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Our perspective: social applications
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Our perspective: social applications

 The essence of “Social Data’--- what makes it
different from traditional relational table data

o Interactive behavior

» Behavioral patterns, anomalies, collaborations, relationship,
alignment, etc.

o Network Structure

» Structural properties, measures, patterns, correlation,
evolution, etc.

* This tutorial examines network mining and
analysis from these two aspects as motivated by
real social applications.
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Tutorial Coverage

* Network Structure
o Part I: Network Correlation and Patterns (Huan)
o Part Il: Frequent Network Patterns (Feida)

* Interactive Behavior
o Part lll: Collaboration Patterns (Huan)

* Network Structure + Interactive Behavior
o Part IV: Relationship Mining (Feida)
o Part V: User Identity Linkage (Feida)
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Part |

Network Correlation and Patterns
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Networks with Rich Attributes

Social networks

Research
Collaboration
Networks




Example of Correlations

A
1

=

Correlation between the occurrence of an event and the network structure

Further study:
1. Isthis correlation due to influence in the network? (network structure—>

event occurrence)

2. Conversely, is it the preferences over the same product facilitate the

formation of the link between users, i.e., their friendship development?_
UCSB  (event occurrence = network structure) & oMU




Pattern Kaleidoscope

O Proximity Pattern

O Attribute-Structure Correlations
1 Cohesive Pattern

O Itemset-sharing Pattern

1 Graph Topological pattern
 Graph Iceberg

4 Graph Anomaly

O Frequent Network Pattern

UCSB < SMU




Pattern Kaleidoscope

O Proximity Pattern v

4 Attribute-Structure Correlations ¢/
[ Cohesive Pattern h
4 Itemset-sharing Pattern — | Brief introduction
O Graph Topological Pattern
Q Graph Iceberg 4

d Graph Anomaly =) Akoglu et al., Tutorial at WSDM’13
Q Frequent Network Pattern «# (Part II)

—
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What are the related Musical Bands/ Singers that co-
occur frequently in neighborhood?

Beyonce, Last.FM
Lady Gaga Madonna
Katv P Nodes -> Users
aty Perry, s PR, |
Madonna SR “"9"_ Britney Edges -> Links
: Spears, List of Musical
Britne
Spearg Lady Gaga Bands/ Singers
Metallica
Metallica ;«r Ay - @ﬁ.
’ 2 AL
Megadeth %@@ .H
[ e — ——— ‘- h,
Megadeth, e Megadeth,
Slayer Slayer

Social Network
UCSB & SMU




What are Related Computer Attacks that Co-occur
Frequently in Neighborhood?

TFTP_Put,
Ping_Flood

TFTP_Put L &

TFTP_Put,
ICMP Flood

UCSB
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Audit_TFTP
__Get_Filename

j g< ,»f“a
HEYIR nnm.n: FJ1.I.|

Intrusion Network

Computers in LAN

Computers in Same
LAN Attacked by
Similar Intrusions

SQL SSRP
@ __Slammer
_Worm

SQL SSRP
__ StackBo




[Khan et al., SIGMOD’10]

Proximity Pattern Mining

d Definition
A subset of labels that repeatedly appear in tightly connected
subgraphs in G.

Beyonce
L L]
ady Gaga Madonna
Katy Perry, - i
Madonna A ———— )¢ Britney
: = T | Spears
Britney '
Spears | Lady Gaga
Metallica
| . X "m\
Metallica <P T " RN
: aCAZ SR rg ¥
Megadeth (ﬂﬁﬁ'@ e N 'V,;.m-ﬂ%

Megadeth,
Slayer Slayer
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[Khan et al., SIGMOD’10]
Proximity Pattern Mining

L Definition

A subset of labels that repeatedly appear in tightly connected
subgraphs in G.

a, b-YES
a, b,c—-YES
d, e, f-NO

UCSB L SMU




[Khan et al., SIGMOD’10]
Proximity Pattern Definition

1 Characteristics

(1) Proximity
(2) Frequency

(3) Flexibility

a,b-YES:a b, c—-YES
d,e, f-NO

UCSB L SMU




[Khan et al., SIGMOD’10]
Proximity Pattern Definition

d Will Frequent Subgraph Mining
Work?

Proximity pattern: {a, b, c}

UCSB L SMU




[Khan et al., SIGMOD’10]
Proximity Pattern Definition

d Will Frequent Subgraph Mining
Work?

-NO !!!
- Lack of Flexibility

Proximity pattern: {a, b, c}

UCSB L SMU




[Khan et al., SIGMOD’10]
Proximity Pattern Definition

d Will Frequent Subgraph Mining
Work? @ o
-NO !!!

- Lack of Flexibility

O Will Frequent Itemset Mining
Work?

Proximity pattern: {a, b, c}

UCSB < SMU




[Khan et al., SIGMOD’10]
Proximity Pattern Definition

d Will Frequent Subgraph Mining
Work? @ o
-NO !!!

- Lack of Flexibility

O Will Frequent Itemset Mining
Work?

-NO ! Proximity pattern: {a, b, c}
- No Notion of Edge

UCSB < SMU




[Khan et al., SIGMOD’10]
Information Propagation Model

Information
Propagation

%
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[Khan et al., SIGMOD’10]
Information Propagation Model

Information
Propagation

I

Frequent-Pattern (FP) Tree

cannot handle fractional -m_-m

association values because of

the new definition of Support. 1.00 0.12 0.00 0.12

Modif_y FP Tree Structure and 2 0.19 0.00 0.00 1.00

Algorithm. 3 0.12 1.00 0.12 0.00

C. C. Aggarwal et. al (KDD '09),

Bernecker et. al (KDD ‘09). - OO0 O | L0 0,00
Frequent Itemset Mining (Probabilistic)

UCSB & SMU




[Khan et al., SIGMOD’10]
Top-k Interesting Patterns

d How to measure “Interesting-ness”?
----Randomization Test

Generate graph Q from graph G by randomly swapping the labels
among nodes. Let, p and q be the support values of itemset | in G and Q
respectively. High difference indicates interestingness.

G-test Score:

l1—p
l1—gq

prlng-l—(l—p)rln

----Proximity Patterns minus Frequent Itemset Patterns

UCSB < SMU




dLast.FM

Proximity
Patterns

[Khan et al., SIGMOD’10]
Top-k Interesting Patterns

Temptation

# Proximity Patterns Score
1 | Tiesto, Armin van Buuren . ATB 0.62
2 | Katy Perry, Lady Gaga, Britney Spears | (.58
3 | Ferry Corsten, Tiesto, Paul van Dyk 0.55
4 | Neaera, Caliban, Cannibal Corpse 0.52
5 | Lacuna Coil, Nightwish, Within 0.47

1 Britney Spears, Lady Gaga, Katy Perry — American Female Pop Singers
 ATB, Paul van Dyk — German DJ

 Tiesto, Ferry Corsten, Armin van Buuren — Dutch DJ

J Neaera, Caliban, Cannibal Corpse — Death Metal Bands

 Lucuna Coil, Nightwish, Within Temptation — Gothic Metal Bands

UCSB
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[Khan et al., SIGMOD’10]
Top-k Interesting Patterns

dintrusion
# Interesting Patterns Score
1 | Ping_Sweep, Smurf_Attack 2.42
2 | TFTP_Put, Audit_TFTP_Get_Filename, 2.32
o ICMP_Flood, Ping_Flood
PfOXImlty 3 | TCP_Service_Sweep, Email_Error 1.21
Patterns 4 | HTML_Outlook_MailTo_Code_Execution, | 1.15
HTML_NullChar_Evasion
5 | SQL_SSRP_Slammer_Worm, 0.88
SQL_SSRP_StackBo
| # ‘ Interesting Patterns | Score ‘
1 | ICMP_Flood, Ping_Flood 0.94
2 | Email Error, SMTP_Relay
_Not_Allowed, HTML_Null 0.94
Char_Evasion
Proximity Patterns 3 | Image RIFF_Malformed, 0.90
Mi HTML_NullChar_Evasion
Inus 1 | TFTP_Put, Ping Flood, 0.80
Frequent ltemsets Audit_TFTP_Get_Filename
5 | Email_Command_Overflow,
Email Virus_Double_Extension, | 0.75
Email Error —

UCSB < SMU




[Guan et al.,SIGMOD’11]

Structural Correlational Pattern

Which product’s sales is more correlated with the social
network structure?

UCSB

Waterworld game




[Guan et al.,SIGMOD’11]

A General Situation

Q Events taking place on nodes
of a social graph
* Online shopping
» Blogging
 Virus infection

a Social influence vs. Random
occurrence

UCSB < SMU




[Guan et al.,SIGMOD’11]

Why Measuring Such Correlations?

 Help understand the distribution of events in networks

Q Help detect viral influence in the underlying network
(e.g. product sales)
o Correlation has to do with link type, event type and time

o Facilitate product promotion, online ads recommendation

UCSB < SMU




[Guan et al.,SIGMOD’11]
Problem Formulation

a Agraph G = (V, E) and an event set Q = {q;}
4V--the set of nodes having event g. Let [V | =m, [V|=n

(1) e
correlated in
G?

dlm a2 m a3 m

(2) (1) q1
(2) a2 (ranking)
(3)a3

UCSB & SMU




[Guan et al.,SIGMOD’11]

How to Characterize Correlation?

O If correlated, blue nodes

tend to stick together. Q O
.. O e C® . O
Q A naive approach: only ® O
look at neighborhood Q O O .
UGeneral idea: compute the O
aggregated proximity O . O .Q
among blue nodes O Q

UCSB < SMU




[Guan et al.,SIGMOD’11]

Measure Definition

d The measure is defined as

, S,V \{v})
p(\/q) - ZVG : ’V ‘

o0 V,: the set of nodes having event q; s() can be any graph
proximity measure

O We choose Hitting Time.

