Variation-Aware Application Scheduling
and Power Management for Chip Multiprocessors

Radu Teodorescu and Josep Torrellas
Department of Computer Science
University of lllinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

Abstract cores have the same properties. Instead, if DVFS is applied in a

. . .per-core manner, fully aware of the heterogeneity of the cor -
Within-die process variation causes individual cores in a Chi er-core manner, fully aware of the heterogeneity of the cores, sub

Multiprocessor (CMP) to differ substantially in both static power talntlally TorT cotit-e:fec':lvelwork;ng p0|r.1t? can be Obtade' i
consumed and maximum frequency supported. In this environ- hnderlt_as iNg)(; € technology O: vana |on-a_/lvabrle a:opdlcadlon
ment, ignoring variation effects when scheduling applications o?f]_ Fj'[. u;ng an_ r?_ower manag(_etmen 'Z novxi a\I/Ial a e.h n ?ﬁ » SO
when managing power with Dynamic Voltage and Frequency Sce{i)- |s’|ca €don-chip power monifors and Controflers such as those in
ing (DVFS) is suboptimal. ntel’s Foxton technology [22] can be used to measure and manage
. L the power heterogeneity of the cores. Moreover, the ability to sup-
This paper proposes variation-aware algorithms for application : : .
/ ort multiple on-chip frequency domains and change the frequency
scheduling and power management. One such power mana & ; . \
. . . .) each core independently as in AMD’s Quad-Core Opteron [6]
ment algorithm, called.inOpt, uses linear programming to find . .
. .can be used to exploit the frequency heterogeneity of the cores.
the best voltage and frequency levels for each of the cores in the . . .)
In this paper, we propose simple, variation-aware algorithms for

CMP — maximizing throughput at a given power budget. In a 20- licati heduling in a CMP t . th h
core CMP, the combination of variation-aware application schequftPpiication scheduling in a 0 Save power orimprove trougn-
t. Moreover, we complement these algorithms with variation-

ing andLinOpt increases the average throughput by 12-17% arft! . o
reduces the averageD? by 30-38% — all relative to using aware power-management DVFS algorithms to maximize through-

variation-aware scheduling together with a simple extension to Ir?-Ut_at agven power budge@. One such pqwer-ma_magement al-
tel's Foxton power management algorithm. gorithm, calledLinOpt, uses linear programming to fln_d the best
voltage and frequency levels for each of the cores in the CMP.
1. Introduction LinOptruns on-line periodically, using profile information provided
by the chip manufacturer and by on-chip power and IPC sensors.
As integrated-circuit technology continues to scale, proceds a 20-core CMP, the combination of variation-aware application
variation — the divergence of process parameters from their noraeheduling and.inOpt increases the average throughput by 12—
inal specifications — is becoming an issue that cannot be ignordd@% and reduces the averagiD? by 30-38% — all relative to
at the architecture and system levels. Indeed, variation has majesing variation-aware scheduling together with a simple extension
implications, such as increased leakage power consumption in thie Foxton'’s power management algorithm. MoreovanOpts
chips and limited processor frequency improvements [2]. throughput is within 2% of that of a simulated annealing algorithm,
In the context of Chip Multiprocessors (CMP), within-die pro-which has a computation time orders of magnitude higher.
cess variation in current and near-future technologies causes in- This paper is organized as follows. Section 2 describes related
dividual cores in the chip to differ substantially in the amount ofwork; Section 3 gives background on process variation; Sections 4
power that they consume and in the maximum frequency that theyd 5 describe the scheduling and power management algorithms;
can support. This effect, which has been reported elsewhere [13gctions 6 and 7 evaluate them; and Section 8 concludes.
and will be confirmed in this paper, suggests that it is no longer
accurate to think of large CMPs as homogeneous systems. 2. Related Work
In these environments, it is suboptimal to schedule applications

. . - . L .~ The contributions of this paper are related to several areas of
ignoring variation effects. Instead, if applications are scheduled in . S
work, which we consider in turn.

a variation-aware manner, taking into account the different power, . .
and frequency characteristics of each individual core, substant%f”‘ndIIng Core-To-Core Process Variation. Humenayet al. [11]

savings in power or large increases in throughput are attainabfgo "€ Process variation in a CMP and point out the core-to-core
ariation in frequency. They estimate the maximum difference in

Similarly, it is suboptimal to perform power management based ol i : .
h . . re frequencies to be approximately 20%. They suggest Adaptive
Dynamic Voltage and Frequency Scaling (DVFS) assuming that ody Bias (ABB) and Adaptive Supply Voltage (ASV) to reduce

* This work was supported by the National Science Foundation under grari@me of this variation — at the cost of increasing power variation.

CCR-0325603 and CNS-0720593, and by SRC GRC under grant 2007-HOheir work is complementary to ours. Donald and Martonosi [5]

1592. Radu Teodorescu was supported by an Intel PhD Fellowship. also examine process variation in a CMP and focus on the core-to-
core variation in power. They suggest turning off cores that con-
sume power in excess of a certain computed value, with the goal of

maximizing the chip-wide performance/power ratio. We combinergy. Designs similar to these will enable wide use of core-level
application scheduling and global DVFS power management. DVFS.
Scheduling for Heterogeneous Architectures. Balakrishnanet Given the importance of power, power management control is
al. [1] study how heterogeneous CMPs impact parallel workload&n area of high interest. Perhaps the most sophisticated design is
They suggest fine-granularity threading as a solution for alleviatingitel's Foxton technology [22], which has been implemented in the
the performance instability caused by heterogeneous CMPs. Kundégnium Il processor. Foxton is a control system that maximizes
et al.[18] propose a CMP with different-complexity cores and thePerformance while staying within target power and temperature.
same ISA. The goal is to reduce power consumption by using tHeconsists of power and temperature sensors, and a small on-chip
simpler, more power-efficient cores to run memory-bound app”cdlardware controller. If the power consumption is less than the tar-
tions. They schedule applications to cores based on application IL¥2t, the controller increases the core voltage — and the frequency
and adapt to phase changes within an application. Our work consi@/lows. The opposite occurs if the power is over the target. Both
ers design-identical cores that are affected by variation. Since v#€res in the Itanium Il have the same voltage and frequency.
do not know beforehand the power and frequency of each core, thi . s
information is obtained post-manufacturing and is unique to eagf' BaCkground' Process Variation
CMP. Process variation refers to changes in transistor parameters be-
Scheduling for Power Management.Li and Martinez [19] opti- yond their nominal values, and results from manufacturing diffi-
mize a parallel workload running on a CMP by dynamically changeulties in very small feature technologies [2]. For the purposes of
ing the number of active processors and the voltage and frequenmypdeling and analysis, variation is generally broken down into die-
levels at which the CMP runs. They apply DVFS chip-wide ratheto-die (D2D) and within-die (WID). WID variation can be further
than independently per core, which reduces the flexibility and individed into systematic and random effects. In this work, we focus
pact of the optimization. Kadayét al.[15] enable embedded sys- on WID variation, which has a direct effect on core-to-core varia-
tems to exploit the heterogeneity of workloads. Specifically, thetion in power and frequency within a CMP.
use the compiler to assign different voltages and frequencies to dif- Several transistor parameters are affected by variation. Of
ferent processors depending on the characteristics of the workloagy importance are the threshold voltadgn] and the effective

