling interval

DVFS interval

time

LinOpt

10ms 20ms
...

Figure 2. Execution timeline for application scheduling and
LinOpt invocation.

Algorithm Profile Information Required

VarP For each core: static power consumption at the maximum voltage
VarP&AppP For each core: static power consumption at each voltage level

Sched. For each thread: dynamic power consumption while running on one random core
VarF For each core: maximum frequency supported at the maximum voltage
VarF&AppIPC For each core: maximum frequency supported at the maximum voltage

For each thread: IPC while running on one random core

Foxton* —
Power For each core: table of (voltage, frequency) pairs
Manag. LinOpt For each selected thread-core pair: IPC of the thread while running on the core

For each selected thread-core pair: total power at 3 (or 2) voltage levels

Table 3. Profile information needed for the application scheduling and power management algorithms.

5.2. Profiling Support

For the application scheduling and power management algo-
rithms to be effective, they need some profile information. Some of
this information is provided by the chip manufacturer, while other
is provided dynamically by sensors as applications execute. Ta-
ble 3 summarizes the profile information needed for each applica-
tion scheduling and power management algorithm.

For theVarP scheduling algorithm, we need, for each core, the
static power consumption at the maximum voltage. This is provided
by the manufacturer, who measures the power while keeping the
chip under zero load. Note that this is only an estimate of the actual
static power of the cores at run time because the static power is
heavily dependent on the temperature. However, it is good enough
because we are only interested in arankingof cores based on their
static power.

For theVarP&AppPalgorithm, we need, for each core, the static
power consumption ateachvoltage level (Table 3). The reason why
it is not enough to get the static power at only a single voltage will
be clear later. All these values are also provided by the manufac-
turer. In addition, we need, for each thread, the dynamic power it
consumes while running on one random core (Table 3). This infor-
mation is obtained by reading the power sensors in the core for a
given section of the thread’s execution. The measured power is the
total power, so we need to subtract the static power. Since the core
may be running at a voltage different than the maximum value, we
need to know the static power consumption at the current voltage
— hence the need for the previous information.

Note that each thread is profiled on a potentially different core.
To compare the resulting dynamic powers obtained, the power mea-
sured is scaled according to the frequency and voltage of the par-
ticular core used. We assume that the other factors that determine
the dynamic power are largely constant across cores. Again, these
measurements are good enough because we are only interested in a
ranking of threads based on their dynamic power.

The VarF algorithm needs, for each core, the maximum fre-
quency supported at the maximum voltage. This is provided by
the manufacturer.

The VarF&AppIPC algorithm additionally needs, for each
thread, the IPC it delivers while running on one random core (Ta-
ble 3). The IPC is obtained by reading simple performance coun-
ters in the core for a given section of the thread’s execution. Each
thread is profiled on a potentially different core. As indicated in
Section 4.3.1, we assume that the IPC changes negligibly with fre-
quency and voltage changes — although a correction could be made

based on the measured miss rate. We also assume that no other core
property affects the IPC. Again, we are only interested in a ranking
of threads based on their IPC.

We now consider the power management algorithms.Foxton*
needs no profile information.Linopt, as described in Section 4.3.1,
needs some additional information (Table 3). First, for each core, it
needs a table of (voltage, frequency) pairs. This table is supplied by
the manufacturer. Then, for each of the thread-core pairs selected
by the scheduling algorithm, we need the IPC of the thread while
running on the core. As indicated before, this is obtained dynam-
ically with performance counters and is assumed largely indepen-
dent of the frequency and voltage. With these two sets of values,
we can generate thea1..N constants of Section 4.3.1.

Finally, for each of the thread-core pairs selected by the schedul-
ing algorithm, we need the power consumed at three (or at the very
least two) voltages. This information allows us to generate a curve
like Figure 1 for each of the selected thread-core pairs, and then
generate theb1..N andc1..N constants of Section 4.3.1. This infor-
mation is obtained dynamically with power sensors in the cores.

Since the IPC and power of a thread-core pair changes with time,
IPC and power profiling is on all the time, and theLinoptalgorithm
is run periodically at short intervals. At longer intervals, we run the
scheduling algorithm, which may change the assignment of threads
to cores based on the new conditions. This is shown in Figure 2.