UCSB < SMU




[Guan et al.,SIGMOD’11]

Measure Definition

O Hitting time: expected number of steps to reach a target node via
random walk:

h(v,,B) =) tPr(T, =t|x, =V,)
t=1

o B: target node set; Pr(Tz=t|x,=V;): the probability that we start
from v; and reach B after t steps

Hitting time will
not count this
node

UCSB < SMU




[Guan et al.,SIGMOD’11]

Hitting time & Decayed Hitting Time

Q Hitting time: expected number of steps to reach a target node via
random walk:

h(v,,B) =D tPr(T, =t|x, =V,)
=1

o B: target node set; Pr(Tg=t|x,=V;): the probability that we start from
v; and reach B after t steps

UCSB < SMU




[Guan et al.,SIGMOD’11]

Hitting time & Decayed Hitting Time

O Hitting time: expected number of steps to reach a target node via
random walk:

h(v,,B) =D tPr(T, =t|x, =V,)
=1

o B: target node set; Pr(Tg=t|x,=V;): the probability that we start from
v; and reach B after t steps

0 Decayed Hitting Time (DHT):

(v, B) =Y e Pr(T, =t] x, =v)
t=1

0 Mapping [1,o°) to [0,1], high value means high proximity
0 Emphasizing the importance of local neighborhood and
reducing the impact of long paths

o SV V)
d p(\/q)=Z “

, with s(v,v,\{v}) instantiated as h(v,v,\{v})

Vi
UCSB ¢ SMU_




[Guan et al.,SIGMOD’11]

Measure Computation

Q Directly compute 2(V,) may be time consuming since \Vq\ may be
large.

, S,V \{v})
e 4

d Sampling: randomly select ¢ nodes from Vv, to estimate their DHTs to
the remaining nodes.

UCSB < SMU




[Guan et al.,SIGMOD’11]

Top-5 Structural Correlated Products
(TaoBao)

Laptops and tablets Mobile and handheld devices
[CCENCTINOE  CCCENCTrN O
ThinkPad T400 [554.43, 554,47] iPod Touch 3 [92.06, 92.09]
2 AppleiPad [227.56, 227.57] 698 2 Nokia 6300 [90.97, 90.99] 188
3 ThinkPad X200 [91.39, 91.42] 60 3 iPhone 4 [69.07, 69.09] 520
4 Toshiba L600 [20.36, 20.41] 31 4 Nokia N82 [53.20, 53.24] 84
5 ThinkPad T410 [-1.13, -1.09] 72 5 HTCG3 [36.48, 36.49] 732
Other Other (top 5 uncorrelated)
TR T L
Z/II:Fr:';y;SPoko baby [238.50, 238.51] 4892 - [2.71,2.72] 1092
2 Beingmate Infant milk [227.71,227.72] 163 2 Jack&Jones suits [-0.48, -0.46] 311
powder
3 EVE game cards [198.56,198.58] 374 3 Ray-Bansunglasses  [-0.78,-0.77] 4958
4 Mabinogigame cards  [189.56,189.58] 446 4 Swarovski anklets [-0.88,-0.84] 72
5 Gerber cookies [149.51,149.52] 1491 5 Jack&Jones shirts [-3.28,-3.27] 1606
UCSB < SMU
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[Guan et al.,SIGMOD’11]

Top-12 Structural Correlated keywords
(DBLP co-author network)

TN ™ B T R

1 Hadoop [1225.22, 1225.46]

2 Microarray [958.64, 958.67] 4738
3 OLTP [912.52, 912.68] 105

4 AJAX [857.61, 857.74] 179

5 Virus [825.14, 825.21] 905

6 E-Learning [811.85, 811.91] 3552
7 Database [775.80, 775.83] 19522
8 Mining [760.33, 760.36] 15371
9 Relational [697.17, 697.22] 6225
10 Retrieval [647.60, 647.64] 13996
11 Indexing [624.94, 625.00] 5069
12 Computation [586.58, 586.63] 11187

UCSB < SMU




[Silva et al., VLDB’12]

Attribute-Structure Correlated Patterns

Q Examples
o Densely connected webpages that share content
o0 Groups of friends with common interests
0 Genes that interact and are expressed on the same issues.

UCSB < SMU
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[Silva et al., VLDB’12]

Attribute-Structure Correlated Patterns

Q Definition
0 A dense subgraph induced by a particular attribute set.

JCharacteristics

o High correlation between a given attribute set and the
occurrence of dense subgraphs
Ks|
V(S)|

e(S) =

S: attribute set;
Ks: the set of vertices having S in dense subgraphs
V(s): the vectices with attribute set S

o High-support attribute sets do not necessarily present high

structural correlation.
UCSB o SMU




[Silva et al., VLDB’12]
Attribute-Structure Correlated Patterns

 DBLP
o 108,030 vertices
0 276,658 edges
23,285 attributes

o

== u ayHc-eﬂm patephen Tumer
'-,.

Pattern induced by
& ’f {system , performance}

\‘\-.‘:E}&
flizm Jak, "“'-"""-“‘“‘fﬁ' Rudf Eigenmnan

/‘i Dd Paikia ‘ J:lnstammta PO Thomas LeBlanc
AN

\Tq\

\a\

‘5‘.} Michael Scott

UCSB EEE = S 5 SMU
Carl Keseelman  James Browne NGAFORE MARL
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[Silva et al., VLDB’12]
Attribute-Structure Correlated Patterns

d Last.Fm
o 272,412 vertices
o 350,239 edges
o 3,929,101 attributes

Pattern induced by
{Van Morrison}




[Silva et al., VLDB’12]
Attribute-Structure Correlated Patterns

d CiteSeer
0 294,104 vertices
o 782,147 edges
o 206,430 attributes

Ey g
e
CEFCRASDS
FRROMA

ICEIOCD

LLP

Pattern induced by
{perform, system}

LTCH

LTOACERA

H3DCIEr

UCSB ot e < SMU
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[Guan et al., VLDB’11]

Two-event Structural Correlations

UCSB \ sw&u




[Guan et al., VLDB’11]

Two-event Structural Correlations

How is the relationship between the sales of two products
In a social network?

Repulsion
(negative
correlation)

Attraction
(positive
correlation)




[Guan et al., VLDB’11]

A New Notion of Correlation
O Two-Event Structural Correlation (TESC)

o Defined on graph structures
o Capture relationships between distributions of two events on a graph

o0 Events can be different things in different contexts:
» Topics or products (social networks)
» Virus (contact networks)
» Intrusion alerts (computer networks)

UCSB & SMU




[Guan et al., VLDB’11]
The Major Challenge

O Simple idea: compute the distance between the two
events on the graph

o How near/far for significant positive/negative
correlation?

o0 Hypothesis testing

4 N/ )
Observed o...
4 I ¢ PS Empirical
o0 istribution
Randomization ® o distribut
L \G J\G J k
® ®
N )
2 o : oo
® ® Sigrm Sﬁnt
P P negative positive
o
G °* G Y ._

UCSB & SMU




[Guan et al., VLDB’11]
The Major Challenge

O Simple idea: compute the distance between the two
events on the graph

o How near/far for significant positive/negative
correlation?

o0 Hypothesis testing

Observed

WRandom'zat'on




[Guan et al., VLDB’11]

How To Measure?

“reference nodes” Bl Consistent M Inconsistent

{ ! S ’ /L (g \ '
[ 1/ /(@S ! /
f b B ( f / (
II." \C{ a Py” \ / \'\ L
-\ [ — - —— N II'.
L @ b | |f BN
LGN /I \ f%l |
N,
~ s f \ G d /
0T deen SN ()2 S 2u
T —"b:1->3

T "h:2->1

If the density changes are
consistent

dConcordance score

1 (sh(R)—sh(r))(sh(r)—si(r;)) >0

h h h h
c(r,r)=4-1 (s5(r) =82 (r}))(s, () —s,(r;)) <0 If the density changes are
inconsistent

LO otherwise
: : V. "V"
1 Density function s;‘(r)=—| L |
UCSE Ve | .5 SMU




[Guan et al., VLDB’11]

Kendall’'s Tau as The Measure

J Kendall’'s Tau rank correlation as a measure of TESC:

>3 c.n)

r(a,b) = i:;-j:i+1
SN(N-1)

N = [V, |: the number of all reference nodes

O Costly computation!
Sampling + significance testing

UCSB & SMU




Highly positive pairs:

1

Texture vs. 6.22
Image

2 Wireless vs. 5.99
Sensor

3 Multicast vs. 4.21
Network

4 Wireless vs. 2.06
Network

5 Semantic vs. 1.72
RDF

19.85

23.09

18.37

17.41

16.02

[Guan et al., VLDB’11]

Real Events (DBLP)

30.58

32.12

26.66

27.90

24.94

172.7

463.7

123.2

198.2

120.3

z-score > 2.33: significant positive TESC
z-score < -2.33: significant negative TESC

UCSB

Highly negative pairs:

1 Texture vs. -23.63
Java

2 GPU vs. -24.47
RDF

3 SQL vs. -21.29
Calibration

4 Hardwarevs. -22.31
Ontology

5 Transactionvs. -22.20
Camera

-9.41

-14.64

-12.70

-8.85

-7.91

TC: Transaction Correlation

TC

-6.40

-6.31

-5.45

-5.01

-4.26

4.33
1.24
-0.62
3.38

4.85

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY



[Guan et al., VLDB’11]

Several Other Pattern Miners

1 CoPaM: Cohesive Pattern Miner [Moser et al.,
SDM’09]

d Itemset-Sharing Patterns [Fukuzaki et al., 2013]

1 Topological Pattern Miner [Prado et al., TKDE'13]

UCSB < SMU




[Moser et al., SDM’09]

CoPaM: Cohesive Pattern Miner

1 Cohesive Pattern
A connected subgraph satisfying:
(1) Feature subspace cohesion
(2) Densely connected

=1 tennis
DB

Two cohesive patterns:

UCSB < SMU




[Fukuzaki et al., PAKDD’10]

ltemset-Sharing Patterns

a Goal

o To find sets of subgraphs with common itemsets in a large
graph.

vo | {i.65} Ve [di.05.05.0,}
v | Linigd,y || ve | Loy ods)
vy | i) SRR UT AN
vy | iyl || ve [l
v, | i) Vo [ {05,050, )
(a) (b)
Itemset —attributed graph Itemset-sharing subgraphs

with {i1,i2}. _
UCSB X




[Prado et al., TKDE’13]

Topological Pattern Miner

1 A Topological Pattern
A set of vertex attributes and topological properties that strongly co-
vary over the vertices of the graph

UCSB < SMU




[Prado et al., TKDE’13]

Topological Pattern Miner

1 A Topological Pattern

A set of vertex attributes and topological properties that strongly co-
vary over the vertices of the graph

P = {h*.i".BETW™}

The higher the value of
attribute h, the lower the
value of attribute / and the
higher the betweenness
centrality of a vertex.