Isci et al. [12] consider a 4-core CMP with core-level DVFS 9ate length Leg). These parameters directly impact a transistor’s
(i.e., the voltage and frequency levels are changed independen@yitching speed and leakage power. The higherlfgeand Leff
in each core). They examine different DVFS policies for high pervariation is, the higher the variation in transistor speed across the
formance and for power efficiency. Their solutions are primarily¢hip is. This typically results in slow processors, since the slower
based on the exhaustive search of the solution space. Becausd'@psistors end up determining the frequency of the whole proces-
this, the solutions are not scalable to large systems. In this pap&fr- In @ CMP, the result is that different cores support different
we consider a large CMP with process variation. As a result, bof€quencies. Also, a¥y, varies, transistor leakage varies across
application scheduling and power management have to be variatidh€ chip. However, lowk, transistors consume more power than

aware. Moreover, given the large design space, we need to usefd@h-Vin transistors save. As a result, with variation, chips con-
intelligent way to prune the design space. sume substantially more leakage power. In a CMP, different cores

Herbert and Marculescu [10] examine the tradeoffs of using diil-eak d_n‘ferent amounts.
ferent DVFS granularities (i.e., the number of cores in the same Chip manufacturers hardly release any measurements on process

voltage-frequency domain). They find that having a small numbé’f’mat'on for current or future technologies. As a result, we rely on

of cores per domain produces the most complexity-effective desig t_atlstlcal moo!els of variation (e.g., [11, 20, 2.1’ 28, 30, 37]) driven
. y values projected by the ITRS [14]. In this paper, we use the

Other re_se_ar_chers like He@: al. [9] and Stavrou and Trar_1- VARIUS model [30, 37], which we briefly summarize here.
coso [34] minimize power de_nsny_ or temperature hot spots by judi- To model systematic variation, the chip is divided into a grid.
ciously scheduling jobs or migrating them from core to core. Each grid point is given one value of the systematic component of

In embedded systems, linear programming has been usedtif parameter — assumed to have a normal distributionpith0
solve the problem of scheduling tasks on CMPs [33]. The gog|ng standard deviation,,.. Systematic variation is also character-
is to minimize power while meeting strict timing constraints. Oulzeq by a spatial correlation, so that adjacent areas on a chip have
optimization approach is different, since we do not have timing CONughly the same systematic component values. The spatial cor-
strains. Moreover, due to variation, our cores are heterogeneousg|ation between two pointg and 7 is expressed ag(r), where
Core-Level DVFS and Power Controllers. State-of-the-art pro- r = |Z — 4]. To determine how(r) changes fromp(0) = 1
cessor chips often have multiple voltages — for example, giving p(co) = 0 asr increases, the spherical function is used. The
memory arrays a slightly higher voltage than the core for reliabilitylistance at which the function converges to zero is when there is
reasons. However, the first general-purpose CMP to support a fomo significant correlation between two transistors. Such distance is
of core-level DVFS is the AMD Quad-Core Opteron [6]. In thiscalled.
chip, the frequency of each core can be set independently, although Random variation occurs at the level of individual transistors. It
all cores have the same voltage. Currently, multiple on-chip volis modeled analytically with a normal distribution with= 0 and
ages are provided by off-chip voltage regulators, which are bulkgtandard deviatiow ... Since the random and systematic com-
and costly. Recent work by Kirat al. [16] describes designs of ponents are normally distributed and independent, their effects are
on-chip regulators. They are able to perform voltage changes &uditive, and the totat is /02, + 02,5. In the model,V}, and
nanoseconds rather than in microseconds, and consume little dng have different values aof.

[Algorithms to Minimize Power |

Random Map threads on cores randomly
VarP Map threads randomly on cores with lowest static power
VarP&AppP Map threads with highest dynamic power on cores with lowest static power

I Algorithms to Maximize Performance |
Random Map threads on cores randomly
VarF Map threads randomly on cores with highest frequency
VarF&AppIPC Map threads with highest IPC on cores with highest frequency

I Algorithms to Maximize Performance at a Power Budg@t.{y.:) |
Random+Foxton* Map threads on cores randomly and reducgf;) of cores round robin to meé?.q, g+
VarF&ApplPC+Foxton* | Map threads on cores witarF&ApplPCand reducel(, f;) of cores round robin to meét.q,ge:
VarF&AppIPC+LInOpt | Map threads on cores wilarF&ApplPCand usd.inOptto meetP;qrget
VarF&AppIPC+SAnn Map threads on cores wilarF&AppIPCand useSAnNnto meetP,q,get

Table 1. Algorithms for application scheduling and power management.

4. Application Scheduling and Power Manage- the goal of the scheduler is to minimize the power consumption at
ment under Process Variation the given frequency.
.) . . The top part of Table 1 shows three possible algorithms that the
In an _enwronment with process variation, each processor N &heduler can use in this configuration to minimize poweR&n-
CMP typlcally consumes a different amo_unt of power and can SURfom threads are mapped on cores randomly. This is our baseline.
pprt a different maximum frt_aqu_ency. Given that the core-to-cor_ﬁq VarP, the cores are ranked by their static power consumption
differences can be substantial, it makes sense to schedule appllﬁzgfn lowest to highest. Then, tHéthreads are randomly mapped
tions and perform power management as if the variation-al"fectqﬂ1 the topN cores (one thread per core). Finally,\arP&AppP
cMP W?S a hgterogeneous system.) o in addition to ranking the cores as before, the threads are ranked
In this environment, there are two high-level design issues (Tgyy their dynamic power consumption from highest to lowest. Then,
ble 2). The first is whether the different cores of the CMP havgye highest-power threads are mapped on the lowest-power cores.
to cycle at the same frequency (Uniform Frequency) or not (Nonrpe intuition is to “even out” the power consumption across cores,
Uniform Frequency). The second is whether the frequency ang,oiding hot spots. Because of the exponential dependence of leak-
voltage of the cores can be changed dynamically (DVFS) or n@fye on temperature, keeping the power consumption (and tempera-
(No DVFS). For these configurations, we present a set of simp[gre) as uniform as possible saves power.
variation-aware algorithms for application scheduling and power The configuration in Table 2 where the frequency is uniform

management, aimed at minimizing power or n_1aximizing Perforan g there is DVFS is calledniFreq+DVFS It is a generalization
mance. Note that the sc_hedu!lng_ algorithms are intended to Co_mp@’UniFreq, where the goal is now to maximize performance at a
ment the other scheduling criteria used by the OS, such as prlor@ven power budget. We can use the same scheduling algorithms as
fairness, or starvation-avoidance. In the following, we assume thfﬂ UniFreq— e.g., mapping the threads with the highest dynamic
the number of threads is less than or equal to the number of Coreﬁower on the cores with the lowest static power — and then reduce
- - the frequency and voltage until the power budget is met. Since most
I [Uniform Frequency | Non-Uniform Frequency] aspects of this configuration are covered in the other configurations,

No Name:UniFreq Name:NUniFreq we do not consider it further in this paper.
DVFS || — Minimize Power — Minimize Power)]
— Maximize Perform. 4.2. NUniFreq: Non-Uniform Frequency & No
Name:UniFreq+DVFS | Name:NUniFreq+DVFS DVFS
DVFS || —Maximize Perform. | —Maximize Perform. .) . .
at a Power Budget at a Power Budget In the NUniFreq configuration (Table 2), different cores run at

different frequencies — the highest that each supports. However,
frequencies do not change dynamically. In this configuration, two
simple scheduling goals are to minimize power or to maximize per-
formance.