Note that, in all algorithms, the system continuously monitors
the total power and the per-core powers. These values are compared
to Ptarget andPcoremax, respectively.

6. Evaluation Methodology
We use the SESC cycle-accurate execution-driven simula-

tor [26] to model a large CMP with 20 2-issue out-of-order cores
on 32nm technology. Each core is like an Alpha 21264. Figure 3
shows the floorplan of the CMP and Table 4 summarizes the ar-
chitecture configuration. In the following, we discuss the different
parts of our infrastructure.

6.1. Variation Model Parameters

To model WID variation, we use the VARIUS model [30, 37] to
generateVth andLeff variation maps. We then superimpose these
maps on our floorplan as shown in Figure 3. This allows us to model
how variation affects core power and frequency.

Table 4 shows some of the process parameters used. There is
little public-domain information on likely values forVth σ/µ and
φ. For σ/µ, the 1999 ITRS [13] gave a design target of0.06 for

L2 Cache

L2 Cache

C1 C2

C6 C7

C11 C12

C16 C17

C3

C8

C13

C18

C4

C9

C14

C19

C5

C10

C15

C20
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

L2 Cache

L2 Cache

C1 C2

C6 C7

C11 C12

C16 C17

C3

C8

C13

C18

C4

C9

C14

C19

C5

C10

C15

C20

Figure 3. Floorplan of the 20-core CMP and superimposition of
a Vth variation map.

Overall: CMP with 20 out-of-order Alpha 21264-like procs.
Technology: 32nm, 4GHz (nominal)
Branch prediction: 4K-entry BTB, 7-cycle mispred. penalty
Core fetch/issue/commit width: 4/2/2
Register file size: 80 entry; Scheduler size: 20 fp, 40 int
Private data and instr. L1: 2-way 16K each; 2-cycle access
Shared L2: 8-way 8 MB; 8-12 cycle access
Cache line size: 64 bytes all
Memory access time: 400 cycles
Die size:340mm2; VDD: 0.6-1V (default is 1V)
Number of dies per experiment: 200
Vth: µ: 250mV at 60oC

σ/µ: 0.03-0.12 (default is 0.12)
φ (fraction of chip’s width): 0.5

Table 4. Summary of the architecture configuration.

year 2006 (although no solution existed); however, the projection
has been discontinued since 1999. Toyoda [38] presents a mea-
suredσ/µ = 0.07 for Vth in chips at130nm technology. In this
paper, we consider a range of values forVth’s σ/µ, namely 0.03–
0.12, and use as default 0.12. Moreover, we assume that the random
and systematic components have equal variances. Forφ, we use
Friedberg’set al. [8] measurement that the gate length had a corre-
lation range close to 0.5 of the chip’s width. Since the systematic
component ofVth’s variation directly depends on the gate length’s
variation, we setφ = 0.5 forVth.

Based on the 1999 ITRS [13], we setLeff’s σ/µ to 0.5 ofVth’s
σ/µ. Moreover, forLeff, we also assume that that the random and
systematic components have equal variances, and thatφ = 0.5.

Each individual experiment uses a batch of 200 chips that have
a differentVth (andLeff) map generated with the sameµ, σ, andφ.
To generate each map, we use the geoR statistical package [27] of
R [25]. We use a resolution of 1M points per chip.

6.2. Power and Temperature Model

To estimate power, we scale the results given by popular tools
using technology projections from ITRS [14]. Specifically, we
use SESC, which is augmented with dynamic power models from
Wattch [3] to estimate dynamic power at a reference technology
and frequency. In addition, we use HotLeakage [39] to estimate
leakage power at the same reference technology. Then, we obtain
ITRS’s scaling projections for the per-transistor dynamic power-
delay product, and for the per-transistor static power. With these
two factors, given that we keep the number of transistors constant

as we scale, we can estimate the dynamic and leakage power for the
scaled technology and frequency relative to the reference values.

We use HotSpot [31] to estimate on-chip temperatures. To do
so, we use the iterative approach of Suet al. [35]: the temperature
is estimated based on the current total power; the leakage power is
estimated based on the current temperature; and the leakage power
is included in the total power. This is repeated until convergence.