UCSB




Anomaly Detection in Graphs

[ Various Interesting-ness/Anomaly Criteria

e.g.,
o0 Bgp-lens: anomalies in internet routing updates.
[Prakash et al., KDD’09]

o Oddball: anomalies in weighted graphs.
[Akoglu et al., PAKDD’10]

o0 Heavy subgraphs in time-evolving networks.
[Bogdanov et al., ICDM’11]

J Anomaly, Event, and Fraud Detection in Large Graph Datasets,
Akoglu et al., http://www.cs.stonybrook.edu/~leman/wsdm13/

UCSB < SMU




Anomaly Vertlces/ Regions

1. Target marketing
2. Recommendation systems

UCSB 3. Social influence analysis > SMU

SIM%MAN aaaaaaa




[Li et al., ICDE’13]

Graph Iceberg (i.e., glceberg)

A ggmregate Sore A

(a) Original Graph (b) Ve rtices Arranged by A ggregate Score

UCSB < SMU




[Li et al., ICDE’13]

What aggregate functions?

0 SUM and AVG [Yan et al., ICDE’10]

(a) x's 2-hop neighborhood (b) y's 2-hop neighborhoo d

O Personalized PageRank Vector (PPV) [Page et al., Technical
Report, 1999]
o0 Reflect the proximity from one node to another w.r.t. the
graph structure.

UCSB & SMU




[Li et al., ICDE"13]
Aggregate g-score:

g-score of v: p.(x)+py)

Pﬂ'(“} — EIIJ:E V,qEL[:}Fu{I)'

Aggregate over the Personalized PageRank Vector (PPV) to
define the closeness of a vertex and an attribute g.

UCSB < SMU




[Li et al., ICDE’13]

Forward & Backward Aggregation

Py

g-score of v: p.(x)+p.(y) g-score of v: £(p(v))+f(p(v))
(a) FA (b) BA

UCSB < SMU




[Li et al., ICDE’13]

Results in Customer Network

 Recall indicates glceberg’s ability to retrieve real graph
Iceberg vertices.

| T — o & .
09 +
=08
E FA O
0.7 + PFA —&—
BA - .
0.6 -
05 — : : : : 05 - : : :
0.01 0.02 0.03 0.04 0.05 10 100 500 2000
Error Tolerance, € Number of Random Walks

UCSB £ SMU




[Li et al.,, SDM’14]

Anomalous Regions (i.e., gAnomaly)

@ nfected

O Mot Infected or ff"
Missing Data »
i

O Why does a disease occur more intensively in some portions of
a network?

0 Why do a subset of computers receive most of the attacks in

the past day, and are they therefore targeted attacks?
UCSB o SMU




[Li et al.,, SDM’14]
Data Models

Background: V1© @ Anomaly: v Two generative processes:
anomaly distribution &
® background distribution

\V/ :V(O)UV 1) V (0) ﬂv(l) — O

One overall mixture

P(v;) = le‘gi(k)P(k)(Vi)

With probability 319, v, belongs to
the background component V9, and

A\
with 31 the anomaly component
v,
J Each component is a Bernoulli distribution.

PO

UCSB POv,)=p D" @-p™@)™ FSMU.




[Li et al., SDM'14]
Regularized Data Likelihood

‘QUn-regularized log data likelihood of vertex set V
L(V) =" logP(v,)="log 6P (v,)

dRegularized log data likelihood of vertex set V
L(V)=L(V)-4R,(©)+yR.(6)

o0 Enhance connectivity within each component
» Network regularizer

o Enhance the interpretability of the mixture weights
» Entropy regularizer

UCSB S SMU




[Li et al., SDM'14]
Network Regularizers

Minimize the mean

V@, o 2o e =

v VlN(I) |v eN(l)

igd

Minimize the minimum

RO(@) = Z min|l©, -,

v v eN(i)

UCSB




.. : Li etal.,, SDM’'14
Significance Evaluation | )

VI-distance
Comparison

1

gAnomaly 140 i BAGC 17.8
Q N * 1328 e
Qo8 3 . :
.E g z'.‘ '\I” 133.6 B 08" 17
§7s ] 3 [re—
2 . 139.4 ¢ E -
€ 06 « g 8 g
@ 1332 O = 067 —)k— 17 B
% g 3 , 2
§ 139 E - B - 16.8 2
E 04 i E: & 0.4 = E
. 138.5 4 o o] -8 16.6
5 5 o OBog g 3
g 138.6 & < - 16.4
D o
- o2 138.4 g 02 16.2

138.2 18
0 : : : 0
0 100 200 300 400 500 35 40 45 50 55 60
Size of LCC Size of LCC
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[Li et al., SDM'14]
Case Study on DBLP-IR

o

H. Zeng

Grey: IR

Pink: DM .

. Li

n A.L. Berger

&

J.D. Lafferty

G. Karypls

£ 4

B.R. Schatz



Part |: Brief Sum-Up

J Proximity Pattern v

Q Attribute-Structure Correlations 4/
d Cohesive Pattern  +/

O Itemset-sharing Pattern v

Q Graph Topological pattern

Q Graph Anomaly +/

O Frequent Network Pattern (Part Il)
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Frequent Network Patterns for Social Applications
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Community structure and'dynamics Patterns
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Frequent Network Patterns for Social Applications

Information Diffusion and Viral Marketing Patterns
UCSB MU



Frequent Network Patterns for Social Applications

§ —
i \

t‘}] = New York

Mobile User Trajectory and Location Patterns

UCSB < SMU
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Some Important Characteristics

1 Single-graph setting o
1 Huge network size

J User-specified constraints



Single network mining is not easy

e Support countin? IS tricky when more than one pattern
embedding would be considered in a single data graph.

A A

* The anti-monotone property of support is violated.
* All the frequency-based pruning techniques must fail.
* No infrequent subgraph patterns can be pruned.

U C S B e SMU
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How to fix it?
1 Edge-disjoint

1 Node-disjoint

Overlap graph

Maximum Independent Set
MIS-support

d Kuramochi and Karipus
MIS-support is antimonotone

But MIS-support is too
restrictive!

D0 000

d Harmful overlap support A
d Fiedler and Borgelt A

UCSB



Some Important Characteristics

1 Single-graph setting
1 Huge network size @

J User-specified constraints



Not all patterns are wanted
A Pattern Lattice Perspective

small O Smaller patterns are
affordable to be
enumerated

The number of patterns
quickly explodes as
pattern size grows
larger

The number of large
patterns is small

d

K+1

Pattern size

large

It’s all about different ways to traverse this pattern lattice.
UCSB G SMU_
e



Some Important Characteristics

1 Single-graph setting

1 Huge network size

J User-specified constraints e



Traditional Solution for User-specified Constraints

dMine all frequent patterns
U Pattern candidate generation
1 Frequency checking in the
data graph
JCheck each frequent
pattern for constraints

JOutput those constraint- -8
satisfying ones Enumerate-and-check

Increasing Pattern Size

e}
'-..~

Problem: pattern explosion!

What we really need ---- Blended frequent pattern
mining with constraint-checking
UCSB K SMU
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Requirement Summary

d Single-graph setting
] Be able to handle both single-graph setting
and graph-transaction setting.

1 Huge network size

J Avoid enumerating all the pattern candidates
before reaching those of interest.

J User-specified constraints
(1 The mining should be “direct”.

U C S B }Xi SMU
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Representative Work

QdGraph-transaction setting
dAGM, FSG, gSpan, FFSM, etc.

dFor mining complete pattern set.

dSuffers from scalability issue for large patterns
and input graphs due to exponential result size.

JSPIN and MARGIN

dMining maximal patterns.

Still suffers from scalability issue as the number
of maximal patterns could be formidable.

JORIGAMI

dFor mining a representative pattern set.
Returns a pattern set of mixed sizes.

U C S B }Xi SMU
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Representative Work

Single-graph setting
ASUBDUE and SEuS

Pioneer work for mining complete pattern set.

Use different heuristics and work well for mining
smaller patterns on certain classes of input graphs.

JdGREW

Mining incomplete pattern set.

Able to discover some large patterns, yet no
guarantee on the pattern coverage of the answer set.

AMoSS

dState-of-the-art for mining complete pattern set.

dSuffers from scalability issue for large patterns and

iInput graphs due to exponential result size. 3
UCSB &f SMU__



SpiderMine: Frequent Large Patterns
[Zhu et al. PVLDB’11]

« Graph data is getting ever bigger, and so are

the patterns.
» E.g., social networks like Facebook, Twitter, etc..

« Often, large patterns are more informative in

characterizing large graph data.

* E.g., in DBLP, small patterns are ubiquitous, larger
patterns better characterize different research
communities.

« E.g., in software engineering, large patterns reveal
software backbones

U C S B }Xi SMU
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Top-K largest frequent patterns

 To capture them exactly, no more and no less,
we would have to generate all the smaller
ones, which we cannot afford.

* A probabilistic solution, with user-defined error
bound.

« SpiderMine --- designed to mine the top-K
largest frequent patterns whose diameters are
bounded by Dmax With a probability at least 1-¢

U C S B }Xi SMU
SINGAPORE MANAGEMENT
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Design Ideas

* How to capture large graph patterns?

 Observation:

o Large patterns are composed of a large number of
small components, called “spiders”, which will
eventually connect together after some rounds of
pattern growth.

U C S B e SMU
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r-Spider

* An r-spider is a frequent graph pattern P such
that there exists a vertex u of P, and all other
vertices of P are within distance rto u. u is
called the head vertex.

U C S B }Xi SMU
SINGAPORE MANAGEMENT
UNIVERSITY



SpiderMine Overview

1) Mine the set S of all the r-spiders.
2) Randomly draw M r-spiders.

3) Grow these M r-spiders for t iterations. During
the process, merge two patterns whenever
possible.

4) Discard unmerged patterns.

5) Continue to grow the remaining ones to
maximum size.

6) Return the top-K largest ones in the result.

@ t=Dna/2r

U C S B }Xi SMU
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Large patterns vs small patterns

d Why can SpiderMine preserve large patterns
and prune small ones with good chance?

1) Small patterns are much less likely to be hit in
the random draw.

¢ First pruning at the initial random draw

2) Even if a small pattern is hit, it's even less
likely to be hit multiple times.
% Second pruning after t iteration growth

3) The larger the pattern, the greater the chance

UOSR It 1s hit and saved. o



How many r-spiders to draw?

LEMMA 2. Given a network G and a user-specified K, we
K
Vmin M
hCL’U(Z Psuccess Z (1 — (M —l_ 1)(1 - m) ) .