To minimize power, we use théarP or VarP&AppPalgorithms
discussed in the previous section. To maximize performance, we
4.1 UniFreq: Uniform Frequency & No DVES use the algorithms in the middle of Table 1.\farF, the cores are

ranked by the maximum frequency they support, from highest to

In this configuration, although different cores support differentowest. Then, th&l threads are randomly mapped on thelkbqores
maximum frequencies, all cores run at the frequency of the slowe&ine thread per core). MarF&AppIPC, in addition to ranking the
one. Moreover, frequency does not change dynamically. We calbres as before, the threads are ranked by their average IPC from
this configuratioriJniFreq (Table 2). The only inter-core variation highest to lowest. Then, the highest-IPC threads are mapped on
is in power consumption. Since all cores run at the same frequendlie highest-frequency cores. The intuition is that low-IPC threads

Table 2. CMP configurations for application scheduling and
power management under variation.

typically benefit less from high frequency — because they are oftettependent variables, , ..., zx, maximize the objective function:
memory-bound.

4.3. NUniFreg+DVFS: Non-Uniform Frequency &
DVFS subject toN primary constraintg; > 0,22 > 0,...,zxy > 0 and

. to any number of additional constraints of the form:
In this configuration, different cores run at different frequencies

and pVFS can bg applied independently to gach core. We call this bizy + boo + ... + byzn +b < B
configurationNUniFreq+DVFS(Table 2). In this configuration, the

most obvious optimization goal is to maximize performance at #herea: v, b1..~, b and B are problem-specific constants.

given power budget. Given the complexity of this environment, The problem we want to optimize is the following. Given a set
where the algorithms for scheduling and for power managemegt n coresC:._n that can each run a/ different voltage levels
interact, a global optimization solution is required. Vi..u (each with its corresponding frequency), find the best selec-

The lower part of Table 1 shows possible algorithms to maxtion of voltage levelsi, ..., vn) for coresCi. n that maximizes
imize performance at the target power. To simplify the problemhe average throughpuT®) subject to the following constraints:
we construct each algorithm in two steps. First, we select one ¢ the total chip power is less thaR,,.: and (i) the power of
the scheduling algorithms that maximizes performanéR or each core is less thaP.o,cmaz.

VarF&AppIPC), to map the threads to cores. Then, we use a power we would like to express this problem as a linear optimization

management algorithm to find the best,(f;) pair for each active problem. To do this, we need to make sure that the objective func-
corei, that maximizes overall performance while keeping the totaon as well as all the constraint inequalities are linear functions.
power no higher thawarge:. This requires some approximation.

Because of the non-linear dependence of powe¥pand the We start with the objective function, which is the average
exponential size of the search space, finding the optimal solution taroughput TP, measured in millions of instructions per second
the second part of the problem is very expensive. Previous solutio(IPS). If we calltp; the throughput of corg we have:
that have looked at global optimization of DVFS on CMPs [12]
have used aexhaustivesearch through the solution space. This Tp_ WLttt .. +ipN
is feasible only for very small systems and does not scale. For a N
system like the one we evaluate (a 20-core CMP with many per- We expres3P as a linear function of the variables we are trying
core voltage-frequency pairs), exhaustive search is too expensivao find, namely the set of optimal voltage levels (..., vy) for the

Our approach is to reduce the problem to a linear optimizatiooores. By definitiontp; = f; x ipc;, wheref; is the frequency
problem, and then use linear programming [24] to solve it. Wef corei andipc; is the IPC of the thread running an Now, f;
call our algorithmLinOpt. Moreover, we also compateénOptto a s largely a linear function of; — with parameters that depend on
more complex non-linear algorithm based on simulated annealirige core used. Moreover, to a first approximation, we can assume
(SAnn, which provides a solution that is very close to the optimathatipc; is not a function of the frequency. In reality, of course, the
one. IPC changes with frequency — mostly because of off-chip accesses.

Overall, we examine the following algorithms (Table 1)Ran- However, we can neglect this dependence because the change in
dom+Foxton* we map threads on cores randomly. Then, fron@ thread’'s IPC as we vary frequency is typically smaller than the
among the active cores, we select one core at a time in a rourghange in IPC across threads. Consequently, we can tyrite-
robin manner, and reduce that corelg,(f;) one step. We stop aivi, wherea; is a constant that depends on the thread and on the
when the chip-wideP;.,4.; constraint is satisfied and a per-corecore. We obtain, for a given assignment of threads to cores:
power constraint B.oremaz) iS Satisfied for all cores. This power

; : . . ax a2 an
management algorithm is the simplest one, and a small extension TP = N + N2 + ...+ NN
over the one implemented by the Foxton controller in the Itanium

Il [22] — where the two cores have the same (V,f) pair. We usé/herevi n are the set of voltages we are trying to find. Next,
Random-+Foxton‘as our baseline algorithm. we define the constraints of the optimization problem. Two trivial

In the other algorithms, we map threads on cores usin@ets of constraints are the upper and lower bounds on the values of

VarF&AppIPC and then use different power management algo?-~*
rithms to set thel(;,f:) pair for each active core Specifically,
we consideNarF&AppIPC+Foxton* VarF&ApplPC+LinOpt and 01,02, N < Viigh and vy, vz, .08 2 View
VarF&ApplPC+SAnn To be effective, botiinOptandSAnnhave Next, we define the main constraint, which specifies that the to-
the same goal as théarF&AppIPC scheduling algorithm, namely (4] cMp power is less thaf,a,qe:. For this, we need to express the
to maximize performance. In the following, we presentitieOpt tota| power of each coreas a linear function of supply voltage as
andSAnnalgorithms. pi = biv; + ¢;, whereb; andc¢; are both core- and thread-specific
constants. In reality, the total power of a core is clearly not a linear
function of supply voltage — dynamic power is quadratic in supply
voltage (or cubic, if we add the corresponding change in frequency)
Linear programming [24] is a mathematical technique for solvand static power is more than linear. However, in practice, the solu-
ing linear optimization problems of the following form: fé&¥ in- tions that we obtain with this linear approximation are good. They

g =ai1r1 +a2x2 + ... + ANTN

4.3.1. LinOpt: Power Management Using Linear Pro-
gramming

satisfy the power constraints with little slack and provide a perand, instead, produce a local optimum. In practice, the results of

formance very close to that obtained with more time consumingection 7 show tha&8 Annproduces better results theimOpt How-

non-linear formulations. This will be shown in Section 7.5. ever,SAnnis orders of magnitude slower thamOpt, which makes
Because of variation, we cannot generatertke f(v) function it impractical for on-line use.

analytically. Instead, we experimentally measure the power of a

thread-core pair at three voltage levels, namiély,, Viion and 5. System Implementation

Vmia (the average of the two). Then, as shown in Figure 1, we find

the values of the constanis andc; that minimize the differences ~ Our target system is a CMP with many cores — 20 in our evalua-

dErr for all three points. tion. The algorithms for application scheduling and power manage-
ment of Section 4 are run by supervisor code. The power manage-
Power A ment algorithm can be run by either a core or a Power Management

Unit (PMU) as in the Itanium Il [22]. The application schedul-
ing and power management algorithms may use profile information
about core frequency and power, or application dynamic power and
IPC. In what follows, we briefly outline the frequency, voltage and
power control, and the profiling support.

Linear approximation

Real

5.1. Frequency, Voltage and Power Control

A CMP with per-core frequency control requires separate PLLs
> to generate the clock signal for each core. These PLLs are con-
mid Vhigh Voltage trolled independently. Moreover, there is a synchronization mech-

anism between the different frequency domains, such as FIFO

Figure 1. Linear approximation of the power dependence on buffers. All this support is already present in AMD’s Quad-Core

voltage. Opteron [6].