6.3. Critical Path Model

To determine how the frequency of the processors is affected by
variation, we need to model the structure and distribution of critical
paths in the processors. For this, we use the models in [30], which
include models for critical path distributions in pipeline stages with
logic and in stages with memory structures. The distribution of crit-
ical path delays for logic stages is obtained using experimental data
from Ernstet al. [7], who characterized a multiplier unit. For mem-
ory stages, [30] extends the model of Mukhopadhyayet al. [23] for
the access time of a 6-transistor SRAM cell, to include the time
to access the whole SRAM structure. With this model, we can es-
timate the frequency of the processors. We use CACTI 4.0 [36] to
estimate path layouts and wire delays, and the alpha-power law [29]
to compute gate delays.

6.4. Workloads

We evaluate our algorithms with a collection of applications
from SPECint (bzip2, crafty, gap, gzip, mcf, parser, twolf,and
vortex) and SPECfp (applu, apsi, art, equake, mgrid,andswim).
We use applications from this pool to construct multi-programmed
workloads that contain from 1 to 20 applications — where each
application runs on a different core. This approach to construct
workloads has been used elsewhere [12, 18]. Each experiment is
repeated 20 times; each time with a different set of applications.
We report the average outcome of the 20 trials.

We use the simulation points present in SESC to run the most
representative phases of each application. Each application runs
with the reference input set for about 12 billion instructions.

6.5. Optimization Algorithms

The LinOpt algorithm uses the Simplex method [24] to solve
the linear optimization problem. We use profile information as de-
scribed in Section 5.2 to generate all the constants required. To
approximate the power dependence on voltage as in Figure 1, we
measure the power at 1, 0.8, and 0.6V. In our experiments of Sec-
tion 7, we runLinOptevery 10ms.

For SAnn, we use the implementation of simulated annealing in
the R statistical package [25]. The goal ofSAnnis the same as
LinOpt: maximize throughput under power constraints. InSAnn,
the initial values of voltage and frequency for each core are deter-
mined using a simple greedy heuristic. The initial Annealing Tem-
perature (AT) is determined based on the complexity of the prob-
lem: for a large number of threads, more randomness is needed in
the initial search and, therefore, a higher value of the initial AT is
used. As the number of threads decreases, we use a lower initial
AT. At each AT, the next point in the solution space is generated
from a Gaussian Markov kernel with scale proportional to the cur-
rent AT. The algorithm automatically decreases the AT according to

a logarithmic cooling schedule. The algorithm stops after 1 million
function evaluations.

We use the results ofSAnnas an upper bound for whatLinOpt
can achieve. We therefore want to make sure thatSAnnproduces
a solution as close to the optimal one as possible. Consequently,
we tune the constants inSAnnby comparing its results, for several
configurations, to anexhaustive searchthrough the solution space.
Since the exhaustive search is very time consuming, we can only
perform it for configurations of up to 4 threads. In all these cases,
theSAnnthroughput results are within 1% of those for the exhaus-
tive search.

6.6. Metrics

In our evaluation, we use the following metrics: total power
(which includes the static and dynamic powers of processors, L1
caches, and the L2 cache), average frequency of the active cores,
throughput (measured in millions of instructions per second or
MIPS), and the energy delay-square product (ED2). We also give
the weighted throughput [32], which uses the weighted IPCs of the
applications. The weighted IPC of an application is computed as the
application’s IPC normalized to the application’s IPC at reference
conditions. This metric gives equal weight to all the applications
when measuring total system throughput.

7. Evaluation

We begin by examining the effect of process variation on
core-to-core variation in power and frequency. Next, we evalu-
ate the variation-aware algorithms for application scheduling and
power management of Table 1 for theUniFreq, NUniFreq, and
NUniFreq+DVFSconfigurations.

7.1. Variation Effects on Power and Frequency

To examine the potential of variation-aware algorithms, we mea-
sure the core-to-core variation. For a given die, we successively run
all of our applications on a given core and compute the average
power consumed by the core (which includes the L1 caches) per
application. We repeat the experiment for all the cores. Then, we
compute the ratio between the power consumed by the most power-
consuming core to the power of the least power-consuming core.
Figure 4(a) shows the resulting ratio for all the 200 dies in the form
of a histogram. We see that, in most of the dies, there is 40-70%
variation in total power. The average is around 53%.