With user-defined error threshold €, we solve for M by
setting

(1—(M+1)(1—|‘§vg—g;|)M)K =1 —¢

THEOREM 1. Given a graph G, the error bound €, the
diameter upper bound Dpq., the support threshold o and
K, with probability at least 1 — €, SpiderMine returns a set
S of top-K largest subgraphs of G such that for each P € S,
| Psup| > 0 and diam(P) < Diag.

U C S B Ay
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Why Spiders?

(1) Reducing combinatorial complexity
Observation:
o Spiders are shared by many large patterns.

o Once obtained, they can be efficiently assembled to
generate large patterns.

LDOOLOOG®
© B ®

UCSB K SMUL.



Why Spiders?

(2) Reducing graph isomorphism checking

L We propose a novel graph pattern representation
--- spider-set representation.

O A pattern is represented by the set of its constituent
r-spiders.

O Two same patterns must have the same spider-set
representation.

d Two same spider-set representations highly likely
correspond to the same pattern.

 The larger the r, the more effective the pruning.

UCSB K SMUL.



DBLP Collaborative Patterns

§-—3 P—p—B g B
J \ P J\
s s N/ s 8\\JZ;K\P
B— s — TR he el
B/ 5 A %
s "B S
Js J J B
An Embedding of Cluster 1 An Embedding of Cluster 2 An Embedding of Cluster 3
P.Kroumiger M-Rorg ncaminie HiGonzalez
sheigagpzs i/ T W
v Luum ¢ Jan N KWa
C.Boumbm| |~/ PHupath N T g M.Hua
R.Schnoldor\\ / A.Pryakhin M.Valcho PSY XHe— JHan —___
"~ H.Kriegel -~ I «Valchos — P3.Yu_ ------- KWu V. JPel
B.Braunmuumlller. -~ — M.Schubert AN N
SBrocheisen | | "\ B seogor D.W Cornell | LM zhas \ C.Chen
M.Poumitke | M.Pfeifle c.ﬁl R.Zhang C.Deng \
J.Sander s B.Long XL X.Yin
Total # of embeddings:15 Total # of embeddings:12 Total # of embeddings:20
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SpiderMine’s response to the requirements

d Single-graph setting
d Handles overlapping embeddings

1 Huge network size

] A probabilistic framework to capture only the
top-k largest frequent patterns by leaping
pattern growth.

J User-specified constraints

(J Pushed deep into the mining process by

serving as the probabilistic bound

U C S B }Xi SMU
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SkinnyMine --- Catching the long and

skinny ones
[Zhu et al. SIGMOD’13]

dinformation
diffusion patternsin =

social network

dViral topics, rumors,
etc.

dDiffusion paths are
long backbones,
associated ego-
networks and local
communities are of
small radius

UCSB K SMUL.



A Motivating Example

dMobile trajectory patterns in LBS and
Check-in data

U Trajectories are long backbones
UAssociated point of interest

UCSB < SMU
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Skinny Graph Patterns

DEFINITION 8. [/-Long 0-Skinny Pattern Mining]
Given a graph G, a frequency threshold o, a length | and a skin-
niness bound 9, the problem of [-Long 0-Skinny Pattern Mining
((1,6)-SPM) is to find all l-long §-skinny subgraphs P of G such
that |E|P]| > o.

d, a, b, f.
A\ \/\ /
a— bz— ba— c—a— ds— e
/ \
eu_ d13

A 6-long 1-skinny pattern
UCSB KESMU__
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Existing Mining Paradigm |

JEnumerate-and-Check

L Exhaustive enumeration of
all frequent patterns and
check if constraints are
satisfied

L Complete pattern result

L Computationally unaffordable
due to pattern explosion
Representative algorithms
QgSpan, AGM, FSG,

L Borgelt and Berthold,
FFSM, etc.

Increasing Pattern Size

g

UCSB oMU .

INGAPOR
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Existing Mining Paradigm I

dOutput Space Sampling

LA representative random
sample of all frequent
patterns and check if
constraints are satisfied

Efficient

Returns only a sparse subset
of the target result set

Representative algorithms
AORIGAMI, SpiderMine, etc.

Increasing Pattern Size

Output space sampling

UCSB K SMUL.



Paradigm Comparison

dWhat we actually need
dComplete result
L Affordable computation time
LAgile mining in terms of constraints

A mining framework that is “direct”, “light” and “precise”

A pattern lattice perspective for constrained frequent pattern mining

DL

N

w

S

=

©

Q

£ o=
g

S,

g —=

/ -
Direct mining: SkinnyMine Enumerate-and-check Output space sampling

UCSB < SMU
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Design Ideas
dMinimal Constraint-Satisfying Pattern

Easy to compute with a low cost

dConstraint-Preserving Pattern Growth
Non-redundant pattern generation

J How to generate each
skinny pattern exactly
once?

1 Canonical diameters

8

Direct mining: SkinnyMine

Increasing Pattern Size

-

UNIVERSITY



Canonical Diameters

dEach pattern has a unique canonical diameter.

dThe complete result set is partitioned by canonical
diameters.

Patterns can be generated uniquely if they are

generated only from the set corresponding to their
canonical diameters.

UCSB K SMUL.



Algorithm Overview

dTwo stages

dStage |: Mining canonical Iteration 0:

diameters a—b—b—c—a—d—e,
QStage Il: Growing canonical Iteration 1'

diameters to patterns by level. d, a, f

RN /"

constraint a— b h' —C—a— d —e
1 2 6 7

/3 4 i

enumerate [ Exponential

Target
number

—> Pattern
Set

of candidates

exhaustive Traditional ‘
traversal Mining e /) e'1 2 13
: L ]
minns |1 b | Iteration 2:
requests | — C‘.,I 4
'O/—&c mining direct \ \ / \ /
,, N vty requests mining ;’::ti;t’ 31 bz b3_ cd_ 35_ dﬁ_ E7
. Yo,
” / Set / \
‘X L3 G!"' Direct e,—— d
Indexing l — Mining - 2 13
\_.--""-.-) \
Minimal
Constraint-satisfying
Patterns

UNIVERSITY



Maintaining Canonical Diameters

I.

UCSB

Constraint I: Diameter is not increased.
This means D(P’) < ID(P), which guarantees that the edge
extension does not create a longer diameter.

. Constraint I1: I still realizes the shortest distance be-

tween vy and vr.

This means in P’, Dist(ve,vr) = |IL| and therefore D(P")
> ID(P), which guarantees that the edge extension does not
shorten the distance between vy and vr.

. Constraint III: I. < I.” for any newly generated diameter

. of the same length.

|Constraint Il |

/ ,e15
¢+ 4——|Constraint ||

da a9 f1;
\ \/ \ /
a— b b—c—a—d—

7
/ \ “s &—[Constraint 11
c16

e ,— d13

SIN
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Efficient Constraint Maintenance

QFor each node v on the current growth frontier, we maintain
two distances D*v_H and D*v_T. When adding new edge or
new node u, we only need to check these two distances.

Constraint I: Diameter is not increased

Dy <D(P) and Dy <D(P)

[7,3]
L5
,? &—|Constraint |

da da, I"’111 f11 [6,2]
A\ \/\
Ha—b—b—c—a—d—e -
A \
€ d13

D(P)=6
UCSB K SMU_



Efficient Constraint Maintenance

For each node v on the current growth frontier, we maintain
two distances D*v_H and D*v_T. When adding new edge or
new node u, we only need to check these two distances.

Constraint Il: The shortest distance between H and T has not been

shortened
Dy + Dy > D(P)
[3,2]
2 )
da d, I:’111[3,4] f11
\ \/\~_ /
~
Ha1 b:r: ba c4 5~da e?T
/ \
e, d13
D(P)=6



A General Direct Mining Framework

dTwo essential properties for constraints

PROPERTY 1. [Reducibility] A graph constraint C'is called re-
ducible if there exists a positive integer k and a nonempty set S
of graph patterns such that for each P € S, |E(P)| > k and
fc(P) =1, and for any pattern P' C P, fc(P') = 0.

PROPERTY 2. [Continuity] A graph constraint C'is called con-
tinuous if for each pattern P such that fc(P) = 1, one of the
following is true: (1)P is a minimal constraint-satisfying pattern;
(2)there exists at least one pattern P’ such that P' C P, |E(P")| =
|E(P)| — 1and fc(P') = 1.

UCSB K SMU_
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DBLP Collaborative Patterns

JReal Data: DBLP

1 2 3
Pe ®@ @
se @0
Jo0o O
BeOO o o o 339 j 3338
1 5 10 15 20

Figure 21: DBLP skinny pattern example 1: A temporal col-
laborative pattern across 20 years.

2 BN

1 5 10 15 20

ssss
xxxxxxxxx



Information Diffusion Patterns
JReal Data: Sina Weibo

UCSB < SMU




SkinnyMine’s response to the requirements

A Single-graph setting
1 Handles overlapping embeddings

1 Huge network size

J A direct mining strategy to reach target patterns as
quickly as possible, and locally identify only those of
interest

 User-specified constraints

J Pushed deep into the mining process by

guaranteeing the non-redundant pattern generation
UCSB K SMU_
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Collaborations Are Everywhere

Question answering Customer service
In a social network

. ﬁK

Collaborator finding
in the academic world

m-n-d{ a
:uf plumber

s To SCUBA
ch ag

Software development CROWD < OUTSOURCING

github .-u"ra;,
-2 L

ol
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Collaborations In This Talk

dPeer Interaction
o Patterns
o Prediction
o Optimization

dTeam Joint Collaboration
o Patterns
o Prediction
o Optimization

UCSB < SMU




Collaborations In This Talk

dPeer Interaction
o Patterns
o Prediction
o Optimization

dTeam Joint Collaboration
o Patterns
o Prediction
o Optimization
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Collaborative Networks

Information Flow

Ad Hoc Wn:;;iiﬂmqg

IntéFéit:iiqp I,'So_t_;_ialﬂ':letwork

Collaborative Network

UCSB

Enterprise problem ticket

1D Day Entry

81 05-14 | New Ticket: DB2 login fail
81 05-14 | Transfer to Group SMRDX

81 05-14 | Contacted Mary for recycling
81 05-14 | Transfer to Group SSDSISAP
81 05-14 | Status updated ...

81 05-15 | Transfer to Group ASWWCUST
81 05-15 | Web service checking

81 05-18 | Could not solve the problem.
81 05-18 | Transfer to Group SSSAPHWOA
81 05-22 | Resolved

Eclipse bug record
Table 1: Eclipse bug activity record.

Bug description:
NullPointer Exception referencing non-existing plugins.

