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Our perspective: social applications 
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Our perspective: social applications 
• The essence of “Social Data”--- what makes it 

different from traditional relational table data 
o Interactive behavior 

Ø Behavioral patterns, anomalies, collaborations, relationship, 
alignment, etc.  

o Network Structure 
Ø Structural properties, measures, patterns, correlation, 

evolution, etc.  

• This tutorial examines network mining and 
analysis from these two aspects as motivated by 
real social applications.  



Tutorial Coverage 
• Network Structure 

o Part I: Network Correlation and Patterns (Huan) 
o Part II: Frequent Network Patterns (Feida) 

•  Interactive Behavior 
o Part III: Collaboration Patterns (Huan) 

• Network Structure + Interactive Behavior 
o Part IV: Relationship Mining (Feida) 
o Part V: User Identity Linkage (Feida) 



Network Mining and Analysis  
for Social Applications 



Part I 
Network Correlation and Patterns 
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Networks with Rich Attributes 

Social networks 

3 

Intrusion  
Networks 

Research 
Collaboration  
Networks 

New Perspectives of Patterns and 
Correlations 



Example of Correlations   
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: 

Correlation between the occurrence of an event and the network structure 
Further study: 
1. Is this correlation due to influence in the network?  (network structure 

event occurrence) 
 

2. Conversely,  is it the preferences over the same product facilitate the 
formation of the link between users, i.e., their friendship development? 

       (event occurrence  network structure)  
 



Pattern Kaleidoscope 

 Proximity Pattern  
 Attribute-Structure Correlations  
 Cohesive Pattern 
 Itemset-sharing Pattern 
 Graph Topological pattern  
 Graph Iceberg  
 Graph Anomaly 
 Frequent Network Pattern 
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Brief introduction 

Akoglu et al., Tutorial at WSDM’13 

(Part II) 



Social Network 

Beyonce,  
Madonna Lady Gaga 

Britney  
Spears,  
Lady Gaga 

Katy Perry, 
Madonna 

Britney  
Spears  

Metallica, 
Megadeth 

Megadeth, 
Slayer 

Metallica 

Megadeth, 
Slayer 

Last.FM 
 

Nodes -> Users 
 

Edges -> Links 
 

List of Musical  
Bands/ Singers 

What are the related Musical Bands/ Singers that co-
occur frequently in neighborhood? 
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Intrusion Network 

TFTP_Put 

TFTP_Put, 
ICMP_Flood 

Audit_TFTP 
_Get_Filename 

TFTP_Put, 
Ping_Flood 

SQL _SSRP  
_Slammer  
_Worm 

SQL _SSRP 
_ StackBo 

Computers in LAN 
 
Computers in Same  
LAN Attacked by  
Similar Intrusions 

What are Related Computer Attacks that Co-occur 
Frequently in Neighborhood? 

8 



Proximity Pattern Mining  

 Definition 
     A subset of labels that repeatedly appear in tightly connected 
subgraphs in G.  
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Beyonce,  
Madonna Lady Gaga 

Britney  
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Megadeth 

Megadeth, 
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Metallica 

Megadeth, 
Slayer 

[Khan et al., SIGMOD’10] 



a, b – YES 
a, b, c – YES 
d, e, f - NO 

Proximity Pattern Mining  
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 Definition 
     A subset of labels that repeatedly appear in tightly connected 
subgraphs in G.  

 
 
 

 

[Khan et al., SIGMOD’10] 



a, b – YES; a, b, c – YES 
d, e, f - NO 

Proximity Pattern Definition 

 Characteristics  
       
 

        (1) Proximity 
 
      (2) Frequency 
 
      (3) Flexibility  
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[Khan et al., SIGMOD’10] 



Will Frequent Subgraph Mining 
Work?   

Proximity pattern: {a, b, c}  
 

Proximity Pattern Definition 
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[Khan et al., SIGMOD’10] 



Will Frequent Subgraph Mining 
Work?   

Proximity pattern: {a, b, c}  
 

Proximity Pattern Definition 

13 

    - NO !!! 
    - Lack of Flexibility 

 

[Khan et al., SIGMOD’10] 



Will Frequent Subgraph Mining 
Work?   

Will Frequent Itemset Mining 
Work?  

Proximity pattern: {a, b, c}  
 

Proximity Pattern Definition 
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    - NO !!! 
    - Lack of Flexibility 

 

[Khan et al., SIGMOD’10] 



Will Frequent Subgraph Mining 
Work?   

Will Frequent Itemset Mining 
Work?  

