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Abstract
We present a semi-automated framework for
constructing factoid question answering (QA)
datasets, where an array of question character-
istics are formalized, including structure com-
plexity, function, commonness, answer cardi-
nality, and paraphrasing. Instead of collecting
questions and manually characterizing them,
we employ a reverse procedure, first generat-
ing a kind of graph-structured logical forms
from a knowledge base, and then converting
them into questions. Our work is the first
to generate questions with explicitly specified
characteristics for QA evaluation. We con-
struct a new QA dataset with over 5,000 log-
ical form-question pairs, associated with an-
swers from the knowledge base, and show that
datasets constructed in this way enable fine-
grained analyses of QA systems. The dataset
can be found in https://github.com/
ysu1989/GraphQuestions.

1 Introduction

Factoid question answering (QA) has gained great
attention recently, owing to the fast growth of large
knowledge bases (KBs) such as DBpedia (Lehmann
et al., 2014) and Freebase (Bollacker et al., 2008),
which avail QA systems of comprehensive and pre-
cise knowledge of encyclopedic scope (Yahya et al.,
2012; Berant et al., 2013; Cai and Yates, 2013;
Kwiatkowski et al., 2013; Berant and Liang, 2014;
Fader et al., 2014; Reddy et al., 2014; Bao et al.,
2014; Zou et al., 2014; Yao and Van Durme, 2014;
Yih et al., 2015; Sun et al., 2015; Dong et al., 2015;
Yao, 2015; Berant and Liang, 2015). With the blos-
soming of QA systems, evaluation is becoming an

increasingly important problem. QA datasets, con-
sisting of a set of questions with ground-truth an-
swers, are critical for both comparing existing sys-
tems and gaining insights to develop new systems.

Questions have rich characteristics, constituting
dimensions along which question difficulty varies.
Some questions are difficult due to their com-
plex semantic structure (“Who was the coach when
Michael Jordan stopped playing for the Chicago
Bulls?”), while some others may be difficult because
they require a precise quantitative analysis over the
answer space (“What is the best-selling smartphone
in 2015?”). Many other characteristics shall be con-
sidered too, e.g., what topic a question is about
(questions about common topics may be easier to
answer) and how many answers there are (it is harder
to achieve a high recall in case of multiple answers).
Worse still, due to the flexibility of natural language,
different people often describe the same question in
different ways, i.e., paraphrasing. It is important for
a QA system to be robust to paraphrasing.

A QA dataset explicitly specifying such ques-
tion characteristics allows for fine-grained inspec-
tion of system performance. However, to the
best of our knowledge, none of the existing QA
datasets (Voorhees and Tice, 2000; Berant et al.,
2013; Cai and Yates, 2013; Lopez et al., 2013; Bor-
des et al., 2015; Serban et al., 2016) provides ques-
tion characteristics. In this work, we make the first
attempt to generate questions with explicitly speci-
fied characteristics, and examine the impact of vari-
ous question characteristics in QA.

We present a semi-automated framework (Fig-
ure 1) to construct QA datasets with characteristic



Figure 1: Running example of our framework. Graph queries are first generated from a knowledge base. After refinement (not

shown), graph queries are sent to human annotators and converted into natural language questions. Answers are collected from the

knowledge base.

specification from a knowledge base. The frame-
work revolves around an intermediate graph query
representation, which helps to formalize question
characteristics and collect answers. We first auto-
matically generate graph queries from a knowledge
base, and then employ human annotators to convert
graph queries into questions.

Automating graph query generation brings with
it the challenge of assessing the quality of graph
queries and filtering out bad ones. Our framework
tackles the challenge by combining structured infor-
mation in the knowledge base and statistical infor-
mation from the Web. First, we identify redundant
components in a graph query and develop techniques
to remove them. Furthermore, based on the fre-
quency of entities, classes, and relations mined from
the Web, we quantify the commonness of a graph
query and filter out too rare ones.