Who When Description

dean 2001-11-M Aa:lda:_l component Core.
07:17:38 EST | Reassigned.

rodrigo 2001-11-20 Added component UL
18:53:40 EST | Reassigned.

dejan 2002-01-09 Converted the unresolved
20:46:27 EST | plugin to a link., Fixed.

https://bugs.eclipse. org/bugs/shov_activity.cgiTid=325

—
SINGAPORE MANAGEMENT
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Social Networks VS. Collaborative Networks

completed

Traditional Social Networks Collaborative Networks
(Facebook, Twitter ...) (problem solving, team work ...)
* Non-task driven information diffusion eTask-driven information flow

UCSB < SMU




We want to analyze...

UCSB

How do experts make routing decisions?
Who have made inefficient routing decisions?

How to optimize the routing performance through targeted
training?

Can the completion time of a task be predicted so that one
can act early for difficult tasks?

In order to understand human factors in real task routing and
the inefficiency bottleneck, take early actions, and further
improve real collaborative networks.




We want to analyze...

e How do experts make routing decisions?

e Who have made inefficient routing decisions?

e How to optimize the routing performance through targeted
training?

e Can the completion time of a task be predicted so that one
can act early for difficult tasks?

If we use intelligent algorithms to replace humans,
 Can we predict next best experts?

e How to model the collaborative networks?

UCSB < SMU
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We want to analyze... ~

K How do experts make routing decisions? \

e Who have made inefficient routing decisions?

e How to optimize the routing performance through targeted
training?

e Can the completion time of a task be predicted so that one

k can act early for difficult tasks? /

e Can we predict next best experts?

e How to model the collaborative networks?

UCSB < SMU




[Sun et al., KDD’14]
Observations on Routing Decision Making

Observation 1
Tasks with similar content, but different routing sequences
e.g., two problem tickets in IBM IT service department

Task ID Task Content Routing Sequence
492 Need password reset for kasperj on 12 =505 - 1914->
machine "pathfinder"". Route to 1915 =>1916 =247
NUS_N_DCRCHAIX
494 Need password reset for jhallacy on 12 > 13> 86
machine ""pathfinder"". Route to
NUS_N_DCRCHAIX

Routing decision is not deterministic, given a certain
task.

UCSB S SMU




[Sun et al., KDD’'14]
Observations on Routing Decision Making

Observation 2
An expert might not directly send a task to a resolver.

—— = —

Is it because he does not understand the task very well, thus
randomly routing it? Or

he believes the other expert has a better chance to solve it, or a
better chance to find the right expert to solve it?

UCSB & SMU




[Sun et al., KDD’'14]
Observations on Routing Decision Making

Observation 3

An expert tends to transfer a task to some expert whose expertise is
neither too close nor too far from his own, i.e., not necessarily the final
resolver!

0.2

©
-
(@) ]

log-normal density:

[na-uf
f Ocle 205°

A

o
o
o

Normalized Transfer Frequency
o

>
Relative Expertise Difference A

UCSB MU
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[Sun et al., KDD'14]

Modeling Expert Decision Logic

U A Two-Phase Assumption

When an expert transfers a task,

Phase | Phase Il

—-——
el o T

Candidate pool establishment

UCSB




[Sun et al., KDD’'14]
Modeling Expert Decision Logic

6 particular routing patterns

Phase |
A
Task-Neutral Task-Specific
Routing (TNR) Routing (TSR)
Uniform Random (UR) TNRY TSR ur
Phase Il 1 | Volume-biased Random (VR) TNRY TSRY
Expertise Difference (EX) TNR® TSR ex

UCSB < SMU




[Sun et al., KDD'14]
Modeling Expert Decision Logic

1 Generative model

Assume: the routing decision of an expert is generated
through a mixture of 6 routing patterns.

Decision generation process:

For each expert €i to transfer tasks,
-Draw the mixture weights of 6 routing patterns:

6. ~ Dirichlet(«)

(reflecting €i’s preferences over adopting different routing patterns)

-For each task [ to be transferred by expert €;,
* Draw a pattern label: Z;, ~ Mult(6,)
* Draw an expert from the candidate pool to receive f.

UCSB S SMU




_ [Sun et al., KDD'14]
Evaluation

O Evaluation Measure

o Completion Time (CT): Number of experts contacted before a
task Is resolved

o Mean Absolute Error (MAE)
MAE=— - > |CT,—CT,|
| TeSt Set | teTest Set

[ Results

Models MAE
TNR+TSR 0.08

Miao et al. 0.68
Support Vector Regression 0.80
Bayesian regression 0.84

UCSB L SMU




[Sun et al., KDD’14]
Experiments

1 Resolution Efficiency of Routing Patterns TNR vs. TSR

Experts favoring TNR | Weight on TNR patterns > Weight on TSR patterns.

Experts favoring TSR | Weight on TNR patterns << Weight on TSR patterns

DB2
0.7 . ; . . :
I Experts favoring TSR
0.6} [ 1Experts favoring TNR|
0.5
=)
& 04f
C
3
o 0.3r
o
0.2
0.1
1 2 3 4 5 6 7 8
UCSB Number of Remaining Steps =




[Sun et al., KDD’'14]
Application: Optimizing Collaborations

O Which eX|toert should be trained first to adopt the most efficient
routin 9pa terns? How much efficiency improvement can we
expect”

o0 Random: random selection
o Frequent transferor: select the expert who transfers the most tasks

0 Least efficient: select the least efficient expert

Random 0.27

Frequent Transferor 0.91

Least Efficient 1.21
Recommendation using our model 2.75

UCSB < SMU




We want to analyze...

e How do experts make routing decisions? X 4
e Who have made inefficient routing decisions? v

e How to optimize the routing performance through targeted
training? N 4

e Can the completion time of a task be predicted so that one
can act early for difficult tasks? 4

e Can we predict next best experts? ¢

e How to model the collaborative networks?

UCSB S SMU




: : [Shao et al., KDD’09]
Ticket Resolution

ID Tima Entry

28120 | 2007-06-14 | New Ticket: DB2 login failure
28120 | 2007-06-14 | Transferred to Group SMREDX

28120 | 2007-0b-14 | Contacted Mary for recycling WAS

28120 | 2007-06-14 | Transferred to Group SSDEISAF
28120 | 2007-0b-14 | Status updated ...

28120 | 2007-068-15 | Transferred to Group ASWWCUST
28120 | 2007-05-15 | Web service checking
28120 | 2007-06-18 | Could not solve the problem.

28120 | 2007-06-18 | Transferred to Group S35APHWOA
28120 | 2007-06-22 | Resolved

O Managing problem tickets is a key issue in IT service industry.

O The efficiency of solving tickets highly depends on how they are
routed.

O How to develop efficient automated algorithms for ticket routing?
UCSB o SMU




[Shao et al., KDD’08]

Automate Ticket Resolution:
Sequence Mining Approach

A set of tickets reported to
the expert network 7 = {t1.t2, ... 1., }

An interconnected
network of experts CAN "

G={91.92.....91}

Goal: Minimize the average
length of routing sequences Routing sequence of

Z”’“ |R (t:)) tickets
S = R(t) = ginit(t)— > ...— > Gres(t)
UCSB < SMU.




[Shao et al., KDD’08]

Markov Modeling

Capture ticket transfer patterns embedded in historical

resolution sequences

o State: an expert group holding the ticket

o Transition probability: given the previous groups, the probability of
the ticket being transferred to group gi, in the next step

P(gi]Sw)={ '\(l)(gi,&k))/N(S(k)) it N(Sw)

# of instances that a ticket is transferred
to group gi, after being processed by
S(k)

else

# of instances with a set of group
transfers

UCSB




[Shao et al., KDD’08]
Routing Algorithms

UFirst-order Memoryless (FM)
0 Relies on the current state to make transfer decisions

(1)

008 003 %“-1

0.45 2)
e
25 0.25 C
0.65 0.4
0.450.75 0.35
1 l 1
0.35 ' (3)
¢ BD
(7 8 0.1

0.55

i 6) 06
&j "
7 i4)

(3)
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[Shao et al., KDD’08]
Routing Algorithms

First-order Multiple active State (FMS)

o Ticket transfer decision is based on any one of the past states
(instead of the current state).

UJ

ﬂ

(2)
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[Shao et al., KDD’08]
Routing Algorithms

dVariable order Multiple active State (VMS)

o With multiple active states, use higher-order whenever it can
make more confident prediction

(1)
\D By Mext Pl | S
0.02 0.03 5 01 group g

~ {AC E 0.6

(.45 (2) G L
w0 025 e » = [ALC) D 0.2
0.65 {AC) B 0.1
045075 0.35 {AC) G 0.1
1 K [EC) F 0.6
[EC) G 04

{4 B . B
! 06 (b 2™ arder probability table
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[Miao et al., KDD’10]

Incorporate Ticket Content:
Generative Models

A set of tickets reported to o5 Word description of tickets
the expert network logon | [V)) = {*u,-'l, W, ..., w.”}
T = {tlrtgt'“tt?ﬂ-} ¥

An interconnected
network of experts

g — {5’1:921 ""_lgL}’

Goal: Minimize the average length ——— é)

of routing sequences Routing sequence of

Z”“ R(t:)! tickets
1—1
S = R(t) = ginit(t)— > ...— > Gres(t)

UCSB o< SMU-




[Miao et al., KDD’10]

Resolution Model (RM)

dEach expert has an expertise profile

0 An expert is likely to be able to resolve tickets similar to
what he/she has resolved previously

Tickets resolved by expert E

P, = [P(wi|gi), P(w2|gi), ..., P(wn|gi)]"

UCSB & SMU




[Miao et al., KDD’10]

Transfer Model (TM)

UEXxpertise awareness between experts
0 An expert transfers similar tickets to another expert

Tickets transferred from expert B to expert F

P..; = [P(wiley;), P(wales;), ..., P(walei;)]"

UCSB < SMU




[Miao et al., KDD’10]

Optimized Network Model (ONM)

dTransfer profiles optimized for the entire expert
network

c=1]1] PR

teT
P(R(t)[t) = P(g1[t)P(g2|t,g1)P(g3lt,g2)P(galt, g3)
P(tle:;)P(g;lg:)
Z(t, gi)
(IMw,ce Plwrlei;) =) P(g;g:)
4(t, gi)
Z(t,gi) = 2. 4.cg P(tleij) P(gilg:)

P(g;lt, gi)
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[Miao et al., KDD’10]