Proximity pattern: {a, b, c}  
 

Proximity Pattern Definition 

15 

    - NO !!! 
    - Lack of Flexibility 

 

    - NO !!! 
    - No Notion of Edge 

 

[Khan et al., SIGMOD’10] 



Information Propagation Model 

c b 

a b d 

c b a 

d a 

1 

2 3 

4 

Information 
Propagation 

a b c d 
1 1.00 0.12 0.00 0.12 
2 0.19 0.00 0.00 1.00 
3 0.12 1.00 0.12 0.00 
4 0.00 0.19 1.00 0.00 

1 

a 

b 

c 
d 
2 3 

4 
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Information Propagation Model 

c b 
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4 
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Frequent Itemset Mining (Probabilistic) 

 Frequent-Pattern (FP) Tree 
cannot handle fractional 
association values because of 
the new definition of Support.  

Modify FP Tree Structure and 
Algorithm. 

 C. C. Aggarwal et. al  (KDD ’09), 
Bernecker et. al (KDD ‘09). 

[Khan et al., SIGMOD’10] 



 How to measure “Interesting-ness”?  
     ----Randomization Test 
    Generate graph Q from graph G by randomly swapping the labels 
among nodes. Let, p and q be the support values of itemset I in G and Q 
respectively. High difference indicates interestingness.     
     G-test Score:  

 
 

    ----Proximity Patterns minus Frequent Itemset Patterns 

Top-k Interesting Patterns 

18 

[Khan et al., SIGMOD’10] 



Last.FM 

Proximity  
Patterns 

  Britney Spears, Lady Gaga, Katy Perry – American Female Pop  Singers 
  ATB, Paul van Dyk – German DJ 
  Tiesto, Ferry Corsten, Armin van Buuren – Dutch DJ 
  Neaera, Caliban, Cannibal Corpse – Death Metal Bands 
  Lucuna Coil, Nightwish, Within Temptation – Gothic Metal Bands 

Top-k Interesting Patterns 
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[Khan et al., SIGMOD’10] 



Intrusion 

Proximity 
Patterns 

20 

Top-k Interesting Patterns 

Proximity Patterns 
Minus 

Frequent Itemsets 

[Khan et al., SIGMOD’10] 



Which product’s sales is more correlated with the social 
network structure?  

 

Waterworld game Hp printer 

Structural Correlational Pattern  

21 

[Guan et al.,SIGMOD’11] 



A General Situation 

 Events taking place on nodes 
of a social graph 

• Online shopping 
• Blogging 
• Virus infection 

 

 Social influence vs. Random 
occurrence 
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[Guan et al.,SIGMOD’11] 

 



Why Measuring Such Correlations? 

 Help understand the distribution of events in networks 
 

 Help detect viral influence in the underlying network 
(e.g. product sales) 
o Correlation has to do with link type, event type and time 

 
o Facilitate product promotion, online ads recommendation 
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[Guan et al.,SIGMOD’11] 



Problem Formulation 

 A graph G = (V, E) and an event set Q = {qi} 
Vq--the set of nodes having event q. Let |Vq| = m, |V| = n 

 
Is q1 
correlated in 
G? 

(1) 

24 

(1) q1  
(2) q2 
(3) q3  

q1 q2 q3 

(2) 
(ranking) 

[Guan et al.,SIGMOD’11] 



How to Characterize Correlation? 

 If correlated, blue nodes 
tend to stick together. 
 

 A naïve approach: only 
look at neighborhood 
 

General idea: compute the 
aggregated proximity 
among blue nodes 
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[Guan et al.,SIGMOD’11] 

 



Measure Definition 
 The measure is defined as 

 
 

o Vq: the set of nodes having event q; s(∙) can be any graph 
proximity measure 

 We choose Hitting Time. 

( , \{
(

})
) qv qV

q
q

s v V v

V
Vρ ∈

=
∑
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[Guan et al.,SIGMOD’11] 



Measure Definition 
 Hitting time: expected number of steps to reach a target node via 

random walk: 

 
o B: target node set; Pr(TB=t|x0=vi): the probability that we start 

from vi and reach B after t steps 

v 

Hitting time will 
not count this 
node 

27 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑

[Guan et al.,SIGMOD’11] 



Hitting time & Decayed Hitting Time 
 Hitting time: expected number of steps to reach a target node via 

random walk: 

 
o B: target node set; Pr(TB=t|x0=vi): the probability that we start from 

vi and reach B after t steps 
 
 
 
 

    
                   

 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑
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[Guan et al.,SIGMOD’11] 