To support per-core voltage control, the CMP needs per-core
spower grids and voltage regulators that generate the different volt-
ages. Currently, such regulators are on the board, but new tech-
nologies will soon make it possible to place them on the processor
package or even on the die [16]. In this case, voltage transition
speeds will be orders of magnitude faster. In this paper, however,
Finally, the last set of constraints specifies that the pgwexr we conservatively assume that the voltage and frequency transition

Vlow v

The Pi.rg4e: CONstraint equation can then be written as follow:
where all thec; ..y constants are folded int©

bl’l}l + bg’Ug + ..+ vaN +c S Pta'rget

of each core should be less thBrcmaq: speeds are those of current systems such as Xscale [4].
To run a power management algorithm sucl.ia®©pt, we need
bivi + ¢i < Peoremaz, Vi € 1..N on-chip sensors that provide power consumption information as in

anium 1l [22], on a per-core basis. If a PMU is used to run the

There are several techniques for solving linear programminlé| ith imol hio desian like th troller in Itanium II
problems. We choose the Simplex method [24] because it is re rgorithm, a simpie on-chip design fike the controtier in flanium

atively straightforward to implement and, in practice, it is often fasran be used.o Such a d93|gn consumes less than 0.5W and takes up
to compute. ess than 0.5% of the die area.

The inputs td_inOptare the constants,.. 7, b1y andcy..v, as Figure 2 shows a timeline of the execution of the algorithms.
well as the power constraint o, ge: and Proremas. In Section 5, At every OS scheduling interval, the OS revisits its assignment
we show how we use profiling to compute these constants. Tid threads to cores using one of the scheduling algorithms — for

output ofLinOptis the best voltage for each core (..., vx). instance,VarF&AppIPC. At more frequent intervals, e.g., every
10ms, theLinOptalgorithm runs and sets the cores to the &S)
4.3.2. Other Global Optimization Solutions pairs.

We also examine solving the optimization problem of Sec-
tion 4.3.1 using a non-linear algorithm. We choose simulated an- LinOpt

nealing SAnr) — a well-known probabilistic algorithm for solving
global optimization problems [17]. The goal 8Annis the same as
1 1 1 [l »

the one used withinOpt maximize throughput under power con-

T
10ms 20ms time

straints. For a given mapping of threads to cores, the search space [

of the SAnnalgorithm consists of all possible combinations of volt- DVFS interval

age levels (and their corresponding frequency levels) for each of the 08 scheduling interval
cores.

Unlike LinOpt, SAnncomputes the power at each voltage level
accurately, without the linear approximation. This should allow
SAnnto generate a better solution. However, unlike linear pro-
gramming, simulated annealing may not find the global optimum

Figure 2. Execution timeline for application scheduling and
LinOptinvocation.

I Algorithm [Profile Information Required |

VarP For each core: static power consumption at the maximum voltage
VarP&AppP For each core: static power consumption at each voltage level

Sched. For each thread: dynamic power consumption while running on one randomny|core
VarF For each core: maximum frequency supported at the maximum voltage

VarF&AppIPC || For each core: maximum frequency supported at the maximum voltage
For each thread: IPC while running on one random core

Foxton* —

Power For each core: table of (voltage, frequency) pairs
Manag. | LinOpt For each selected thread-core pair: IPC of the thread while running on the cpre
For each selected thread-core pair: total power at 3 (or 2) voltage levels

Table 3. Profile information needed for the application scheduling and power management algorithms.

5.2. Profiling Support based on the measured miss rate. We also assume that no other core

o . roperty affects the IPC. Again, we are only interested in a ranking
For the application scheduling and power management alg(g)ff threads based on their IPC.

rithms to be effective, they need some profile information. Some o . .
L o . . . We now consider the power management algorithiscton*
this information is provided by the chip manufacturer, while other

is provided dynamically by sensors as applications execute. Trg_eeds no profile informatiorLinopt, as described in Section 4.3.1,

ble 3 summarizes the profile information needed for each applicgEaeds some additional information (Table 3). First, for each core, it

tion scheduling and power management algorithm. needs a table of (voltage, frequency) pairs. This table is supplied by

For theVarP scheduling algorithm. we need. for each core. th the manufacturer. Then, for each of the thread-core pairs selected

. fing aig N ’ L ' %y the scheduling algorithm, we need the IPC of the thread while
static power consumption at the maximum voltage. This is prowderunning on the core. As indicated before, this is obtained dynam-
by the manufacturer, who measures the power while keeping the) '

. L . ically with performance counters and is assumed largely indepen-
chip under zero load. Note that this is only an estimate of the actugcelamyof thepfrequency and voltage. With these two sgetsyof vaIFL)Jes

static power of the cores at run time because the static power 'Se can generate the _x constants of Section 4.3.1.

heavily dependent on_the tempe_ratur_e. However, it is good en_oué\fq Finally, for each of the thread-core pairs selected by the schedul-
because we are only interested iraaking of cores based on their . .
ing algorithm, we need the power consumed at three (or at the very

Sta:lcfﬁlwsr'rp&A Palaorithm. we need. for h core. the stati least two) voltages. This information allows us to generate a curve
ortheva ppralgo - Weneed, foreach core, the stalig, Figure 1 for each of the selected thread-core pairs, and then

power consumption atachvoltage level (Table 3). The reason why_ enerate thé;. x andc:..y constants of Section 4.3.1. This infor-

itis not enough to get the static power at only a single voltage wi ation is obtained dynamically with power sensors in the cores.

be clear later. All these values are also provided by the manufac- Since the IPC and power of a thread-core pair changes with time,

turer. In addition, we need, for each thread, the dynamic power I'bC and power profiling is on all the time, and thioptalgorithm

consumes while running on one random core (Table 3). This infor- iodicall hort i | | . | h
mation is obtained by reading the power sensors in the core forlsarun periodica yats OrF Intervals. Atlonger |nt§rva S, we run the
iven section of the thread’s execution. The measured power is t %heduhng algorithm, which may change the assignment of threads
g ution. ured p 0 cores based on the new conditions. This is shown in Figure 2.

total power, sowe need to suptract the static POwWer. Since the core Note that, in all algorithms, the system continuously monitors
may be running at a voltage different than the maximum value, e total power and the per-core powers. These values are compared
need to know the static power consumption at the current voltaqu andP respectivel '
— hence the need for the previous information. target coremaz, [€SP Y-
Note that each thread is profiled on a potentially different coreg, Evaluation Methodology
To compare the resulting dynamic powers obtained, the power mea-
sured is scaled according to the frequency and voltage of the par- We use the SESC cycle-accurate execution-driven simula-
ticular core used. We assume that the other factors that determfig& [26] to model a large CMP with 20 2-issue out-of-order cores
the dynamic power are largely constant across cores. Again, the@@ 32nm technology. Each core is like an Alpha 21264. Figure 3
measurements are good enough because we are only interested$h@ws the floorplan of the CMP and Table 4 summarizes the ar-
ranking of threads based on their dynamic power. chitecture configuration. In the following, we discuss the different
The VarF algorithm needs, for each core, the maximum frefarts of our infrastructure.
?huee;cgni?;)gﬁ:;er.d at the maximum voltage. This is provided bé.l. Variation Model Parameters
The VarF&ApplIPC algorithm additionally needs, for each To model WID variation, we use the VARIUS model [30, 37] to
thread, the IPC it delivers while running on one random core (Tageneraté/y, and Leg variation maps. We then superimpose these
ble 3). The IPC is obtained by reading simple performance coumaaps on our floorplan as shown in Figure 3. This allows us to model
ters in the core for a given section of the thread’s execution. Eadtow variation affects core power and frequency.
thread is profiled on a potentially different core. As indicated in Table 4 shows some of the process parameters used. There is
Section 4.3.1, we assume that the IPC changes negligibly with fréttle public-domain information on likely values fdry, o/p and
quency and voltage changes — although a correction could be magle For /11, the 1999 ITRS [13] gave a design targetOof6 for

ci|cefcafcafocs ci|cafcafcsfocs as we scale, we can estimate the dynamic and leakage power for the
scaled technology and frequency relative to the reference values.