We now examine core-to-core frequency variation. Since cir-
cuit delay increases with temperature, we measure the frequency of
each core at the maximum temperature that any application reaches,
which we measure to be around 95oC. Then, for each die, we com-
pute the ratio between the frequencies of the fastest and the slowest
cores. Figure 4(b) shows the resulting ratio for all the 200 dies in
the form of a histogram. We see that, in most of the dies, there is
20-50% variation in core frequency. The average is around 33%.

Figure 5 shows how the average ratio between maximum and
minimum core power (a) and frequency (b) changes with differ-
ent values ofVth σ/µ. As expected, the core-to-core variation in
both power and frequency increases with largerσ/µ. Even for a
small σ/µ=0.06, the variation is very significant. Consequently,
variation-aware algorithms for application scheduling and power
management have good potential.

Relative power

N
um

be
r

of
 d

ie
s

1.4 1.5 1.6 1.7

0
5

10
15

(a)
Relative frequency

N
um

be
r

of
 d

ie
s

1.20 1.30 1.40 1.50

0
5

10
15

(b)

Figure 4. Histograms of the ratio between the powers consumed
by the most and least power-consuming cores in the die (a) and
between the frequencies of the fastest and slowest cores in the
die (b).

0.03 0.06 0.09 0.12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Po
w

er
 ra

tio

(a)

0.03 0.06 0.09 0.12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Fr
eq

ue
nc

y
ra

tio

(b)

σ/μ σ/μ

Figure 5. Average ratio between the maximum and minimum
core power (a) and core frequency (b) for different values of Vth
σ/µ, for 200 dies.

Due to variation, two different cores may achieve the same fre-
quency at different voltage levels and with very different power
costs. Moreover, the relative power efficiency of the two cores can
change with the frequency. All this variation makes the job of a
global power management scheme very challenging. As an illustra-
tion, we consider one sample die and identify the highest-frequency
core (which we callMaxF) and the lowest-frequency one (which
we callMinF). We run thebzip2application and, as we change the
voltage levels, we measure the core power.

The result is shown in Figure 6. The figure shows the core power
as a function of the frequency. Each core has a curve, where the dots
represent voltage levels changing from 1V (top right) to 0.6V (bot-
tom left). Power and frequency axes are normalized to the values
for MaxF at 1V. The figure shows that, say, a 0.8 frequency can
be obtained byMaxF at 0.7V or byMinF at 1V — butMaxF con-
sumes less power. The figure also shows that, for frequencies below
0.74,MinF is more power efficient, while above that,MaxF is more
efficient.

7.2. Application Power and IPC

Application scheduling and power management algorithms also
leverage the fact that applications have a varied behavior. For ex-
ample, Table 5 shows, for each of our applications, the average dy-
namic power of the core (which includes the L1 cache) at 4GHz
and 1V, and the average IPC. From the table, we see that there is
significant variation in both dynamic power (up to 2.9×) and IPC
(up to 12×) across applications.

applu apsi art bzip2 crafty equake gap gzip mcf mgrid parser swim twolf vortex

Dynamic
power (W) 4.3 1.6 2.4 3.7 3.9 2.1 3.5 2.7 1.5 2.2 2.8 2.2 2.3 4.4
IPC 1.1 0.1 0.2 1.1 1.1 0.3 1.0 0.7 0.1 0.4 0.7 0.3 0.4 1.2

Table 5. Average dynamic power of the core at 4GHz and 1V, and IPC for the applications used.

●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
6

0.
8

1.
0

Frequency

C
or

e
po

w
er

●

●

●

●

●
●

●
●

●

● MaxF core at Vdd=0.6−1V
MinF core at Vdd=0.6−1V

1V

0.8V

0.7V

0.9V

0.6V

1V

0.6V

Figure 6. Core power as a function of frequency for the highest-
and lowest-frequency cores in a sample die.

7.3. UniFreq: Uniform Frequency & No DVFS

The first configuration we evaluate is one with all the cores run-
ning at the same frequency and no DVFS. Figure 7(a) shows the to-
tal power consumed in theRandom, VarPandVarP&AppPschedul-
ing algorithms of Table 1, as we vary the number of threads in the
workload. For a given number of threads, the bars are normalized
to Random. Note that the cores that are not used are assumed to be
powered off.