We employ a semi-automated approach for the
conversion from graph query to natural language
question, which provides two levels of paraphras-
ing: Common lexical forms of an entity (e.g.,
“Queen Elizabeth” and “Her Majesty the Queen”
for ElizabethII) mined from the Web are used
as entity paraphrases, and the remaining parts of a
question are paraphrased by annotators. As a result,
dozens of paraphrased questions can be produced for
a single graph query.

To demonstrate the usefulness of question char-
acteristics in QA evaluation, we construct a new
dataset with over 5,000 questions based on Freebase
using the proposed framework, and extensively eval-

uate several QA systems. A couple of new find-
ings about system performance and question diffi-
culty are discussed. For example, different from
the results based on previous QA datasets (Yao et
al., 2014), we find that semantic parsing in gen-
eral works better than information extraction on our
dataset. Information extraction based QA systems
have trouble dealing with questions requiring aggre-
gation or with multiple answers. A holistic under-
standing of the whole question is often needed for
hard questions. The experiments point out an array
of issues that future QA systems may need to solve.

2 Related Work

Early QA research has extensively studied problems
like question taxonomy, answer type, and knowl-
edge sources (Burger et al., 2001; Hirschman and
Gaizauskas, 2001; Voorhees and Tice, 2000). This
work mainly targets factoid questions with one or
more answers that are guaranteed to exist in a KB.

A few KB-based QA datasets have been pro-
posed recently. QALD (Lopez et al., 2013) and
FREE917 (Cai and Yates, 2013) contain hundreds
of hand-crafted questions. QALD also indicates
whether a question requires aggregation. Both
based on single Freebase triples, SIMPLEQUES-
TIONS (Bordes et al., 2015) employ human an-
notators to formulate questions, while Serban et
al. (2016) use a recurrent neural network to auto-
matically formulate questions. They are featured
by a large size, but the questions only concern sin-
gle triples, while our framework can generate ques-



tions involving multiple triples and various func-
tions. Wang et al. (2015) generate question-answer
pairs for closed domains like basketball. They
also first generate logical forms (λ-DCS formu-
lae (Liang, 2013) in their case), and then convert log-
ical forms into questions via crowdsourcing. Logi-
cal forms are first converted into canonical questions
to help crowdsourcing workers. Different from pre-
vious works, we put a particular focus on generating
questions with diversified characteristics in a sys-
tematic way, and examining the impact of different
question characteristics in QA.

Another attractive way for QA dataset construc-
tion is to collect questions from search engine
logs (Bendersky and Croft, 2009). For exam-
ple, WEBQUESTIONS (Berant et al., 2013) contains
thousands of popular questions from Google search,
and Yih et al. (2016) have manually annotated these
questions with logical forms. However, automatic
characterization of questions is hard, while man-
ual characterization is costly and requires exper-
tise. Moreover, users’ search behavior is shaped by
search engines (Aula et al., 2010). Due to the inade-
quacy of current search engines to answer advanced
questions, users may adapt themselves accordingly
and mostly ask simple questions. Thus questions
collected in this way, to some extent, may still not
well reflect the true distribution of user information
needs, nor does it fully exploit the potential of KB-
based QA. Collecting answers is yet another chal-
lenge for this approach. Yih et al. (2016) show that
only 66% of the WEBQUESTIONS answers, which
were collected via crowdsourcing, are completely
correct. On the other hand, although questions gen-
erated from a KB may not follow the distribution of
user information needs, it has the advantage of ex-
plicit question characteristics, and enables program-
matic configuration of question generation. Also,
answer collecting is automated without involving
human labor and errors.