L2 Cache L2 Cache i .
We use HotSpot [31] to estimate on-chip temperatures. To do
C6 | C7|C8]Co|cio c7 'w C8 | Co | c10 so, we use the iterative approach of &uwal.[35]: the temperature
Ci1 | C12| C13 | C14 | C15 ci2[cizfciafcis is estimated based on the current total power; the leakage power is
L2 Cache . .es.tlmated pased on the current t'er.nperature; and.the leakage power
y is included in the total power. This is repeated until convergence.
ci6 | c17]| cis | c19 | c20 c1e|m ci8 | c19 | c20

6.3. Critical Path Model

Figure 3. Floorplan of the 20-core CMP and superimposition of

a Vi, variation map. To determine how the frequency of the processors is affected by

variation, we need to model the structure and distribution of critical
paths in the processors. For this, we use the models in [30], which

Overall: CMP with 20 out-of-order Alpha 21264-like prock. include models for critical path distributions in pipeline stages with
Technology: 32nm, 4GHz (nominal) logic and in stages with memory structures. The distribution of crit-
Branch prediction: 4K-entry BTB, 7-cycle mispred. penalty ical path delays for logic stages is obtained using experimental data
Core fetch/issue/commit width: 4/2/2 from Ernstet al.[7], who characterized a multiplier unit. For mem-
Register file size: 80 entry; Scheduler size: 20 fp, 40 int ory stages, [30] extends the model of Mukhopadhgtel. [23] for
Private data and instr. L1: 2-way 16K each; 2-cycle access the access time of a 6-transistor SRAM cell, to include the time
Shared L2: 8-way 8 MB; 8-12 cycle access to access the whole SRAM structure. With this model, we can es-
Cache line size: 64 bytes all timate the frequency of the processors. We use CACTI 4.0 [36] to
Memory access time: 400 cycles estimate path layouts and wire delays, and the alpha-power law [29]
Die size:340mm?; Vpp: 0.6-1V (defaultis 1V) to compute gate delays.
Number of dies per experiment: 200
Viny: 12 250mV at 66°C 6.4. Workloads
o/ 0.Q3-O.12 (dfafaglt |s.0.12) We evaluate our algorithms with a collection of applications
¢ (fraction of chip's width): 0.5 from SPECint bzip2, crafty, gap, gzip, mcf, parser, twodnd

Table 4. Summary of the architecture configuration. vorteX) and SPECfpdpplu, apsi, art, equake, mgri&nd swim).

)) ~_ We use applications from this pool to construct multi-programmed
year 2006 (glthou.gh no golutlon existed); however, the projectioforkioads that contain from 1 to 20 applications — where each
has been discontinued since 1999. Toyoda [38] presents a Me@pjication runs on a different core. This approach to construct
suredo /pu = 0.07 for Vi in chips atl30nm technology. In this \yorkloads has been used elsewhere [12, 18]. Each experiment is
paper, we consider a range of values ¥g's o/, namely 0.03— repeated 20 times; each time with a different set of applications.
0.12, and use as default 0.12. Moreover, we assume that the randgga report the average outcome of the 20 trials.
and systematic components have equal variances.¢fae use We use the simulation points present in SESC to run the most

Frl_edberg'set al.[8] measurement t_h‘,""t th_e gate _Iength had a Corre_r'epresentative phases of each application. Each application runs
lation range close to 05 of the chip’s width. Since the systemaliGiih the reference input set for about 12 billion instructions.
component ofl,’s variation directly depends on the gate length’s
variation, we sep = 0.5 for Vi, 6.5. Optimization Algorithms

Based on the 1999 ITRS [13], we getg's o/p 10 0.5 of Viy's)))
o /1. Moreover, forLeg, we also assume that that the random and The LinOpt algorithm uses the Simplex method [24] to solve
systematic components have equal variances, andth@t5. the linear optimization problem. We use profile information as de-

Each individual experiment uses a batch of 200 chips that ha\%mbed_ in Section 5.2 to generate all the constant_s re_quwed. To
a differentVy, (andLegr) map generated with the sameo, and. approximate the power dependence on voltage as in Figure 1, we
To generate each map, we use the geoR statistical package [27] gasure the power at 1, 0.8, and 0.6V. In our experiments of Sec-

R [25]. We use a resolution of 1M points per chip. ion 7, we runLanptever.y 10ms.)] o
For SAnn we use the implementation of simulated annealing in

6.2. Power and Temperature Model the R statistical package [25]. The goal ®Annis the same as
LinOpt maximize throughput under power constraints. SIAnn

To estimate power, we scale the results given by popular tootke initial values of voltage and frequency for each core are deter-
using technology projections from ITRS [14]. Specifically, wemined using a simple greedy heuristic. The initial Annealing Tem-
use SESC, which is augmented with dynamic power models froperature (AT) is determined based on the complexity of the prob-
Wattch [3] to estimate dynamic power at a reference technologgm: for a large number of threads, more randomness is needed in
and frequency. In addition, we use HotLeakage [39] to estimatie initial search and, therefore, a higher value of the initial AT is
leakage power at the same reference technology. Then, we obtaged. As the number of threads decreases, we use a lower initial
ITRS’s scaling projections for the per-transistor dynamic powerAT. At each AT, the next point in the solution space is generated
delay product, and for the per-transistor static power. With thefeom a Gaussian Markov kernel with scale proportional to the cur-
two factors, given that we keep the number of transistors constarnt AT. The algorithm automatically decreases the AT according to

15

a logarithmic cooling schedule. The algorithm stops after 1 million
function evaluations.

We use the results @Annas an upper bound for whatnOpt
can achieve. We therefore want to make sure Sfatnproduces
a solution as close to the optimal one as possible. Consequent
we tune the constants BAnnby comparing its results, for several
configurations, to aexhaustive searcthrough the solution space. ° T 1 L
Since the exhaustive search is very time consuming, we can only 41516 17 120 130 140 150
perform it for configurations of up to 4 threads. In all these cases, Relative power Relative frequency
the SAnnthroughput results are within 1% of those for the exhaus- @ ©
tive search.