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

P
ow

er

(a)

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random VarP VarP&AppP

(b)

Figure 7. Total power consumption (a) and ED2 (b) relative to
Randomin UniFreq.

Focusing onVarP, we see that for a lightly-loaded system, the
savings in power are substantial — around 10% for 4 threads in the
system. As the system load increases and more threads have to be
scheduled, the power savings decrease. This is because more of the
high-power cores need to be included in the scheduling pool. For
full utilization (20 threads),VarPshows no power improvement.

VarP&AppPconsumes the same power asVarP. The power av-
eraging effect sought withVarP&AppPis not significant enough to
reduce the temperature noticeably and, therefore, reduce the leak-
age power.

Figure 7(b) shows theED2 of the system for the different
scheduling algorithms. SinceVarP and VarP&AppP reduce the

power at no cost in frequency, theED2 reduction is largely the
same as the power reduction in Figure 7(a).

7.4. NUniFreq: Non-Uniform Frequency & No
DVFS

NUniFreq allows each core to run at its maximum frequency.
It can be shown that, under full occupancy (i.e., 20 threads), this
increases the average core frequency by about 15% overUniFreq
and increases the average power consumption by 10%. This in turn
causes an average reduction inED2 of almost 20% for our applica-
tions. In what follows, we examine how variation-aware scheduling
can further improve on these gains.

We start by evaluating algorithms to minimize power, namely
VarP andVarP&AppP. Figures 8(a)–(b) are similar to 7(a)–(b) for
NUniFreq. Figure 8(a) shows that the savings due toVarP and
VarP&AppPare 14% for 4 threads. They decrease for more threads.

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

P
ow

er

(a)

2 4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random VarP VarP&AppP

(b)

Figure 8. Total power consumption (a) and ED2 (b) relative to
Randomin NUniFreq.

Figure 8(b) shows that these algorithms reduceED2 less than
they did in 7(b). This is because inNUniFreq, different cores have
different frequencies andVarP andVarP&AppP, by selecting the
least-consuming cores, they may also end up selecting the lower-
frequency ones, thus hurtingED2.

We now consider algorithms to maximize performance, namely
VarF andVarF&AppIPC (Table 1). Figure 9(a) shows the average
frequency at which the threads run, normalized to that ofRandom.
Recall thatVarF andVarF&AppIPC select the same set of cores;
therefore, their bars are the same. The figure shows thatVarF in-
creases the average frequency by 10% overRandomfor 4 threads.
The frequency improvements decrease as the number of threads in-
creases.

The benefits ofVarF&AppIPC are apparent in Figure 9(b),
which shows the average throughput in millions of instructions
per second (MIPS) relative toRandom. By scheduling high-IPC
threads on high-frequency cores,VarF&AppIPC consistently de-
livers a higher throughput. Specifically, the throughput is 5–10%
higher thanRandom. VarF, on the other hand, only delivers im-

2 4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

F
re

qu
en

cy

(a)

2 4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

Random VarF VarF&AppIPC

(b)

Figure 9. Average frequency (a) and average throughput (b)
relative to Randomin NUniFreq.

provements for lightly-loaded systems — for the 20-thread config-
uration, it effectively works asRandom.

Finally, Figure 10 showsED2 for the same algorithms. For
lightly-loaded systems (4 threads or less), the higher throughputs
of VarF and VarF&AppIPC come at the cost of a higherED2.
This is because the high-frequency cores selected dissipate more
power, and the increase in throughput does not compensate. How-
ever, under higher loads (8 to 20 threads),VarF&AppIPC has
a substantially lowerED2 than Randomor VarF. Specifically,
VarF&AppIPC’s ED2 is 10–13% lower thanRandom’s. The rea-
son is thatVarF&AppIPC increases the throughput substantially.

2 4 8 16 20

Number of threads

0.5

0.7

0.9

1.1

E
D

^2

Random
VarF
VarF&AppIPC

Figure 10. ED2 relative to Randomin NUniFreq.

7.5. NUniFreq+DVFS: Non-Uniform Frequency &
DVFS

For NUniFreq+DVFS, we evaluate the algorithms in Table 1
that maximize performance at a given power budget, namelyRan-
dom+Foxton*, VarF&AppIPC+Foxton*, VarF&AppIPC+LinOpt,
and VarF&AppIPC+SAnn. We evaluate them under three Power
Environments:Low Power, Cost-Performance, andHigh Perfor-
mance. In these environments, thePtarget when 20 threads are
active is set to 50W, 75W, and 100W, respectively. When there are
fewer threads,Ptarget is scaled down proportionally.