3 Background

3.1 Knowledge Base

In this work, we mainly concern knowledge bases
storing knowledge about entities and relations in the
form of triples (simply knowledge bases hereafter).
Suppose E is a set of entities, L a set of literals (I =

E ∪ L is also called individuals), C a set of classes,
and R a set of directed relations, a knowledge base
K consists of two parts: an ontologyO ⊆ C×R×C
and a modelM ⊆ E × R × (C ∪ E ∪ L). In other
words, an ontology specifies classes and relations
between classes, and a model consists of facts about
individuals. Such knowledge bases can be naturally
represented as a directed graph, e.g., Figure 1(a).
Literal classes such as Datetime are represented as
diamonds, and other classes are rounded rectangles.
Individuals are shaded. We assume relations are
typed, i.e., each relation is associated with a set of
domain and range classes. Facts of a relation must
be compatible with its domain and range constraints.
Without loss of generality, we use Freebase (June
2013 version) in this work for compatibility with the
to-be-tested QA systems. It has 24K classes, 65K
relations, 41M entities, and 596M facts.

3.2 Graph Query
Motivated by the graph-structured nature of knowl-
edge bases, we adopt a graph-centric approach. We
hinge on a formal representation named graph query
(e.g., Figure 1(c)), developed on the basis of Yih et
al. (2015) and influenced by λ-DCS (Liang, 2013).
Syntax. A graph query q is a connected directed
graph built on a given knowledge base K. It com-
prises three kinds of nodes: (1) Question node (dou-
ble rounded rectangle), a free variable. (2) Un-
grounded node (rounded rectangle or diamond), an
existentially quantified variable. (3) Grounded node
(shaded rounded rectangle or diamond), an individ-
ual. In addition, there are functions (shaded circle)
such as < and count applied on a node. Nodes are
typed, each associated with a class. Nodes are con-
nected by directed edges representing relations. En-
tities on the grounded nodes are called topic entities.
Semantics. Graph query is a strict subset of λ-
calculus. For example, the graph query in Fig-
ure 1(c) can be written in λ-calculus (an existentially
quantified variable is imposed by <):

λx.∃y.∃z.type(x, DeceasedPerson)
∧ type(y, DeceasedPerson)
∧ type(z, Datetime) ∧ parents(x, y)
∧ causeOfDeath(x, LungCancer)
∧ causeOfDeath(y, LungCancer)
∧ dateOfDeath(x, z)∧ < (z, 1960).



The answer of a graph query q, denoted as JqKK,
can be easily obtained from K. For example, if K
is stored in a RDF triplestore, then q can be au-
tomatically converted into a SPARQL query and
run against K to get the answer. Compared with
Yih et al. (2015), graph queries are not constrained
to be tree-structured, which grants us a higher ex-
pressivity. For example, linguistic phenomena like
anaphora (e.g., Figure 1(d)) become easier to model.

4 Automatic Graph Query Generation

Our framework proceeds as follows: (1) Generate
query templates from a knowledge base, ground
the templates to generate graph queries, and col-
lect answers (this section). (2) Refine graph queries
to retain high-quality ones (Section 5). (3) Con-
vert graph queries into questions via crowdsourcing
(Section 6).

We now describe an algorithm to generate the
query template shown in Figure 1(b) (excluding the
function for now). For simplicity, we will focus on
the case of a single question node. Nevertheless,
the proposed framework can be extended to generate
graph queries with multiple question nodes. The al-
gorithm takes as input an ontology (Figure 1(a)) and
the desired number of edges. All the operations are
conducted in a random manner to avoid systematic
biases in query generation. The DeceasedPerson
class is first selected as the question node. We then
iteratively grow it by adding neighboring nodes and
edges in the ontology. In each iteration, an exist-
ing node is selected, and a new edge, which might
introduce a new node, is appended to it. For exam-
ple, the relation causeOfDeath, whose domain in-
cludes DeceasedPerson, is first appended to the
question node, and then one of its range classes,
CauseOfDeath, is added as a new node. When a
node with the class CauseOfDeath already exists,
it is possible to add an edge without introducing a
new node. The same relation or class can be added
multiple times, e.g., “parent of parent”.

Topic entities like LungCancer play an impor-
tant role in a question. A query template contains
some template nodes that can be grounded with
different topic entities to generate different graph
queries. We randomly choose a few nodes as tem-
plate. It may cause problems. For example, ground-

Figure 2: Mutual exclusivity example. Entities on different

nodes should be different.

ing one node may make some others redundant. We
conduct a formal study on this in Section 5.1.