10
10 15

Number of dies

Smber of dies

Figure 4. Histograms of the ratio between the powers consumed
6.6. Metrics by the most and least power-consuming cores in the die (a) and
between the frequencies of the fastest and slowest cores in the
In our evaluation, we use the following metrics: total power die (b).
(which includes the static and dynamic powers of processors, L1
caches, and the L2 cache), average frequency of the active cores,

throughput (measured in millions of instructions per second or 1:2 o 1:2

MIPS), and the energy delay-square produgD(). We also give %]:4 ‘S;]:“

the weighted throughput [32], which uses the weighted IPCs of the 3 1. 81.0

applications. The weighted IPC of an application is computed as the n?_, 8;2 %8:2

application’s IPC normalized to the application’s IPC at reference 0.4 i 0.4

conditions. This metric gives equal weight to all the applications 0'0 ‘ ‘ ‘ ‘ 0'0 ‘ ‘ ‘ ‘

when measuring total system throughput. 0.03 0.06 0.09 0.12 0.03 0.06 0.09 0.12
o/u o/u

7. Evaluation (@) ()

We begin by examining the effect of process variation on Figure 5. Average ratio between the maximum and minimum

core-to-core variation in power and frequency. Next, we evalu- .
- . L . core power (a) and core frequency (b) for different values of Vi,
ate the variation-aware algorithms for application scheduling and o/ 1, for 200 dies

power management of Table 1 for théiFreq, NUniFreq and
NUniFreq+DVFSconfigurations.

o Due to variation, two different cores may achieve the same fre-
7.1. Variation Effects on Power and Frequency quency at different voltage levels and with very different power

To examine the potential of variation-aware algorithms, we med&0sts. Moreover, the relative power efficiency of the two cores can

sure the core-to-core variation. For a given die, we successively rgiange with the frequency. All this variation makes the job of a
all of our applications on a given core and compute the avera .obal power management scheme very challenging. As an illustra-

power consumed by the core (which includes the L1 caches) pb™ We gonsider one sample die and identify the highest-freqqency
application. We repeat the experiment for all the cores. Then, wgPreé (which we calMaxF) and the lowest-frequency one (which
compute the ratio between the power consumed by the most pow¥f€ callMinF). We run thebzip2application and, as we change the
consuming core to the power of the least power-consuming coré?!t@ge levels, we measure the core power.
Figure 4(a) shows the resulting ratio for all the 200 dies in the form The resultis shown in Figure 6. The figure shows the core power
of a histogram. We see that, in most of the dies, there is 40-708 @ function of the frequency. Each core has a curve, where the dots
variation in total power. The average is around 53%. represent voltage levels changing from 1V (top right) to 0.6V (bot-
We now examine core-to-core frequency variation. Since citom left). Power and frequency axes are normalized to the values
cuit delay increases with temperature, we measure the frequency/®f MaxF at 1V. The figure shows that, say, a 0.8 frequency can
each core at the maximum temperature that any application reach@§,0btained bjMaxF at 0.7V or byMinF at 1V — butMaxF con-
which we measure to be around¥5. Then, for each die, we com- SUMes less power. The figure also shows that, for frequencies below
pute the ratio between the frequencies of the fastest and the slowBgf4-MinF is more power efficient, while above thiaxFis more
cores. Figure 4(b) shows the resulting ratio for all the 200 dies ifficient.
the form of a histogram. We see that, in most of the dies, there
20-50% variation in core frequency. The average is around 33%.
Figure 5 shows how the average ratio between maximum and Application scheduling and power management algorithms also
minimum core power (a) and frequency (b) changes with diffedeverage the fact that applications have a varied behavior. For ex-
ent values ofi, o/u. As expected, the core-to-core variation inample, Table 5 shows, for each of our applications, the average dy-
both power and frequency increases with larg¢r. Even for a namic power of the core (which includes the L1 cache) at 4GHz
small o /1=0.06, the variation is very significant. Consequentlyand 1V, and the average IPC. From the table, we see that there is
variation-aware algorithms for application scheduling and powesignificant variation in both dynamic power (up to 2pand IPC
management have good potential. (up to 12x) across applications.

$2. Application Power and IPC

I | applu [apsi| art | bzip2 | crafty [equake| gap | gzip | mcf | mgrid | parser| swim [twolf | vortex |

Dynamic
power (W) || 4.3 16 | 24| 37 3.9 2.1 35| 27 | 15 2.2 2.8 2.2 2.3 4.4
IPC 1.1 01|02 11 11 0.3 10| 0.7 | 0.1 0.4 0.7 0.3 0.4 1.2
Table 5. Average dynamic power of the core at 4GHz and 1V, and IPC for the applications used.
2 % power at no cost in frequency, tH8D? reduction is largely the
. e m%XFFC%%Gaatt%ddd==£ée_‘11\y - same as the power reduction in Figure 7(a).
5 2 -
g °] 7.4. NUniFreq: Non-Uniform Frequency & No
° o DVFS
8 [}
7 NUniFreq allows each core to run at its maximum frequency.
. It can be shown that, under full occupancy (i.e., 20 threads), this
\ \ \ \ \ \ \ increases the average core frequency by about 15%Udwigireq
04 05 06 07 08 089 10 and increases the average power consumption by 10%. This in turn
Frequency causes an average reductiorfi* of almost 20% for our applica-
tions. In what follows, we examine how variation-aware scheduling
Figure 6. Core power as a function of frequency for the highest- can further improve on these gains.
and lowest-frequency cores in a sample die. We start by evaluating algorithms to minimize power, namely
)) VarP andVarP&AppP. Figures 8(a)—(b) are similar to 7(a)—(b) for
7.3. UniFreq: Uniform Frequency & No DVFS NUniFreq Figure 8(a) shows that the savings dueVarP and

)) . . . VarP&AppPare 14% for 4 threads. They decrease for more threads.
The first configuration we evaluate is one with all the cores run-

ning at the same frequency and no DVFS. Figure 7(a) shows the to-
tal power consumed in tfiRandomVarP andVarP&AppPschedul-

[® Random P2 VarP [VarP&AppP |

ing algorithms of Table 1, as we vary the number of threads in the 1 ‘ ‘ ‘
workload. For a given number of threads, the bars are normalized 0.9 / / ‘ ‘ /1N /
to Random Note that the cores that are not used are assumed to bg 0.8 ; ‘ ‘ ‘ ‘ ‘ ‘
powered off. Eor| / / / / /¥
./ / / VYV VU

\ M Random P4 VarP [VarP&AppP \ 05 ‘ ‘ : ‘ ‘ ‘ ‘

T2 4 8 16 20 2 4 8 16 20
Number of threads Number of threads

(@) (b)

Figure 8. Total power consumption (a) and ED? (b) relative to
Randomin NUniFreq

/
/
/
/
/
y

AW\ NNNY
ACASCACVAWN\CNNNE
AW\ \WNWNAY
ACASAAWNWNNWNNNAYN

/
/
/
/
/
/
4

ISESAS AW\ N\

4 8 16 20

8 16 20
Number of threads Number of threads

(@) (b)

Figure 8(b) shows that these algorithms redfi®? less than
they did in 7(b). This is because MUniFreq, different cores have
different frequencies andarP and VarP&AppP, by selecting the

Figure 7. Total power consumption (a) and ED? (b) relative to least-consuming cores, they n21ay also end up selecting the lower-
Randomin UniFreg, frequency ones, thus hurtifgD~.
We now consider algorithms to maximize performance, namely
VarF andVarF&ApplIPC (Table 1). Figure 9(a) shows the average

Focusing orvarP, we see that for a lightly-loaded system, thegrequency at which the threads run, normalized to thaafidom
savings in power are substantial — around 10% for 4 threads in th€ca)| thatvark and VarF&AppIPC select the same set of cores;
system. As the system load increases and more threads have tqmefore, their bars are the same. The figure showsvera in-
scheduled, the power savings decrease. This is because more of the;ses the average frequency by 10% &a@ndontor 4 threads.
high-power cores need to be included in the scheduling pool. Feihe frequency improvements decrease as the number of threads in-
full utilization (20 threads)yarP shows no power improvement. reases.