Hitting time & Decayed Hitting Time 
 Hitting time: expected number of steps to reach a target node via 

random walk: 

 
o B: target node set; Pr(TB=t|x0=vi): the probability that we start from 

vi and reach B after t steps 
 Decayed Hitting Time (DHT): 

 
 
 
 

    
                                     ,  with                   instantiated as  

 
 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑

1)

1
0

(( , ) Pr( | )i B i
t

t
h v B e T t x v

∞
− −

=

= = =∑
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( , \ { })qh v V v

o Mapping [1,∞) to [0,1], high value means high proximity 
o Emphasizing the importance of local neighborhood and 

reducing  the impact of long paths 
( , \{

(
})

) qv qV
q

q

s v V v

V
Vρ ∈

=
∑

( , \ { })qs v V v

[Guan et al.,SIGMOD’11] 



Measure Computation 
 

 Directly compute           may be time consuming since       may be 
large. 

 
 
 

 Sampling: randomly select c nodes from       to estimate their DHTs to 
the remaining nodes. 

 
 

( )qVρ qV

qV

( , \{
(

})
) qv qV

q
q

s v V v

V
Vρ ∈

=
∑
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[Guan et al.,SIGMOD’11] 



Top-5 Structural Correlated Products 
(TaoBao) 

# Product Bound for  m 

1 ThinkPad T400 [554.43, 554,47] 47 

2 Apple iPad [227.56, 227.57] 698 

3 ThinkPad X200 [91.39, 91.42] 60 

4 Toshiba L600 [20.36, 20.41] 31 

5 ThinkPad T410 [−1.13, −1.09] 72 

ρ # Product Bound for  m 

1 iPod Touch 3 [92.06, 92.09] 484 

2 Nokia 6300 [90.97, 90.99] 188 

3 iPhone 4 [69.07, 69.09] 520 

4 Nokia N82 [53.20, 53.24] 84 

5 HTC G3 [36.48, 36.49] 732 

ρ

# Product Bound for  m 

1 Mamy Poko baby 
diapers 

[238.50, 238.51] 4892 

2 Beingmate Infant milk 
powder 

[227.71, 227.72] 163 

3 EVE game cards [198.56, 198.58] 374 

4 Mabinogi game cards [189.56, 189.58] 446 

5 Gerber cookies [149.51, 149.52] 1491 

ρ # Product Bound for  m 

1 Tiffany rings [2.71, 2.72] 1092 

2 Jack&Jones suits [−0.48, −0.46] 311 

3 Ray-Ban sunglasses [−0.78,−0.77] 4958 

4 Swarovski anklets [−0.88,−0.84] 72 

5 Jack&Jones shirts [−3.28,−3.27] 1606 

ρ

Laptops and tablets Mobile and handheld devices 

Other Other (top 5 uncorrelated) 
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Top-12 Structural Correlated keywords 
 (DBLP co-author network) 

# Keyword Bound for  m 

1 Hadoop [1225.22, 1225.46] 57 

2 Microarray [958.64, 958.67] 4738 

3 OLTP [912.52, 912.68] 105 

4 AJAX [857.61, 857.74] 179 

5 Virus [825.14, 825.21] 905 

6 E-Learning [811.85, 811.91] 3552 

7 Database [775.80, 775.83] 19522 

8 Mining [760.33, 760.36] 15371 

9 Relational [697.17, 697.22] 6225 

10 Retrieval [647.60, 647.64] 13996 

11 Indexing [624.94, 625.00] 5069 

12 Computation [586.58, 586.63] 11187 

ρ

32 

[Guan et al.,SIGMOD’11] 



Attribute-Structure Correlated Patterns  

 Examples  
o Densely connected webpages that share content 
o Groups of friends with common interests 
o Genes that interact and are expressed on the same issues.  

33 

[Silva et al., VLDB’12] 



Attribute-Structure Correlated Patterns 

 Definition  
o A dense subgraph induced by a particular attribute set.  
 

Characteristics 
o High correlation between a given attribute set and the 

occurrence of dense subgraphs 
 
 
 
 
 
 

o High-support attribute sets do not necessarily present high 
structural correlation.  