Functions such as counting and comparatives are
pervasive in real-life questions, e.g., “how many”,
“the most recent”, and “people older than”, but
are scarce in existing QA datasets. We incorpo-
rate functions as an important question characteris-
tic, and consider nine common functions, grouped
into three categories: counting (count), superlative
(max, min, argmax, argmin), and comparative (>,
≥, <, ≤). More functions can be incorporated in
the future. See Appendix A for examples. We ran-
domly add functions to compatible nodes in query
templates. In the running example, the < function
imposes the constraint that only people who passed
away before a certain date should be considered.
Each query will have at most one function.

We then ground the template nodes with indi-
viduals to generate graph queries. A grounding is
valid if the individuals conform with the class of
the corresponding template nodes, and the resulted
answer is not empty. For example, by grounding
CauseOfDeath with LungCancer and Datetime

with 1960, we get the graph query in Figure 1(c). A
query template can render multiple groundings.

Finally, we convert a graph query into a SPARQL
query and execute it using Virtuoso Open-Source 7
to collect answers. We further impose mutual exclu-
sivity in SPARQL queries, that is, the entities on any
two nodes in a graph query should be different. Con-
sider the example in Figure 2, which is asking for
the siblings of Natasha Obama. Wihout mutual ex-
clusivity, however, Natash Obama herself will also
be included as an answer, which is not desired.

5 Query Refinement

Since graph queries are randomly generated, some
of them may not correspond to an interesting ques-
tion. Next we study two query characteristics, re-
dundancy and commonness, based on which we pro-
vide mechanisms for automatic query refinement.



Figure 3: Query minimization example: (a) Graph query with

redundant components. (b) Graph query after minimization.

Figure 4: Uncommon query example. It is uncommon to ask

for somebody’s great-great-grandparents.

5.1 Query Redundancy and Minimization

Some components (nodes and edges) in a graph
query may not effectively impose any constraint on
the answer. The query in Figure 3(a) is to “find
the US president whose child is Natasha Obama,
and Natasha Obama was born on 2001-06-10”.
Intuitively, the bold-faced clause does not change
the answer of the question. Correspondingly, the
dateOfBirth edge and the date node are redun-
dant. As a comparison, removing any component
from the query in Figures 3(b) will change the an-
swer. Formally, given a knowledge base K, a com-
ponent in a graph query q is redundant iff. removing
it does not change the answer JqKK.

Redundancy can be desired or not. In a question,
redundant information may be inserted to reduce
ambiguity. In Figure 3(a), if one uses “Natasha”
to refer to NatashaObama, there comes ambiguity
since it may be matched with many other entities.
The additional information “who was born on 2001-
06-10” then helps. Next we describe an algorithm to
remove redundancy from queries. One can choose to
either only generate queries with no redundant com-
ponent, or intentionally generate redundant queries
and test QA systems in presence of redundancy.

We manage to generate minimal queries, for
which there exists no sub-query having the same an-
swer. An important theorem, as we prove in Ap-
pendix B, is the equivalency of minimality and non-
redundancy: A query is minimal iff. it has no redun-
dant component. This renders a simple algorithm
for query minimization, which directly detects and
removes the redundant components in a query. We
first examine every edge (in an arbitrary order), and
remove an edge if it is redundant. Redundant nodes

will then become disconnected to the question node
and are thus eliminated. It is easy to prove that the
produced query (e.g., Figure 3(b)) is minimal, and
has the same answer as the original query.

5.2 Commonness Checking
We now quantify the commonness of graph queries.
The benefits of this study are two-fold. First, it pro-
vides a refinement mechanism to reduce too rare
queries. Second, commonness is itself an important
question characteristic. It is interesting to examine
its impact on question difficulty. Consider the ex-
ample in Figure 4, which asks for “the great-great-
grandparents of Ernest Solvay”. It is minimal and
logically plausible. Few users, however, are likely
to come up with it. Ernest Solvay is famous for the
Solvay Conferences, but few people outside the sci-
ence community may know him. Although Person

and parents are common, asking for the great-
great-grandparents is quite uncommon.