Routing Algorithms:
Ranked Resolver

dMatch the ticket content with the expertise profiles

P(D) = 20%
DB2 1%
P(A) =30% Logon 2% A:2.2 e-4
DB2 10% @ failure 20%
Logon 5% y,
\
DBJ failure 15% / \ @
@ V7 D: 8.0 e-6
failure . // ~_
\\ // ‘ P /®

DB2 5%
Logon 1%
failure 1%
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[Miao et al., KDD’10]

Routing Algorithms:
Greedy Transfer

dMatch the ticket with the transfer profiles

Logon
failure

Rank(g;) o~ max P(g;|t,gi)
gicR(t)

P(g;|9:) [:wkEt P(wglei;) Wkt

P(gjltrg'i) - Zg;eg p(g”gi)HwkEtP(Wk|£i!}f(wk-*t)
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[Miao et al., KDD’10]
Routing Algorithms:
Holistic Routing

JAIl possibilities are explored

UCSB < SMU




[Miao et al., KDD’10]

Problem Category AlX Problem Category WINDOWS
7H-=—VvMS 9| —=—=VMS
—+—RM ——RM
6| ——TM Bl ——Tm
—e—(ONM 71 —e—(ONM
o |~ Greedy x |7 Greedy
® b 6
= =2
5
2t 4
1 1 L 1 3 1 1 1 1
2 4 6 8 10 2 4 6 8 10
Number of steps in log Number of steps in log
UCSB 5 SMU
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We want to answer...

e How do experts make routing decisions? X 4
e Who have made inefficient routing decisions? 4

e How to optimize the routing performance through targeted
training? 4

e Can the completion time of a task be predicted so that one
can act early for difficult tasks? X 4

« Can we predict next best experts?

e How to model the collaborative networks? <

UCSB S SMU




[Miao et al., WWW’12]
Collaborative Network Observations

. Eclipse network b Netbeans network . Enterprise network
Huﬁ"ﬂﬂ-g | Hh"é‘ge ° ® 86000y I
g -1 - e T
07 ] oy T 10
. - _ =107 =107 _ :
x 10 "o Outgoing degree distribution® ¥ _[| ¢ Outgoing degree distribution ¥ _[| © Outgoing degree distribution %8
& = Incoming degree distribution & 107F 2 Incoming degree distribution Z107f| = Incoming degree distribution b, 3
107 Truncated power—law i i Truncated power-law . Truncated power-law o
- - -approximation: & 10 "f|- --approximation: 10"} |- - -approximation:
g L_0=1.73 ke (1400) = 0=184,ke(1.800) =15, ke (2,400) :
10° 10’ 10° 10’ 0’ 10° 10’
Degree (k) Degree (k) Degree (k)
Figure 2: Degree distribution of collaborative networks.
. Eclipse network . MNetbeans network . Enterprise network
107 - - 10 9 . : 10 S -
@ 0 G
41 - 3
g, ~Q
107t “a 1 __ 107 "\ — 107 e
o w w
Al Al Al
) L2
& 107 © Routing step distribution ] = 107 = Routing step distribution - & ,o4| © Routing step distribution
Truncated power—law Truncated power—law ¥, % Truncated power-law
---approximation: = - - -approximation: “ - —-approximation: ‘QEID
10 @=4.04, s=(3,1000) 1 10 o=4.14, s=(3,1000) - 0=3.70, 5=(4,1000)
: - 10 :
a 1 (i} 1 ] 1 2
10 - 10 10 10 10 10 10 10 10
Routing steps (s) Routing steps (s) Routing steps (s)

Figure 3: Routing steps distribution of problem solving in collaborative networks.
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o Eclipse or Netbeans network

* Developers are loosely organized

e Lower clustering coefficients

o Enterprise network

« Agents are more organized in groups by specialty

« Higher clustering coefficient

[Miao et al., WWW'12]

Collaborative Network Observations
Clustering effect

Clustering coefficient of studied networks

UCSB

Eclipse NetBeans Enterprise
Network Network Network
0.198 0.21 0.35

e Agents inside a group is more likely to collaborate with each other




[Miao et al., WWW’12]

Modeling Approach

U Network Model
o Simulates static network connectivity

dRouting Model

o Simulates dynamic human behavior in information
routing

UCSB ¢ SMU_




[Miao et al., WWW’12]
Network Model: Simulation results

Real
; Eclipse network ; Netbeans network Enterprise network
10 == ' ' 10 == ' ' 10° — : .
ol “_“"-1,‘ ] o't “‘f;_,_:__'_ 107 l‘-".'u:'*-"-.‘___
— * Al . P -
x 107 Outgoing degree distribution] . x Outgoing degree distribution| "%, X Outgoing degree distribution| %
E |r|[‘,0mir|g dEﬂFEE distribution ~ :"._ & 10 7 |nc0ming degree distribution ”:\1 E’H} 4 |I'ICCI|T'Ii|'Ig dEgreE'.‘ distribution T
107 Truncated power-law ] . Truncated power—law ' » Truncated power-law
- --approximation: A 10 |- --approximation: 10 (-~ -approximation: 1
3 o=1.73, ke(1,400) 5 o=1.84, k=(1,800) w=1.5, ke(2,400)
10 : : 2
10° 10’ 10° 10° 10 0 10" 10/
Degree (k) Degree (k) Dearee (k)
Simulation
Simulated Eclipse network Simulated Netbeans network Simulated enterprise network
il o (U]
10 - : 10 . : 10— = :
h""-..__ - -"'-\.‘__\-‘%-\- -h:\-‘-"‘-..‘_‘
1[]_1_ “"-,.‘_ ] 10 F ‘:"-‘-‘-.._' E 10—1_ -.'-.""._-_-_:h
= =407 \n\ ] = Ty
A -2 Al - — - T Al -2
x 107f[ - Outgoing degree distribution 1 x _f| ~ Oulgoing degree distribution( "%, »¢ 10°F - Outgoing degree distribution Q\%
o Incoming degree distribution| ¢ 10 f| ~ Incoming degree distribution L o Incoming degree distribution il
107 Truncated power-law . i, Truncated power—law ; 107 Truncated power—law i
- -—approximation: b 10 ¢|- --approximation: 3 -- -approximation: A
. a=1.73, ke (3,400) : a=1.84, ke (2,400} - a=1.5 ke (3,400) :
e 10 0 10° 10 0 10° s 10 0
Degree (k) Degree (k) Degree (k)
UCSB < SMU

SINGAPORE MANAGEMENT
LINIVERSITY



[Miao et al., WWW'12]

Routing Model:
Simulating Task Execution

dintuitions

o If an expert cannot resolve a problem, she tends to
forward it to a neighbor “closer to resolver”

o If an expert doesn’t know which neighbor is closer to
resolver, she tends to choose a well-connected
neighbor who is more likely to be connected to the
resolver

o Among all neighbors, an expert randomly chooses
one to forward the task based on some probability
distribution

UCSB K SMU_

UNIVERSITY



[Miao et al., WWW’12]
Routing Model: Simulation Results

Real
. Eclipse netwark . Netbeans network . Enterprise network
10 ' 10 ' 10 T
_ e -2 It _ e %
_ o _ 105 & 107} et
Al Sy, Al L Al g
w T, W o w i
& 107 Routing step distribution| < & 107" Routing step distribution| ~._ & 1o*|| ~ Routing step distribution T
Truncated power—law L Truncated power-law N Truncated power—law LY
- - -approximation: ) _||---approximation: -- -approximation:
107l @=4.04, se(3,1000) 107 =414, s2(3,1000) .|| @=3.70, s=(4,1000)
10° 10 10 10° 10 10 0 10° 10' 10°
Routing steps (s) Routing steps (s) Routing steps (s)
Simulation
Eclipse network Netbeans network Enterprise Netwark
10° B . 10° ¢ 10° T
-9 G -1 L _
107 . 10 107}
w2t et w07 T w .
Sjl. 10 L M b N0
e = - - "'\ @r = \\\ a i
& 107  Simulated routing steps| -, 10 Simulated routing steps| -~ & Simulated routing steps| s,
- Truncated power—law i 10l Truncated power-law W 13| Truncated power—law ,
107} -~ -approximation: - --approximation: * ~--approximation: '
a=4.16, 5=(4,1000) w0l =43, s=(3.1000) ' - 0=3.53, s5&(6,1000)
10° 10' 10° _ 10 10" , 10
Simulated routing steps (s) Simulated routing steps (s)

Simulated routing steps (s)

Note: Simulation results were obtained by running proposed routing model on a 2-D network topology, which is a

neighborhood-preserving representation of real collaborative networks, using the method of spectral embedding.
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[Miao et al., WWW’12]
Agent pool optimization:
Putting the models in use
O Environment
o A problem management function of an IT service provider, consisting
of 5000 agents with varying expertise
d Business Problem

o Constantly restructure agent pools to accommodate the evolving
workload and human resource availability, while maintaining efficiency
in problem resolution

o Correct initial dispatching (with
probability p) is also critical to
Improving routing efficiency 5 ot

UCSB 20 40 60 80 100 sSzmU
Number of expertise domains (K) e

g
.u... -

0 Trade-offs = ||e-p=075
o 34' +p=08
o Dividing agents into smaller pools 2 ||-p=085
C ey ) o 3.2t—+p=0.9
o Dividing agents into larger pools y —-p=0.95
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Q
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[Heidari et al, AAAI'13]

How to effectively organize workforces?

Problem Definition

UCSB

o Each task is associated with one difficulty value x
o Each worker i is characterized with their ability w_i
o0 Each worker can solve the task if and only if x<=w_|

o If a worker cannot solve a given task, the task must be forwarded
to a worker of greater abllity.

Goal:

Given a set of worker abilities W and a distribution P over task
difficulty, design efficient forwarding structure, that minimizes both
the maximum workload of any worker, and the number of workers
that need to attempt a task.




[Heidari et al, AAAI'13]

How to effectively organize workforces?

JResults

o0 Omniscient workload
» Assign a task to any worker that is capable of solving it.

» For any W and task difficulty distribution P, precisely
characterize the optimal omniscient maximum workload M

o Near-Optimal depth-workload tradeoffs

» By hierarchically arranging the workers in balanced b-ary trees,
we can simultaneously obtain a multiplicative factor of b2 of M in
terms of maximum workload, with a resulting depth of

log(n)/log(b).