34 

S: attribute set;  
Ks: the set of vertices having S in dense subgraphs  
V(s): the vectices with attribute set S 

[Silva et al., VLDB’12] 



Pattern induced by 
{system , performance} 

35 

Attribute-Structure Correlated Patterns 

 DBLP 
o 108,030 vertices 
o 276,658 edges 
o 23,285 attributes 

[Silva et al., VLDB’12] 



Pattern induced by 
{Van Morrison} 
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Attribute-Structure Correlated Patterns  

 Last.Fm 
o 272,412 vertices 
o 350,239 edges 
o 3,929,101 attributes  

[Silva et al., VLDB’12] 



Pattern induced by 
{perform, system} 
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Attribute-Structure Correlated Patterns  

 CiteSeer 
o 294,104 vertices 
o 782,147 edges 
o 206,430 attributes  

[Silva et al., VLDB’12] 



Two-event Structural Correlations  

38 

[Guan et al., VLDB’11] 



Two-event Structural Correlations  

How is the relationship between the sales of two products 
in a social network?  

 
Attraction 
(positive 
correlation) 

Repulsion 
(negative 
correlation) 

39 

[Guan et al., VLDB’11] 

Video games Computers  



A New Notion of Correlation 
 Two-Event Structural Correlation (TESC) 

 
o Defined on graph structures 

 
o Capture relationships between distributions of two events on a graph 

 
o Events can be different things in different contexts: 

 Topics or products (social networks) 
 Virus (contact networks) 
 Intrusion alerts (computer networks) 
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[Guan et al., VLDB’11] 



The Major Challenge 

 Simple idea: compute the distance between the two 
events on the graph 
oHow near/far for significant positive/negative 

correlation? 
oHypothesis testing 

 

G 

Observed 

Randomization 
G 

G 

G 

G 

Significant 
negative 

Significant 
positive 

Empirical 
distribution 
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The Major Challenge 

 Simple idea: compute the distance between the two 
events on the graph 
oHow near/far for significant positive/negative 

correlation? 
oHypothesis testing 

 

G 

Observed 

Randomization 
G 

G 

G 

G 

Significant 
negative 

Significant 
positive 

Empirical 
distribution 
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[Guan et al., VLDB’11] 



 
 
 
 
Concordance score 

 
 
 
 Density function 

1 ( ( ) ( ))( ( ) ( )) 0
( , ) 1 ( ( ) ( ))( ( ) ( )) 0

0

h h h h
a i a j b i b j
h h h h

i j a i a j b i b j

s r s r s r s r
c r r s r s r s r s r

otherwise

 − − >
= − − − <



| |( )
| |

h
h a r
a h

r

V Vs r
V
∩

=

If the density changes are 
consistent 

If the density changes are 
inconsistent 

a:3->1 
b:2->1 

a:3->1 
b:1->3 

Consistent Inconsistent 
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How To Measure? 
“reference nodes”  

[Guan et al., VLDB’11] 



Kendall’s Tau as The Measure 
 Kendall’s Tau rank correlation as a measure of TESC: 

 
 
 

          

                    : the number of all reference nodes 
 

 Costly computation! 
    Sampling + significance testing 
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1

1 1
( , )

( , ) 1 ( 1)
2

N N

i j
i j i

c r r
a b

N N
τ

−

= = +=
−

∑ ∑

| |h
a bN V ∪=

[Guan et al., VLDB’11] 



Real Events (DBLP) 

# Pair z-score TC 

h = 1 h = 2 h = 3 

1 Texture vs. 
Image 

6.22 19.85 30.58 172.7 

2 Wireless vs. 
Sensor 

5.99 23.09 32.12 463.7 

3 Multicast vs. 
Network 

4.21 18.37 26.66 123.2 

4 Wireless vs. 
Network 

2.06 17.41 27.90 198.2 

5 Semantic vs. 
RDF 

1.72 16.02 24.94 120.3 

# Pair z-score TC 

h = 1 h = 2 h = 3 

1 Texture vs. 
Java 

-23.63 -9.41 -6.40 4.33 

2 GPU vs. 
 RDF 

-24.47 -14.64 -6.31 1.24 

3 SQL vs. 
Calibration 

-21.29 -12.70 -5.45 -0.62 

4 Hardware vs. 
Ontology 

-22.31 -8.85 -5.01 3.38 

5 Transaction vs. 
Camera 

-22.20 -7.91 -4.26 4.85 

Highly positive pairs: Highly negative pairs: 

z-score > 2.33:  significant positive TESC 
z-score < -2.33: significant negative TESC 
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TC: Transaction Correlation 

[Guan et al., VLDB’11] 



Several Other Pattern Miners 
 CoPaM: Cohesive Pattern Miner [Moser et al., 

SDM’09] 
 
 Itemset-Sharing Patterns [Fukuzaki et al., 2013]  

 
 Topological Pattern Miner [Prado et al., TKDE’13] 
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[Guan et al., VLDB’11] 



CoPaM: Cohesive Pattern Miner  

 Cohesive Pattern 
A connected subgraph satisfying: 
(1) Feature subspace cohesion 
(2) Densely connected 

 
 

Two cohesive patterns: 
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[Moser et al., SDM’09] 



Itemset-Sharing Patterns   

 Goal 
o To find sets of subgraphs with common itemsets in a large 

graph. 