Figure 11(a) shows the average throughput of all the algorithms
normalized toRandom+Foxton*, in the Cost-PerformancePower
Environment. We show results for different loads on the system,
ranging from 4 to 20 threads. We see thatVarF&AppIPC+Foxton*
only improves the average throughput by 4–6% for different num-
bers of threads. However,VarF&AppIPC+LinOpt is much more
effective at boosting throughput. Specifically, it improves the aver-
age throughput by 12–17%. Moreover, its throughput is very close
to that of VarF&AppIPC+SAnn. Indeed,VarF&AppIPC+SAnn’s
throughput is only 2% higher. This is despite the fact that

VarF&AppIPC+SAnnis orders of magnitude more costly in com-
putation time.

4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

(a)

4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

E
D

^2

Random+Foxton*
VarF&AppIPC+Foxton*

VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

(b)

Figure 11. Average throughput (a) and ED2 (b) for different al-
gorithms relative to Random+Foxton*in the Cost-Performance
Power Environment.

Figure 11(b) shows theED2 for the same experiment. We
see thatVarF&AppIPC+LinOpt reducesED2 by 30–38%. This
is a very remarkable reduction, and is very close to that of
VarF&AppIPC+SAnn.

We now compare the three Power Environments. Figure 12
shows the average throughput of the algorithms normalized toRan-
dom+Foxton* in the three Power Environments. All experiments
are for 20-thread runs. We can see that the relative through-
put gains ofVarF&AppIPC+LinOpt are highest when the power
target is low. The same is true for the other algorithms. For
VarF&AppIPC+LinOpt, the average throughput gains in theLow
Power, Cost-Performance, andHigh Performanceenvironments are
16%, 12% and 11%, respectively.

50W 75W 100W

Power target

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

M
IP

S

Random+Foxton*
VarF&AppIPC+Foxton*
VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

Figure 12. Average throughput for different algorithms relative to
Random+Foxton*in the three Power Environments. All experi-
ments are for 20-thread runs.

Finally, we examine the impact of the algorithms on weighted
throughput. This metric uses normalized IPC for each application
and, therefore, is fairer to applications with low intrinsic IPC. Our
algorithms improve throughput by adapting to IPC changes within
each application — speeding up high-IPC sections and slowing
down (and therefore saving power in) low-IPC sections.

Figure 13 shows the same experiments as Figure 11 but with
weighted throughput as the optimization goal. We can see that the
two figures are very similar, except for slightly smaller through-
put improvements andED2 reductions in Figure 13. For example,

VarF&AppIPC+LinOpt improves the weighted throughput by 9–
14% and reducesED2 by 24–33% — rather than by 12–17% and
30–38%, respectively, in Figure 11.

4 8 16 20

Number of threads

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

W
ei

gh
te

d
M

IP
S

(a)

4 8 16 20

Number of threads

0.5

0.6

0.7

0.8

0.9

1.0

W
ei

gh
te

d
E

D
^2

Random+Foxton*
VarF&AppIPC+Foxton*

VarF&AppIPC+LinOpt
VarF&AppIPC+SAnn

(b)

Figure 13. Average weighted throughput (a) and weighted ED2

(b) for different algorithms relative to Random+Foxton*in the
Cost-PerformancePower Environment.

7.5.1. LinOpt Granularity

How often we runLinOpt impacts our ability to keep the sys-
tem power close toPtarget. Specifically, if we use long intervals
betweenLinOpt runs, the power consumed is likely to deviate more
from Ptarget than if we use short intervals. Figure 14 considers dif-
ferent interval durations and measures the deviation between power
consumed andPtarget. Deviation is measured as follows. At every
ms, the average power consumed in the past 1ms is compared to
Ptarget and the absolute difference is recorded. Then, all the val-
ues recorded in the interval between twoLinOpt runs are averaged
out and plotted in Figure 14. The figure includes lines for 20- and
4-thread runs.