A query is more common if users would more
likely come up with it. We define the commonness
of a query q as its probability p(q) of being picked
among all possible queries from a knowledge base.
The problem then boils down to estimating p(q).
It is hard, if not impossible, to exhaust the whole
query space. We thus make the following simplifica-
tion. We break down query commonness by compo-
nents, assuming mutual independence between com-
ponents, and omit functions:

p(q) =
∏

i∈Iq

p(i)×
∏

c∈Cq

p(c)×
∏

r∈Rq

p(r), (1)

where Iq, Cq,Rq are the multi-set of the individuals,
classes, and relations in q, respectively. Repeating
components are thus accumulated (c.f. Figure 4).

We propose a data-driven method, using statisti-
cal information from the Web, to estimate p(i), p(c),
and p(r). Other methods like domain-knowledge
based estimation are also applicable if available. We
start with entity probability p(e) (excluding literals
for now). If users mention an entity more frequently,
its probability of being observed in a question should
be higher. We use a large entity linking dataset,
FACC1 (Gabrilovich et al., 2013), which identifies
around 10 billion mentions of Freebase entities in
over 1 billion web documents. The estimated link-
ing precision and recall are 80-85% and 70-85%, re-



Figure 5: Question generation and paraphrasing.

spectively. Suppose entity e has n(e) mentions, then
p(e) = n(e)∑

e′∈E n(e′) . For a class c, probability p(c)
is higher if it has more frequently mentioned enti-
ties. If we use e ∈ c to indicate e is an instance of
c, then p(c) =

∑
e∈c n(e)∑

c′∈C
∑

e∈c′ n(e)
. Estimating p(r) re-

quires relation extraction from texts, which is hard.
We make the following simplification: If (e1, r, e2)
is a fact in the knowledge base, we increase n(r) by
1 if e1 and e2 co-occur in a document. This suffices
to distinguish common relations from uncommon
ones. We then define p(r) = n(r)∑

r′∈R n(r′) . Finally,
we use frequency information from the knowledge
base to smooth the probabilities, e.g., to avoid zero
probabilities. The probability of literals are solely
determined by the frequency information from the
knowledge base. Refer to Appendix C for the re-
sulted probability distributions.

6 Natural Language Conversion

In order to ensure naturalness and diversity, we em-
ploy human annotators to manually convert graph
queries into natural language questions. We man-
age to provide two levels of paraphrasing (Fig-
ure 5). Each query is sent to multiple annotators for
sentence-level paraphrasing. In addition, we use dif-
ferent lexical forms of an entity mined from FACC1
for entity-level paraphrasing. We provide a ranked
list of common lexical forms and the corresponding
frequency for each topic entity. For example, the
lexical form list for UnitedStatesOfAmerica is
“us” (108M), “united states” (44M), “usa” (22M),
etc. Finally, graph queries are automatically trans-
lated into SPARQL queries to collect answers.

Natural language generation (NLG) (Wen et al.,
2015; Serban et al., 2016; Dušek and Jurčı́ček, 2015)
would be a good complement to our framework, the
combination of which can lead to a fully-automated

pipeline to generate QA datasets. For example,
Serban et al. (2016) automatically convert Free-
base triples into questions with a neural network.
More sophisticated NLG techniques able to handle
graph queries involving multiple relations and vari-
ous functions are an interesting future direction.

7 Experiments

We have constructed a new QA dataset, named
GRAPHQUESTIONS, using the proposed frame-
work, and tested several QA systems to show that
it enables fine-grained inspection of QA systems.

7.1 Dataset Construction
We first randomly generated a set of minimal graph
queries, and removed the ones whose common-
ness is below a certain threshold. The remaining
graph queries were then screened by graduate stu-
dents, and a canonical question was generated for
each query, with each being verified by at least two
students. We recruited 160 crowdsourcing work-
ers from Amazon MTurk to generate sentence-level
paraphrases of the canonical questions. Trivial para-
phrases (e.g., “which city” vs. “what city”) were
manually removed to retain a high diversity in para-
phrasing. At most 3 entity-level paraphrases were
used for each sentence-level paraphrase.