VarP&AppPconsumes the same powené&sP. The power av- The benefits ofVarF&AppIPC are apparent in Figure 9(b),
eraging effect sought witllarP&AppPis not significant enough to \which shows the average throughput in millions of instructions
reduce the temperature noticeably and, therefore, reduce the Ieglgq second (MIPS) relative tRandom By scheduling high-IPC
age power. threads on high-frequency corééarF&AppIPC consistently de-

Figure 7(b) shows theZD? of the system for the different livers a higher throughput. Specifically, the throughput is 5-10%
scheduling algorithms. SincéarP and VarP&AppP reduce the higher thanRandom VarF, on the other hand, only delivers im-

[m Random P2 VarF [] VarF&AppIPC |

1.2 1.2
1.1 : 1.1
Z10 W 1.0
097 o9
0.8 : So0s8
L 0.7 ‘ 0.7

4

2

N AN\ NWN\W\TY
AN CNCNCWN\TN

16
Number of threads

(CY

20

8
Number of threads

(b)

16 20

Figure 9. Average frequency (a) and average throughput (b)
relative to Randomin NUniFreq

VarF&AppIPC+SAnnis orders of magnitude more costly in com-
putation time.

B Random+Foxton* O VarF&AppIPC+LinOpt
¥4 VarF&ApplPC+Foxton* NN VarF&ApplPC+SAnn

> AN\ NWNWAY

Number of threads

(@)

Number of threads

(b)

provements for lightly-loaded systems — for the 20-thread config- Figure 11. Average throughput () and ED? (b) for different al-

uration, it effectively works aRandom
Finally, Figure 10 showsZD? for the same algorithms. For

gorithms relative to Random-+Foxtonin the Cost-Performance
Power Environment.

lightly-loaded systems (4 threads or less), the higher throughputs

of VarF and VarF&ApplPC come at the cost of a highdt D2,

This is because the high-frequency cores selected dissipate more
power, and the increase in throughput does not compensate. Howe thatvarF&ApplP

ever, under higher loads (8 to 20 threadsarF&AppIPC has
a substantially lowerED? than Randomor VarF. Specifically,
VarF&AppIPCs ED? is 10-13% lower thaRandon's. The rea-
son is thavvarF&ApplPCincreases the throughput substantially.

1.1
0.9
a
w
0.7 H Random
Vi VarF
05 | O VarF&ApplIPC

2 4 8 16

Number of threads

20

Figure 10. ED? relative to Randomin NUniFreq

7.5. NUniFreg+DVFS: Non-Uniform Frequency &
DVFS

For NUniFreq+DVFS we evaluate the algorithms in Table 1
that maximize performance at a given power budget, naiRaly
dom+Foxton* VarF&ApplPC+Foxton* VarF&ApplPC+LinOpt

and VarF&AppIPC+SAnn We evaluate them under three Power

Environments:Low Power Cost-Performanceand High Perfor-
mance In these environments, the,.,.. when 20 threads are

Figure 11(b) shows thé& D? for the same experiment. We
C+LinOpt reducesED? by 30-38%. This

is a very remarkable reduction, and is very close to that of
VarF&AppIPC+SAnn

We now compare the three Power Environments. Figure 12
shows the average throughput of the algorithms normaliz&ahte
dom+Foxton*in the three Power Environments. All experiments
are for 20-thread runs. We can see that the relative through-
put gains ofVarF&AppIPC+LinOpt are highest when the power
target is low. The same is true for the other algorithms. For
VarF&AppIPC+LinOpt the average throughput gains in thew
Power, Cost-PerformanceandHigh Performancenvironments are
16%, 12% and 11%, respectively.

M Random-+Foxton*

¥i VarF&ApplPC+Foxton*
[0 VarF&AppIPC+LinOpt
N VarF&AppIPC+SAnn

75W
Power target

Figure 12. Average throughput for different algorithms relative to
Random+Foxtonin the three Power Environments. All experi-
ments are for 20-thread runs.

active is set to 50W, 75W, and 100W, respectively. When there are

fewer threadsP;qr4e: iS scaled down proportionally.

Figure 11(a) shows the average throughput of all the algorithms Finally, we examine the impact of the algorithms on weighted

normalized toRandom+Foxton* in the Cost-Performancéower

throughput. This metric uses normalized IPC for each application

Environment. We show results for different loads on the systen@;nd, therefore, is fairer to applications with low intrinsic IPC. Our

ranging from 4 to 20 threads. We see tWatF&ApplPC+Foxton*

algorithms improve throughput by adapting to IPC changes within

only improves the average throughput by 4-6% for different numgach application — speeding up high-IPC sections and slowing

bers of threads. HoweveYarF&AppIPC+LinOptis much more

effective at boosting throughput. Specifically, it improves the aver-

down (and therefore saving power in) low-IPC sections.
Figure 13 shows the same experiments as Figure 11 but with

age throughput by 12-17%. Moreover, its throughput is very closgeighted throughput as the optimization goal. We can see that the

to that of VarF&AppIPC+SAnn Indeed,VarF&ApplIPC+SAnrs
throughput is only 2% higher.

two figures are very similar, except for slightly smaller through-
This is despite the fact thaputimprovements an& D? reductions in Figure 13. For example,

VarF&AppIPC+LinOptimproves the weighted throughput by 9—shows data for different numbers of running threads and the differ-
14% and reduce& D? by 24-33% — rather than by 12-17% andent Power Environments.
30-38%, respectively, in Figure 11.

M Random-+Foxton* O VarF&AppIPC+LinOpt
¥4 VarF&AppIPC+Foxton* & VarF&AppIPC+SAnn

—High Performance
---Cost-Performance
—-Low Power

Time (microseconds)
N

I
1 2 4 8 16 20
Number of threads

Figure 15. Execution time of the LinOpt algorithm for different

Number(c’; threads Number(g threads numbers of threads in the three Power Environments.
a
Figure 13. Average weighted throughput (a) and weighted £ D? The figure shows that the execution time increases with the num-
(b) for different algorithms relative to Random+Foxton*in the ber of threads. Moreover, it also increases as we go to less power-
Cost-Performanc@ower Environment. constrained environments such tdgh Performance This is be-
cause a less strict environment increases the search space, making
7.5.1. LinOpt Granularity it harder to find a solution. Overall, the longest running timeyis.6

. . . Since we rurLinOptevery 10ms, the overhead is negligible.
How often we runLinOpt impacts our ability to keep the sys- ! we rurkinptevery v ! glar

tem power close tdqrq4e:. Specifically, if we use long intervals 8. Conclusions and Future Work

betweerLinOptruns, the power consumed is likely to deviate more

from Poge: than if we use short intervals. Figure 14 considers dif- As a result of within-die process variation, individual cores in a
ferent interval durations and measures the deviation between pow®WP differ substantially in both static power consumed and max-
consumed and..4.:. Deviation is measured as follows. At every imum frequency supported. This paper showed that these effects
ms, the average power consumed in the past 1ms is comparedctth be leveraged with variation-aware algorithms for application
Parger and the absolute difference is recorded. Then, all the vascheduling and power management.

ues recorded in the interval between thioOptruns are averaged Thjs paper proposed variation-aware scheduling algorithms to
out and plotted in Figure 14. The figure includes lines for 20- andaye power or improve throughput, and variation-aware power-
4-thread runs. management DVFS algorithms to maximize throughput at a given
power budget. One such power-management algorithm, called
LinOpt, uses linear programming to find the best voltage and fre-
guency levels for each of the cores in the CNIROpt runs on-

20

g
5
= 15
3 line periodically, using profile information provided by the chip
o 10 manufacturer and by on-chip power and IPC sensors. In a 20-
§ 5 core CMP, the combination of variation-aware application schedul-
8 ing andLinOpt increased the average throughput by 12-17% and
g o I I \ i 20 threads reduced the averag&€D? by 30-38% — all relative to using

2s s~ 500ms 100ms 10ms variation-aware scheduling together with a simple extension to Fox-

Time interval ton’s power management algorithm. MoreovenOpts through-
put was within 2% of that of a simulated annealing algorithm, which

Figure 14. Average deviation of power consumption from had a computation time orders of magnitude higher.