2s 1s 500ms 100ms 10ms

Time interval

0

5

10

15

20

P
er

ce
nt

ag
e

de
vi

at
io

n
(%

)

4 threads
20 threads

Figure 14. Average deviation of power consumption from
Ptarget for different intervals between LinOpt runs.

Figure 14 shows that, as we decrease the interval between
LinOpt runs, the power deviation decreases. For the 10ms-intervals
that we use in our experiments, the deviation is less than 1%.

7.5.2. LinOpt Execution Time

The Simplex method used to solveLinOpt is generally very fast.
The algorithm involves a variable number of steps, where the com-
putation time of each step is affected by the size of the problem
(the number of threads that are scheduled) and the number of con-
straints. Figure 15 shows the execution time of the algorithm on a
4GHz processor like the one considered in this paper. The figure

shows data for different numbers of running threads and the differ-
ent Power Environments.

1 2 4 8 16 20

Number of threads

0

2

4

6

T
im

e
(m

ic
ro

se
co

nd
s)

High Performance
Cost-Performance
Low Power

Figure 15. Execution time of the LinOpt algorithm for different
numbers of threads in the three Power Environments.

The figure shows that the execution time increases with the num-
ber of threads. Moreover, it also increases as we go to less power-
constrained environments such asHigh Performance. This is be-
cause a less strict environment increases the search space, making
it harder to find a solution. Overall, the longest running time is 6µs.
Since we runLinOptevery 10ms, the overhead is negligible.

8. Conclusions and Future Work

As a result of within-die process variation, individual cores in a
CMP differ substantially in both static power consumed and max-
imum frequency supported. This paper showed that these effects
can be leveraged with variation-aware algorithms for application
scheduling and power management.

This paper proposed variation-aware scheduling algorithms to
save power or improve throughput, and variation-aware power-
management DVFS algorithms to maximize throughput at a given
power budget. One such power-management algorithm, called
LinOpt, uses linear programming to find the best voltage and fre-
quency levels for each of the cores in the CMP.LinOpt runs on-
line periodically, using profile information provided by the chip
manufacturer and by on-chip power and IPC sensors. In a 20-
core CMP, the combination of variation-aware application schedul-
ing andLinOpt increased the average throughput by 12–17% and
reduced the averageED2 by 30–38% — all relative to using
variation-aware scheduling together with a simple extension to Fox-
ton’s power management algorithm. Moreover,LinOpt’s through-
put was within 2% of that of a simulated annealing algorithm, which
had a computation time orders of magnitude higher.

We are working on several extensions to this work. One is to en-
hance our scheduling and power management algorithms with the
additional goal of keeping the temperature of the CMP as uniform
as possible. This can be achieved through aggressive migration of
applications from active to inactive cores as in [9], and through
temperature-aware mapping of applications to cores and assignment
of (V,f) pairs. The result is likely to be fewer hot spots and lower
power consumption, but it comes at the cost of increased complex-
ity of the algorithms.

A second extension involves understanding how our variation-
aware algorithms affect CMP wearout. Finally, we are also extend-
ing the work by analyzing the impact of the algorithms on parallel
applications.

References

[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of
performance asymmetry in emerging multicore architectures,” inIn-
ternational Symposium on Computer Architecture, June 2005.

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and
V. De, “Parameter variations and impact on circuits and microarchi-
tecture,” inDesign Automation Conference, June 2003.

[3] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” inInternational
Symposium on Computer Architecture, June 2000.

[4] L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus,
M. Morrow, K. Velarde, and M. Yarch, “An embedded 32-b micro-
processor core for low-power and high-performance applications,” in
Journal of Solid-State Circuits, November 2001.

[5] J. Donald and M. Martonosi, “Power efficiency for variation-tolerant
multicore processors,” inInternational Symposium on Low Power
Electronics and Design, October 2006.

[6] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,
M. Braganza, S. Meyers, E. Fang, and R. Kumar, “An integrated quad-
core Opteron processor,” inInternational Solid State Circuits Confer-
ence, February 2007.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” inInterna-
tional Symposium on Microarchitecture, December 2003.

[8] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos,
“Modeling within-die spatial correlation effects for process-design co-
optimization,” inInternational Symposium on Quality Electronic De-
sign, March 2005.

[9] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through
activity migration,” in International Symposium on Low Power Elec-
tronics and Design, August 2003.