7.2 Dataset Analysis
GRAPHQUESTIONS contains 500 graph queries,
2,460 sentence-level paraphrases, and 5,166 ques-
tions2. The dataset presents a high diversity and
covers a wide range of domains including People,
Astronomy, Medicine, etc. Specifically, it con-
tains 148, 506, 596, 376 and 3,026 distinct domains,
classes, relations, topic entities, and words, respec-
tively. We evenly split GRAPHQUESTIONS into a
training set and a testing set. All the paraphrases of
the same graph query are in the same set.

While there are other question characteristics
derivable from graph query, we will focus on the
following ones: structure complexity, function, com-
monness, paraphrasing, and answer cardinality. We

2For each query template, we only generate one graph query,
but one can also generate multiple graph queries, and easily get
the corresponding questions by replacing the topic entities. This
will significantly increase the total number of questions, and can
be helpful in training.



# of edges Function log10(p(q)) |A|
1 2 3 none count super. comp. [−40, 30) [−30, 20) [−20, 10) [−10, 0) 1 > 1

# of graph queries 321 144 35 350 61 42 47 60 135 283 22 332 168

# of questions 3094 1648 424 3855 710 332 269 653 1477 2766 270 3487 1679

Table 1: Characteristic statistics. |A| is answer cardinality. Refer to Appendix D for paraphrase and other fine-grained distributions.

Question Domain Answer # of edges Function log10(p(q)) |A|

Find terrorist organizations involved in
September 11 attacks.

The September 11 attacks were carried out with
the involvement of what terrorist organizations? Terrorism alQaeda 1 none -16.67 1

Who did nine eleven?

How many children of Eddard Stark were born
in Winterfell?

Winterfell is the home of how many of Eddard
Stark’s children?

Fictional
Universe 3 2 count -23.34 1

What’s the number of Ned Stark’s children
whose birthplace is Winterfell?

In which month does the average rainfall of New
York City exceed 86 mm?

Rainfall averages more than 86 mm in New York
City during which months? Travel March, August

. . .
3 comp. -37.84 7

List the calendar months when NYC averages in
excess of 86 millimeters of rain?

Table 2: Example questions and characteristics. Three sentence-level paraphrases are shown for each graph query, with the last

one also involving entity-level paraphrasing. Topic entities are bold-faced. More examples can be found in Appendix D.

use the number of edges to quantify structure com-
plexity, and limit it to at most 3. Commonness is
limited to log10(p(q)) ≥ −40 (c.f. Eq. 1). As
shown in Section 7.4.2, such questions are already
very hard for existing QA systems. Nevertheless,
the proposed framework can be used to generate
questions with different characteristic distributions.
Some statistics are shown in Table 1 and more fine-
grained statistics can be found in Appendix D.

Several example questions are shown in Ta-
ble 2. Sentence-level paraphrasing requires to han-
dle both commands (the first example) and “Wh”
questions, light verbs (“Who did nine eleven?”),
and changes of syntactic structure (“The Septem-
ber 11 attacks were carried out with the involve-
ment of what terrorist organizations?”). Entity-
level paraphrasing tests the capability of QA systems
on abbreviation (“NYC” for New York City),
world knowledge (“Her Majesty the Queen” for
ElizabethII), or even common typos (“Shaks-
peare” for WilliamShakespeare). Numbers and
dates are also common, e.g., “Which computer oper-
ating system was released on Sept. the 20th, 2008?”

We compare several QA datasets constructed
from Freebase, shown in Table 3. Datasets focus-
ing on single-relation questions are of a larger scale,

but are also of a significant lack in question charac-
teristics. Overall GRAPHQUESTIONS presents the
highest diversity in question characteristics.