UCSB S SMU




Collaborations In This Talk

d Peer Interaction
o Patterns
o Prediction
o Optimization

d Team Joint Collaboration
o Patterns
o Prediction
o Optimization

UCSB i< SMU




Collaborative Teams

O Work together to produce music, movies, games, and other
cultural products.

o Wikipedia
o0 Open Source Software (OSS)

Questions:
J How do teams form?

L What factors will influence the success of teams?

UCSB < SMU




[Settles et al., CHI'13]

The Formation and Success of Online Creative
Collaborations

Q Existing theories on common bond, social identity, and social
exchange [Kraut et al., 2007, Taifel et al, 1982, Emerson et al.,
1976]

o Communication richness

o0 Shared interests

o Status within the community
o Balance of efforts

UCSB & SMU




[Settles et al., CHI'13]

The Formation and Success of Online Creative
Collaborations

U Data
o February Alboum Writing Month (FAWM)
6116 users; 39,103 FAWM songs

U Goal: to predict whether a pair of users posted a collaborative
song to the website or not.

O Method
O Logistic regression

UCSB & SMU




[Settles et al., CHI'13]

The Formation and Success of Online Creative
Collaborations

a Features:

Various Paths that can
connect two users in 9 e

FAWM network ce ntrality tag
e.g. comme nted &
A-->follows--B, follows g
ﬁ=[l 2

A<--messaged--B messaged -

wrote

centrality tag \
wrote—-

Figure 1. A small example subset of the FAWM network.
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[Settles et al., CHI'13]

The Formation and Success of Online Creative
Collaborations

dResults
Method AUC PP@1
Path-based regression [31] 0.990 0.344
Baseline random walk |30] 0.982 (.0R7
Adamic & Adar [4] (.053 * 0.005 ***
Matrix factorization (SVD) [28] 0.865 ** 0.133 **

=% p - 0.001 **p<00] *p<0.03

Table 1. Evaluation of link-prediction methods, in terms of area under
the ROC curve (AUC) and personalized precision at rank one (PP@1).
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[Settles et al., CHI'13]

The Formation and Success of Online Creative
Collaborations

J Results

Key findings on team success:
1. Balance of effort improves satisfaction.
2. Higher-status partners may enjoy Collabs less.

3. Frequent communication helps (usually).

UCSB & SMU




[Settles et al., CHI'13]
The Formation and Success of Online Creative
Collaborations
dResults

Key findings on team formation:
1. Communication Exchanges predict collaboration, such as

following a partner’s song feed, direct messaging, and
commenting on the partner’s songs.

2. Collabs form out of shared interests, but different skills
3. Small status differences are positively associated with collabs.

(Neither too different, nor exactly the same. similar to our
finding in KDD'14)

UCSB S SMU




[Luther et al., Group'10]
Success Factors in Online Creative
Collaboration

U Collaborative animated movies (Collab)

o Newgrounds: 2,200,000 registered users; 180,000 animated
movies and games

O Success definition:
o The completion of a Collab

UCSB & SMU




[Luther et al., Group'10]
Success Factors in Online Creative
Collaboration

dThree factor types:

o Planning & Structure

» Collabs with initial planning and structure, especially technical
specifications, are more likely to be successful.

0 Reputation & Experience

» Animators who are well-known in the community are more likely to
lead successful collabs.

» Animators who have experience with Flash and past collabs are
more likely to lead successful collabs.

o Communication & Dedication

» Collabs whose members frequently communicate are more likely to
be successful

» Collabs whose leaders frequently communicate are more likely to
be successful.

UCSB S SMU




[Luther et al., Group'10]

Success Factors in Online Creative
Collaboration

EXxperiments

Completed Collabs Failed Collabs

Variable

heme™*

0.63

satekeeping™ 0.39

ommunication®* 0.83 | 0.90

Table 1. Comparison of first post attributes for
completed vs. failed collabs, = p <0.05, = p < 0.01.

Each row stands for one category of planning/structural elements in the first
posts of Collab threads. Completed Collabs tend to have more planning and

structure than failed ones. ~
UCSB MU
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Part Ill: Sum-Up

Collaborations:
dPeer Interaction
dTeam Joint Collaboration

Questions:

« How do experts make routing decisions?

« Who have made inefficient routing decisions?

 How to optimize the routing performance through targeted training?

« Can the completion time of a task be predicted so that one can act
early for difficult tasks?

 Can we predict next best experts?

 How to model the collaborative networks?

e How do teams form?
« What factors will influence the success of teams?
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Relationships embedded In
network structure

* Network links represent general relationships
of longer term
o Friendship of mutual consent, e.g., Facebook.
o Follow link, e.g., Twitter.
o Collaboration, e.g., DBLP.
o Negative relationships, e.g., distrust (Epinion), foe
(slashdot).
« Can we discover more specific and implicit
relationships from these links?

U C S B }Xi SMU
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Example: Role Discovery

Information network without
role/relationship info, e.g. a
company’s email network

Latent relat ot $h1p graph

i 1 g
“‘, iy

CEO

, 1%
/ R W
UCSB . o ' 5 SMU
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Twitter is a unique social platform

1. The “follow” links are established without mutual
consent.

= An explosion of social links
= Everyone has a large number of followers and
followees.
= A huge number of tweets are generated
everyday. (~300 million tweets/daily)
= A further shrinkage of the network diameter
= |nformation diffusion is much faster
2. Itis a mixture of social network and news media
= H.Kwaketal WWW 2010

U C S B }Xi SMU
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Follow network = real-life social network?

How much of this follow network reflects a
user’s real-life offline social network?

= Mutual follow links do not necessarily indicate real-life interaction.
= The number of followees and followers varies significantly.
Problem: Given a Twitter follow network of a target user,

identify the user’s offline community by examining the follow
linkage alone.

U C S B }Xi SMU
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Motivation

1. More accurate and robust user interest modeling
2. Online vs Offline relationship understanding

3. User identity alignment across different platforms
4. Spam, Zombie account detection

5. Business competitive analysis

And more ...

U C S B }Xi SMU
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Principle |: Mutual Reachability

Information should be able to flow in both directions

within a small distance between real-life friends.

50
B ground-truth off-line friends
40
ground-truth online friends
30
g
3 20
o
10
0 - L xal
NOAY DY X S A D 9 O

Q7 O 07 QO O Q0 O 0 O LY
Q'Q Q'\/ Qr'l’ Q?) Q'v Q<'° Q('o 0/'\ Q)c'b Q('))
Percentage of friends satisfying mutual
reachability
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Principle ll: Friendship Retainability

The size of a user’s offline community has an upper-bound
threshold o related to Dunbar’s number

700

600

500

400

300 o0
200 *

’
100 % go 8
F AR
0 . ®
0 500 1000 1500

Size of 1-hop neighborhood
UCSB SMU
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friends




Principle lll: Community Affinity

A user’s off-line friends usually group into clusters such that
within each cluster members know each other

# Iteration 1
@ Iteration 2
@ Iteration 3

Iteration 4

CIPa

(A)

@,

)
SN
- ;‘\
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Approach

» Random Walk with Restart ° .‘//V.
ri = (1 —c)Wr; + cé; . \g?.
<\>.'/ @

» (Closeness Score

Ciyj = Ti,j % Tj,i

Iteration 1

* Jterative Off-line Community Discovery

= Off-line community 1s discovered by iterations. g o e @
» A virtual user node 1s used as the threshold to cut \b/k
o uwl
ol
N

for each iteration.

Iteration 2
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A Case Study

A real Twitter user: following 385 users; followed by 107 users

non-core-community user
® y
Iteration 1

®
@ Iteration 2
®

Iteration 3

Iteration 4 ‘\J\\ (A)
.\
a2 %
A !F‘\EEEE
bl
e

(B) one-way follow
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Precision

Our method, Core Community Discovery (CCD), performs the best.
80

mCCcD

¥ Jaccard

¥ Wijaccard

muTCL

HBTCL

BUTCT
BTCT

Bidirect

UE
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Recall

Our method, Core Community Discovery (CCD), performs the best.

80
70
60 ECCD
¥ Jaccard
50 ¥ Wijaccard
B UTCL
40 HBTCL
B UTCT
30 S BTCT
Bidirect
UE
BE

0-0.1 0.1-0.2 0.2-0.3 0.3-04 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
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F-score

Our method, Core Community Discovery (CCD), performs the best.

70
60
ECCD
50 ¥ Jaccard
¥ Wijaccard
40 B UTCL
HBTCL
B UTCT
30
“BTCT
Bidirect
20 -
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BE
10 - B - —
o |
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ALL

Our method, Core Community Discovery (CCD), performs the best.

0.9
0.8 -
0.7 - ECCD
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Parameters

= On # of Iterations = On Robustness
25 1
0.9
e ————
20 0.8
0.7
3
N 15 50.6
§ §0.5
O 10 ©0.4
0.3
5 0.2
0.1
MPrecision MRecall MF-score
0 i L
0O 2 4 6 8 10 12 14 16 -0.2 -0.1 0 +0.1 +0.2
# of Iterations Pertubation on # of followers
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Mining Advisor-advisee Relationship

[Wang et al, KDD’10]
* [nput: research publication network.

« Output: potential advising relationship and their

ranking — (r, [st, ed])

Input: Temporal
collaboration network

Output: Relationship analysis

(0.9, [/, 1998])

Ada (0.4,

[/, 1998])" -

R (0.5, [/, 2000])
(0.8, [1999,2000])

a (0.7, .

[2000, 2001]*

Bob ,-'.
. & 2
Ying [2001, 2003])

(0.65, [2002, 2004]

Smith“

Courtesy of Chi Wang for this slide

Visualized chorological hierarchies
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Overall Framework

G: temporal collaboration
network

PO P1

G’: homogeneous
collaboration network

7000 1 255G | 1000|2000
1998 1999
@ P2 @ a
R 2000 00 [ 1000 | 2000 | 2000
[ B R

P5
2002

®) 0
2004

H: chrological DAG with

ranking

0.9

(a) N O B ——
2001 -
P6 AR\ ay a;

2000 | 2007
I i I
/
2003 2002 | 2003 | 2004 |
1 T | R |

as

a ; 1999
: : .
0.8 5

’
1999 a) ¢ 02
2000 o
0.7 » %
2000 2 W 20037

2001

18

7 A0 ¢ H’: candidate DAG
1008 : ., 033
Vi
! : 2001
0.4 4 D
K 5.9
¢ /
1008 s 2000

s I50
I

 a: author i

* p;: paper |

* pY. paper year
* pN: paper#

* |;: local feature

. st, yi- Start time

* ed;,;: end time

* Iyi- ranking

Score

Methodology: propagate intuitive rules and

UCSB constraints over the whole network.
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Basic Constraints

- If a, advises a, since the year st,
oa, can only advise a, after it graduated
=> ed <st.<ed,

oa, must have a longer history of publication than a,
before st,.