Piarge: for different intervals between LinOptruns. We are working on several extensions to this work. One is to en-

hance our scheduling and power management algorithms with the
Figure 14 shows that, as we decrease the interval betweadditional goal of keeping the temperature of the CMP as uniform
LinOptruns, the power deviation decreases. For the 10ms-intervads possible. This can be achieved through aggressive migration of
that we use in our experiments, the deviation is less than 1%. applications from active to inactive cores as in [9], and through
. .) temperature-aware mapping of applications to cores and assignment
7.5.2. LinOpt Execution Time of (V,f) pairs. The result is likely to be fewer hot spots and lower
The Simplex method used to solumOptis generally very fast. power consumption, but it comes at the cost of increased complex-
The algorithm involves a variable number of steps, where the conity of the algorithms.
putation time of each step is affected by the size of the problem A second extension involves understanding how our variation-
(the number of threads that are scheduled) and the number of caware algorithms affect CMP wearout. Finally, we are also extend-
straints. Figure 15 shows the execution time of the algorithm oniag the work by analyzing the impact of the algorithms on parallel
4GHz processor like the one considered in this paper. The figuegplications.

References

(1]

[2]

(3]

[4]

(5]

(6]

(7]

(8]

19]

[10]

(11]

[12]

[13]
(14]
(15]
[16]
(17]
(18]
(19]
(20]
[21]

(22]

(23]

(24]

(25]

S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of [26]
performance asymmetry in emerging multicore architecturedji-in
ternational Symposium on Computer Architecfulene 2005.

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, antR7]
V. De, “Parameter variations and impact on circuits and microarchi-
tecture,” inDesign Automation Conferencéune 2003. [28
D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizationsfhiternational
Symposium on Computer Architectudene 2000.

L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus,
M. Morrow, K. Velarde, and M. Yarch, “An embedded 32-b micro-
processor core for low-power and high-performance applications,” it30]
Journal of Solid-State CircuitdNovember 2001.

J. Donald and M. Martonosi, “Power efficiency for variation-tolerant
multicore processors,” idnternational Symposium on Low Power
Electronics and DesigrOctober 2006. [31]
J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,
M. Braganza, S. Meyers, E. Fang, and R. Kumar, “An integrated quad-
core Opteron processor,” International Solid State Circuits Confer- [32]
ence February 2007.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low- [33]
power pipeline based on circuit-level timing speculation,friterna-

tional Symposium on Microarchitectyil®ecember 2003.

P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos,
“Modeling within-die spatial correlation effects for process-design col34]
optimization,” inInternational Symposium on Quality Electronic De-
sign March 2005.

S. Heo, K. Barr, and K. Asanovic, “Reducing power density througH35]
activity migration,” inInternational Symposium on Low Power Elec-
tronics and DesignAugust 2003.

S. Herbert and D. Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,[riternational Sym-
posium on Low Power Electronics and Desigmugust 2007.

E. Humenay, D. Tarjan, and K. Skadron, “The impact of system{37]
atic process variations on symmetrical performance in chip multi-
processors,” ilDesign, Automation and Test in Eurq@oril 2007.

C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi[38]
“An analysis of efficient multi-core global power management poli-
cies: Maximizing performance for a given power budget friterna- [39]
tional Symposium on Microarchitectyrdecember 2006.

“International Technology Roadmap for Semiconductors (1999).”
“International Technology Roadmap for Semiconductors (2006 Up-
date).”

|. Kadayif, M. Kandemir, and |. Kolcu, “Exploiting processor work-
load heterogeneity for reducing energy consumption in chip multipro-
cessors,” iDesign, Automation and Test in Eurqpeebruary 2004.

W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analy-

sis of fast, per-core DVFS using on-chip switching regulators|hin
ternational Symposium on High-Performance Computer Architecture
February 2008.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” irscienceMay 1983.

R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” international Symposium on Microar-
chitecture December 2003.

J. Liand J. Maiinez, “Dynamic power-performance adaptation of par-
allel computation on chip multiprocessors,” limternational Sympo-

sium on High-Performance Computer Architectufebruary 2006.

X. Liang and D. Brooks, “Mitigating the impact of process variations

on processor register files and execution unitsfhiernational Sym-
posium on MicroarchitectureDecember 2006.

D. Marculescu and E. Talpes, “Variability and energy awareness: A
microarchitecture-level perspective,” Design Automation Confer-
ence June 2005.

R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican,

W. H. Parks, and S. Naffziger, “Power and temperature control on

a 90-nm Itanium family processorJournal of Solid-State Circuits
January 2006.

S. Mukhopadhyay, H. Mahmoodi, and K. Raoy, “Modeling of failure
probability and statistical design of SRAM array for yield enhance-
ment in nanoscaled CMOSTransactions on Computer-Aided De-
sign vol. 24, no. 12, 2005.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific ComputiNigw York,

NY, USA: Cambridge University Press, 1988.

[29]

(36]

R Development Core TearR: A Language and Environment for Sta-
tistical Computing R Foundation for Statistical Computing, 2006.
http://www.R-project.org.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. Sarangi, P. Sack, and P. Montesinos, “SESC Simula-
tor,” January 2005. http://sesc.sourceforge.net.

P. Ribeiro Jr. and P. Diggle, “geoR: A package for geostatistical anal-
ysis,” R-NEWSvol. 1, no. 2, 2001.

B. F. Romanescu, S. Ozev, and D. J. Sorin, “Quantifying the impact
of process variability on microprocessor behavior,"iorkshop on
Architectural Reliability December 2006.

T. Sakurai and R. Newton, “Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formuldsfirnal of
Solid-State CircuitsApril 1990.

S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas, “VARIUS: A model of process variation and resulting
timing errors for microarchitects,” itEEE Transactions on Semicon-
ductor ManufacturingFebruary 2008.

K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan, “Temperature-aware microarchitecture,” in
International Symposium on Computer Architectukene 2003.

A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a simul-
taneous multithreaded processor,” Anchitectural Support for Pro-
gramming Languages and Operating SysteR@/ember 2000.

K. Srinivasan and K. S. Chatha, “Integer linear programming and
heuristic techniques for system-level low power scheduling on mul-
tiprocessor architectures under throughput constraimtgegration
VLS| vol. 40, no. 3, 2007.

K. Stavrou and P. Trancoso, “Thermal-aware scheduling: A solution
for future chip multiprocessors’ thermal problems,"BWROMICRO
Conference on Digital System Desj@®906.

H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage
estimation considering power supply and temperature variations,” in
International Symposium on Low Power Electronics and Design

gust 2003.

D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” Tech. Rep.
HPL-2006-86, HP Labs, 2006.

R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating
parameter variation with dynamic fine-grain body biasing,Iriter-
national Symposium on Microarchitectyi@ecember 2007.

E. Toyoda, “DFM: Device and circuit design challenges,lrterna-
tional Forum on Semiconductor Technologgbruary 2004.

Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“HotLeakage: A temperature-aware model of subthreshold and gate
leakage for architects,” Tech. Rep. CS-2003-05, University of Vir-
ginia, March 2003.