7.3 Setup

We evaluate three QA systems whose source code
is publicly available: SEMPRE (Berant et al., 2013),
PARASEMPRE (Berant and Liang, 2014), and JA-
CANA (Yao and Van Durme, 2014). SEMPRE

and PARASEMPRE follow the semantic parsing
paradigm. SEMPRE conducts a bottom-up beam-
based parsing on questions to find the best logical
form. PARASEMPRE, in a reverse manner, enumer-
ates a set of logical forms, generates a canonical
utterance for each logical form, and ranks logical
forms according to how well the canonical utter-
ance paraphrases the input question. In contrast, JA-
CANA follows the information extraction paradigm,
and builds a classifier to directly predict whether an
individual is the answer. They all use Freebase.

The main metric for answer quality is the aver-
age F1 score, following Berant and Liang (2014).
Because a question can have more than one an-
swer, individual precision, recall, and F1 scores are
first computed on each question and then averaged.
When a system generates no response for a question,



Dataset # of Questions # of Multi-relation Function (count/super./comp.) Commonness Paraphrase Multi-answer

GRAPHQUESTIONS (this work) 5166 2072 710 / 332 / 269 + + +

WEBQUESTIONSSP (Yih et al., 2016)1 4737 2075 2 / 168 / 334 - - +

FREE917 (Cai and Yates, 2013) 917 229 185 / 0 / 0 - - +

Serban et al. (2016) 30M 0 0 / 0 / 0 - - -

SIMPLEQUESTIONS (Bordes et al., 2015) 108K 0 0 / 0 / 0 - - -

Table 3: Comparison of QA datasets constructed from Freebase. GRAPHQUESTIONS is the richest in question characteristics.

System F1 Time/s

SEMPRE 10.80 56.19

PARASEMPRE 12.79 18.43

JACANA 5.08 2.01

Table 4: Overall performance on GRAPHQUESTIONS.

precision is 1, recall is 0, and F1 is 0. Average run-
time is used for efficiency. Results are shown in per-
centage. Systems are trained on the training set us-
ing the suggested configurations (Appendix E). We
use student’s t test at p = 0.05 for significance test.

7.4 Results

7.4.1 Overall Evaluation

Compared with the scores on WEBQUESTIONS

(30%-40%), the scores on GRAPHQUESTIONS are
lower (Table 4). This is because GRAPHQUES-
TIONS contains questions over a broader range of
difficulty levels. For example, it is more diverse in
topics (Appendix D); also the scores become much
closer when excluding paraphrasing (Section 7.4.2).

JACANA achieves a comparable F1 score with
SEMPRE and PARASEMPRE on WEBQUES-
TIONS (Yao et al., 2014). On GRAPHQUESTIONS,
however, SEMPRE and PARASEMPRE significantly
outperform JACANA (both p < 0.0001). The
following experiments will give more insights
about where the performance difference comes
from. On the other hand, JACANA is much faster,
showing an advantage of information extraction.
The semantic parsing systems spend a lot of time on
executing SPARQL queries. Bypassing SPARQL
and directly working on the knowledge base may be
a promising way to speed up semantic parsing on
large knowledge bases (Yih et al., 2015).

2WEBQUESTIONSSP is WEBQUESTIONS with manually
annotated logical forms. Only those with a full logical form
are included (4737 / 5810).

7.4.2 Fine-grained Evaluation
With explicitly specified question characteristics,

we are able to further inspect QA systems.

Structure Complexity. We first break down system
performance by structure. Answer quality is in gen-
eral sensitive to the complexity of question struc-
ture: As the number of edges increases, F1 score
decreases (Figure 6(a)). The tested systems often
fail to take into account auxiliary constraints in a
question. For example, for “How many children
of Ned Stark were born in Winterfell?” SEMPRE

fails to identify the constraint “born in Winterfell”,
so it also considers Ned Stark’s bastard son, Jon
Snow, as an answer, who was not born in Winter-
fell. Answering questions involving multiple rela-
tions using large knowledge bases remain an open
problem. The large size of knowledge bases pro-
hibits exhaustive search, so smarter algorithms are
needed to efficiently prune the answer space. Be-
rant and Liang (2015) point out an interesting direc-
tion, leveraging agenda-based parsing with imitation
learning for efficient search in the answer space.