[10] S. Herbert and D. Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,” inInternational Sym-
posium on Low Power Electronics and Design, August 2007.

[11] E. Humenay, D. Tarjan, and K. Skadron, “The impact of system-
atic process variations on symmetrical performance in chip multi-
processors,” inDesign, Automation and Test in Europe, April 2007.

[12] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management poli-
cies: Maximizing performance for a given power budget,” inInterna-
tional Symposium on Microarchitecture, December 2006.

[13] “International Technology Roadmap for Semiconductors (1999).”
[14] “International Technology Roadmap for Semiconductors (2006 Up-

date).”
[15] I. Kadayif, M. Kandemir, and I. Kolcu, “Exploiting processor work-

load heterogeneity for reducing energy consumption in chip multipro-
cessors,” inDesign, Automation and Test in Europe, February 2004.

[16] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analy-
sis of fast, per-core DVFS using on-chip switching regulators,” inIn-
ternational Symposium on High-Performance Computer Architecture,
February 2008.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” inScience, May 1983.

[18] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” inInternational Symposium on Microar-
chitecture, December 2003.

[19] J. Li and J. Mart́ınez, “Dynamic power-performance adaptation of par-
allel computation on chip multiprocessors,” inInternational Sympo-
sium on High-Performance Computer Architecture, February 2006.

[20] X. Liang and D. Brooks, “Mitigating the impact of process variations
on processor register files and execution units,” inInternational Sym-
posium on Microarchitecture, December 2006.

[21] D. Marculescu and E. Talpes, “Variability and energy awareness: A
microarchitecture-level perspective,” inDesign Automation Confer-
ence, June 2005.

[22] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican,
W. H. Parks, and S. Naffziger, “Power and temperature control on
a 90-nm Itanium family processor,”Journal of Solid-State Circuits,
January 2006.

[23] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of SRAM array for yield enhance-
ment in nanoscaled CMOS,”Transactions on Computer-Aided De-
sign, vol. 24, no. 12, 2005.

[24] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing. New York,
NY, USA: Cambridge University Press, 1988.

[25] R Development Core Team,R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, 2006.
http://www.R-project.org.

[26] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. Sarangi, P. Sack, and P. Montesinos, “SESC Simula-
tor,” January 2005. http://sesc.sourceforge.net.

[27] P. Ribeiro Jr. and P. Diggle, “geoR: A package for geostatistical anal-
ysis,” R-NEWS, vol. 1, no. 2, 2001.

[28] B. F. Romanescu, S. Ozev, and D. J. Sorin, “Quantifying the impact
of process variability on microprocessor behavior,” inWorkshop on
Architectural Reliability, December 2006.

[29] T. Sakurai and R. Newton, “Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas,”Journal of
Solid-State Circuits, April 1990.

[30] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas, “VARIUS: A model of process variation and resulting
timing errors for microarchitects,” inIEEE Transactions on Semicon-
ductor Manufacturing, February 2008.

[31] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan, “Temperature-aware microarchitecture,” in
International Symposium on Computer Architecture, June 2003.

[32] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a simul-
taneous multithreaded processor,” inArchitectural Support for Pro-
gramming Languages and Operating Systems, November 2000.

[33] K. Srinivasan and K. S. Chatha, “Integer linear programming and
heuristic techniques for system-level low power scheduling on mul-
tiprocessor architectures under throughput constraints,”Integration
VLSI, vol. 40, no. 3, 2007.

[34] K. Stavrou and P. Trancoso, “Thermal-aware scheduling: A solution
for future chip multiprocessors’ thermal problems,” inEUROMICRO
Conference on Digital System Design, 2006.

[35] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage
estimation considering power supply and temperature variations,” in
International Symposium on Low Power Electronics and Design, Au-
gust 2003.

[36] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” Tech. Rep.
HPL-2006-86, HP Labs, 2006.

[37] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating
parameter variation with dynamic fine-grain body biasing,” inInter-
national Symposium on Microarchitecture, December 2007.

[38] E. Toyoda, “DFM: Device and circuit design challenges,” inInterna-
tional Forum on Semiconductor Technology, February 2004.

[39] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“HotLeakage: A temperature-aware model of subthreshold and gate
leakage for architects,” Tech. Rep. CS-2003-05, University of Vir-
ginia, March 2003.