=» The candidate graph H’ is a DAG.

The model can incorporate other intuitions as factor
functions into a Time-constrained Probabilistic Factor

Graph (TPFG)

UCSB _ o MU
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Why is network structure helpful?
* More than pairwise features: interdependency

one’s advisor

=2004
could be inferred a Q
' St=2003

depending on

others’ advisor!

UCSB , - SMU
Courtesy of Chi Wang for this slide AN MaNAGEMENT




Experiment on DBLP

 DBLP data: 654, 628 authors, 1076,946
publications, publishing time provided.

 Labeled data: MathGenealogy Project; Al
Gealogy Project; Faculty Homepage

TEST1 69.9% 73.4% 80.2% 84.4%
TEST2 69.8% 74.6% 81.5% 84.3%
TEST3 80.6% 86.7% 88.8% 91.3%
Heuristics Supervised Empirical Optimized
learning parameter parameter
UCSB 91 Courtesy of Chi Wang for this slide &A’k SMU



Case Study & Scalability
Advisee | Top Ranked Advisor [ Time _[Note

David M. Blei 1. Michael I. Jordan 01-03 PhD advisor, 2004 grad
2. John D. Lafferty 05-06 Postdoc, 2006
Hong Cheng 1. Qiang Yang 02-03 MS advisor, 2003
2. Jiawei Han 04-08 PhD advisor, 2008
>ergey Brin 1. Rajeev Motawani 97-98 “Unofficial advisor”
hr 2 l.'7.8’7K ' 1 e B " .'7.a7x = 196K
‘é l' 195K g r
minf € l' . o
5"«' g " /
sec" 1 100M}E N i

= m = juncT

LBP = = = juncT
w—TPF G Les
msf 1 —— TPFG
# edges
. . . 10M . .
1K 10K 100K M 1K 10K 100K #edges 1M

UCSB (a) Time
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Application: Expert Finding

An example on a real Performance
' R — improvement

Y Arnetminer

Searchin: O Alitime @Recent2years @ Recent5 years 8 _
Top Boles for Machine Learning >>Explore Boles In List - O LM
O LM+RULE
Q - B LM+TPFG
o0}
o |
©
)
<
o |
<
Nello Cristianini
- Da IILowd._._ ;": o
\ N
- o -
i ayne Fre !
' ' D P@2 P@5 MAP NDCG@5

Geoff Hulten

UCSB .« SMU
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Representative work
 “Relation Mining” [Kadri 03, Rinaldi 06, Coppola 08]

o Mainly text mining and language processing on text data and
structured data.

» “Relational Learning” [Getoor 07, Tang 09]

o The classification when objects and entities are presented in
multiple relations

» Relationship with semantic meaning
o [Diehl 07]: a supervised approach

 Positive-Negative relationship
o Leskovec et al. [ WWW’10]

« Social circle in ego network
o McAULEY et al. [TKDD’14]

U C S B }Xi SMU
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User Identity Linkage

Link up all the accounts of the same user across
different social platforms

y

N
FTRAIE

Yo - ;
U
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Why do we care?

» Cross-platform user linkage would enrich an
otherwise fragmented user profile to enable an all-
around understanding of a user’s interests and
behavior patterns.

« Cross-checking among multiple platforms helps
improve the consistency of user information.

« User identity linkage makes it possible to integrate
useful user information from those platforms that have
over time become less popular or even abandoned.
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Example: A Not So Easy Case

Search name Adele in different social media platforms

«ill STARHUB = 22:25

= BXAR

o | Adele |

(XA

For iPad

wil. STARHUB =

€« BERER BRIRR

Robinson = [
: é‘ foeleya 4 E .@ i Adele
Is that : ﬁ ‘ IA(:,EIe Jlal ’ : h %7 Adele
you : N : ﬂ NS Adele
3 4 « Adele Grabowski '
E T 1 mutual friend ‘ : @ % Adele
Adele ( ) ) =
e E Adele ' LEEI?IAdeIe
| "% | that you? '
. - s that yous: :
UCS English () Chinese SMU



Research Challenges

« Usernames are not always reliable

o Traditional approaches that heavily rely on username
parsing to link users may fail on more diversified
communities.

o Statistical models (e.g. SVM) or rule based models
constructed with mere username and attribute analysis are
far from being robust to accurately identify user linkage
across online social communities.

U C S B }Xi SMU
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Research Challenges

« Missing Information

o At least 80% of users are missing at least 2 profile
attributes out of the 6 most popular ones, and merely
5% of users have all attributes filled up.

40
= job missing all
35 {7 edu = other _
= birth = birth, bio, tag, edu, job
= birth, job = birth, bio, edu, job
J= birth, edu = birth, tag, edu, job
30 du . .
- = none missin = birth, edu, job
& = edu, job
L 25 &
Y
S
= 20 -
S
o
By 15 T
10+
5

0 1 2 3 -4 5 6
Number of missing profile attributes
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Research Challenges

Data Misalignment
o Platform Difference.
o Heterogeneous

behavior:

» The user behavior can
be represented by
various types of
media, e.g., locations,
blogs, tweets, videos
and images

o Behavior Asynchrony.
o Data Imbalance.

UCSB
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Where are the hopes in social data?
Two important features unique to social data:

» User along temporal dimension
o Over a sufficiently Ion? period of time, a user’s social behavior
exhibits a high level of consistency across different platforms.
» User’s

o A user’s core social network structures across different platforms
share c};re_at similarity and offer a highly discriminative
characterization of the user.
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HYDRA: a user identity linkage framework
[Liu et al. SIGMOD’14]

Username

Profiles
Photos
Trajectories
Tweets/Retweets

Step 2: Structuré Information
Modeling

A

UCSB £ SMU

Step 1:Heterogeneous Behavior Modeling

“Hh i

mp Step 3: Multi-objective Optimization s Linkage Function £,
Miny, [F,(W), F(W),..., Fj(W)]

Unknown Identities




User Online Identity Data

» User attributes (numeric, categorical)
o Demographics, location, personal interest, etc.

» User Generated Content (topics, sentiments)
o Reviews, tweets, ratings, multimedia, etc.

» User Core Social network (snapshot/static view)

o Friend network, followers/followees network,
communities/interest groups, etc.

« User Behavior trajectory (dynamic, evolutionary)

o content sharing history, social interaction pattern,
network formation, etc.

U C S B }Xi SMU
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Main Stages

« Behavior Similarity Modeling

o Calculate the multi-dimensional similarity vector
between two users of a pair for all user pairs via
heterogeneous behavior modeling.

 Structure Information Modeling

o Construct the structure consistency graph on user
pairs by considering both the core network structure
of the users and their behavior similarities.

« Multi-objective Optimization with Missing
Information

o A two-class classification model via optimizing two
kinds of objective functions simultaneously.

U C S B }Xi SMU
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Multi-resolution Behavior Modeling

I
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Core Social Network Modeling

* People’s closest friends are similar across different
social platforms.

* Behavior similarity
aggregation of the
most frequently
interacting friends
of users provides
insights into user
identity linkage.

Platform S Platform S’

UCSB MU

iiiiiiiii
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A Structure Consistency modeling framework

Platform S Platform S’

Black arrows: the ground-truth linkage information.
Red arrows: the correct linkage.
Green arrows: the falsely linked persons.
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Multi-objective Optimization Framework

» Supervised Learning
« Structure Consistency Modeling
 Multi-objective Optimization

A two-class classification problem --- construct muilti-
objective optimization which jointly optimizes the prediction
accuracy on the labeled user pairs and multiple structure

consistency measurements across different platforms.

UNIVERSITY
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Multi-objective Optimization Framework

* Decision Model on Pairwise Similarity
Support vector machine: ~
Fp(w) = L||w||* + 3" &

f(x) = wlaz+b s.t.yiir ( Tl.“/ +b) >1— &y

* High Order Structure Consistency -
maxw’ X' MXw

An eigen-decomposition on W — o
the structure consistency < minw® X° (D — M) Xw
graph e minw! XTOXw

W

T . sit.||w||* < s
 Multi-objective Optimizatio..

A generalized semi-supervised learning min { (7“1 K4 21 K(D — I\"'I)K) o
framework by optimizing the these two .3 L2 P UPul® ‘

objective functions. _QTKJYj + 3T1}
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Experiments

1. Sina Weibo: (www.weibo.com) A hybrid of Twitter and Face-
book with a user base of 500 million users and 47 million
daily active users by December 2012.

2. Tecent Weibo: (t.qq.com) Another twitter-like micro-blogging
service with 500 million users and over 100 million daily ac-
tive users.

3. Renren: (www.renren.com) A social network service dubbed
as the Facebook of China with 162 million registered users.

4. Douban: (www.douban.com) A social network service for
people to share content on topics of movies, books, music,
and other off-line events in Chinese cities, with over 100 mil-
lion monthly unique visitors.

5. Kaixin: (www.kaixin0O1.com) A social network service with
160 million registered users.

UCSB K SMUL.



Performance Evaluation
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Connecting Users across Social Media Sites:

A Behavioral-Modeling Approach
[Zafarani et al. KDD’13]

Human
Limitation

Time & Memory
Limitation

Knowledge
Limitation

Behaviors

UCSB

Exogenous
Factors

Typing Patterns

Language Patterns

Endogenous
Factors

Personal Attributes &
Traits

Habits

Courtesy of Reza Zafarani for this slide
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[Zafarani et al. KDD’13]

MOBIUS Performance
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Inferring Anchor Links across Multiple

Heterogeneous Social Networks
[Kong et al. CIKM’13]
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[Kong et al. CIKM'13]

Extract Heterogeneous Cross-Network Features

Courtesy of Xiangnan Kong for this slide SCAPORE MaNAGMENT




[Kong et al. CIKM’13]
Max Sum of Scores w.r.t. Constraints

**»Blocking
WPair
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[Kong et al. CIKM’13]
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Conclusion

* Network structure and user behavior play
important roles in network mining and analysis for
social applications.

* In particular, we have shown how they can be
employed to study
o Network Correlation and Patterns
o Frequent Network Patterns
o Collaboration Patterns

* When combined, they can even shed new light into
o Relationship Mining
o User Identity Linkage

UNIVERSITY
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