Function. In terms of functions, while SEMPRE and
PARASEMPRE perform well on count questions, all
the tested systems perform poorly on questions with
superlatives or comparatives (Figure 6(b)). JACANA

has trouble dealing with functions because it does
not conduct quantitative analysis over the answer
space. SEMPRE and PARASEMPRE do not generate
logical forms with superlatives and comparatives, so
they cannot answer such questions well.

Commonness. Not surprisingly, more common
questions are in general easier to answer (Fig-
ure 6(c)). An interesting observation is that SEM-
PRE’s performance gets worse on the most common
questions. The cause is likely rooted in how the
QA systems construct their candidate answer sets.
PARASEMPRE and JACANA exhaustively construct
candidate sets, while SEMPRE employs a bottom-up
beam search, making it more sensitive to the size of
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Figure 6: Performance breakdown by (a) structure complexity, (b) function, (c) commonness, and (d) paraphrase. Note that in (c)

x = −5 indicates the commonness range −10 ≤ log10(p(q)) < 0.

the candidate answer space. Common entities like
UnitedStatesOfAmerica are often featured by
a high degree in knowledge bases (e.g., 1 million
neighboring entities), which dramatically increases
the size of the candidate answer space. During SEM-
PRE’s iterative beam search, many correct logical
forms may have fallen off beam before getting into
the final candidate set. We checked the percentage of
questions for which the correct logical form is in the
final candidate set, and found that it decreased from
19.8% to 16.7% when commonness increased from
-15 to -5, providing an evidence for the intuition.

Paraphrasing. It is critical for a system to toler-
ate the wording varieties of users. We make the
first effort to evaluate QA systems on paraphras-
ing. For each system, we rank, in descending or-
der, all the paraphrases derived from the same graph
query by their F1 score achieved by the system, and
then compute the average F1 score of each rank. In
Figure 6(d), the decreasing rate of a curve thus de-
scribes a system’s robustness to paraphrasing; the
higher, the less robust. All the systems achieve a
reasonable score on the top-1 paraphrases, i.e., when
a system can choose the paraphrase it can best an-
swer. The F1 scores drop quickly in general. On
the fourth-ranked paraphrases, the F1 score of SEM-
PRE, PARASEMPRE, and JACANA are respectively
only 37.65%, 53.2%, and 36.2% of their score on
the top-1 paraphrases. Leveraging paraphrasing in
its model, PARASEMPRE does seem to be more ro-
bust. The results show that how to handle para-
phrased questions is still a challenging problem.

Answer Cardinality. SEMPRE and JACANA get a
significantly lower F1 score (both p < 0.0001)
on multi-answer questions (Table 5), mainly com-
ing from a decrease on recall. The decrease of
PARASEMPRE is not significant (p=0.29). The par-
ticularly significant decrease of JACANA demon-

System |A| Prec. Rec. F1

SEMPRE
1 59.81 16.11 12.68

> 1 62.38 9.17 6.78

PARASEMPRE
1 17.42 17.58 13.25

> 1 19.65 17.23 11.82

JACANA
1 14.77 6.56 6.56

> 1 11.80 1.43 1.98

Table 5: Performance breakdown by answer cardinality |A|.

strates the difficulty of training a classifier that can
predict all of the answers correctly; semantic pars-
ing is more robust in this case. The precision of
SEMPRE is high because it generates no response for
many questions. Note that under the current defini-
tion, the average F1 score is not the harmonic mean
of the average precision and recall (c.f. Section 7.3).

8 Conclusion

We proposed a framework to generate characteristic-
rich questions for question answering (QA) evalua-
tion. Using the proposed framework, we constructed
a new and challenging QA dataset, and extensively
evaluated several QA systems. The findings point
out an array of issues that future QA research may
need to solve.
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