 

(a)  
Itemset –attributed graph 

(b)  
Itemset-sharing subgraphs 

with {i1,i2}. 
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[Fukuzaki et al., PAKDD’10] 



Topological Pattern Miner 

 A Topological Pattern   
A set of vertex attributes and topological properties that strongly co-
vary over the vertices of the graph  
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[Prado et al., TKDE’13] 



Topological Pattern Miner 

 A Topological Pattern   
A set of vertex attributes and topological properties that strongly co-
vary over the vertices of the graph  
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The higher the value of 
attribute h, the lower the 
value of attribute i and the 
higher the betweenness 
centrality of a vertex.  

Prado et al., TKDE’13 

[Prado et al., TKDE’13] 



Anomaly Detection in Graphs 
 Various Interesting-ness/Anomaly Criteria  
       e.g.,  

o Bgp-lens: anomalies in internet routing updates.  
   [Prakash et al., KDD’09] 

 
o Oddball: anomalies in weighted graphs. 
   [Akoglu et al., PAKDD’10]  

 
o Heavy subgraphs in time-evolving networks.  
   [Bogdanov et al., ICDM’11] 
 

  Anomaly, Event, and Fraud Detection in Large Graph Datasets, 
Akoglu et al., http://www.cs.stonybrook.edu/~leman/wsdm13/ 
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Anomaly Vertices/ Regions 

Action 

Comedy 
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1. Target marketing 
 

2. Recommendation systems 
 

3. Social influence analysis  



Graph Iceberg (i.e., gIceberg)  

53 

[Li et al., ICDE’13] 



What aggregate functions? 

 SUM and AVG [Yan et al., ICDE’10] 

 Personalized PageRank Vector (PPV) [Page et al., Technical 
Report, 1999] 
o Reflect the proximity from one node to another w.r.t. the 

graph structure.  
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[Li et al., ICDE’13] 



Aggregate q-score:  

Aggregate over the Personalized PageRank Vector (PPV) to 
define the closeness of a vertex and an attribute q. 
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[Li et al., ICDE’13] 



Forward & Backward Aggregation 
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[Li et al., ICDE’13] 



Results in Customer Network  

 Recall indicates gIceberg’s ability to retrieve real graph 
Iceberg vertices. 
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[Li et al., ICDE’13] 



 Anomalous Regions (i.e., gAnomaly)  

 Why does a disease occur more intensively in some portions of 
a network? 

 
 Why do a subset of computers receive most of the attacks in 

the past day, and are they therefore targeted attacks? 
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[Li et al., SDM’14] 



Data Models 

 

P(k )(vi) = p(k )(1)X i (1− p(k )(1))1−X i

∅== )1()0()1()0( , VVVVV 

 

P(vi) = θ i
(k )P(k )(vi)

k =0

1

∑

Anomaly: V(1) Background: V(0) 

P(0) 

Two generative processes: 
anomaly distribution & 
background distribution 

One overall mixture 

With probability θi
(0), vi belongs to 

the background component V(0), and 
with θi

(1) the anomaly component 
V(1). 

Each component is a Bernoulli distribution. 
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[Li et al., SDM’14] 



Regularized Data Likelihood 
Un-regularized log data likelihood of vertex set V 

 
 
Regularized log data likelihood of vertex set V 

 
 

oEnhance connectivity within each component  
Network regularizer 

 
oEnhance the interpretability of the mixture weights 

Entropy regularizer 

( ) ( )( ) log ( ) log ( )
i i

k k
i i i

v V v V k
L V P v P vθ

∈ ∈

= =∑ ∑ ∑

( ) ( ) ( ) ( )N EL V L V R Rλ γ= − Θ + Θ

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[Li et al., SDM’14] 



Network Regularizers 

 

RN
(1)(Θ) =

1
2

1
| N(i) |

Θi − Θ j

2

v j ∈N ( i)
∑

vi ∈V
∑

 

RN
(2)(Θ) =

1
2

min
v j ∈N (i)

Θi − Θ j

2

vi ∈V
∑

Minimize the mean 

Minimize the minimum 
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Significance Evaluation 

M-distance 
Comparison 

gAnomaly BAGC 
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[Li et al., SDM’14] 



Case Study on DBLP-IR 

A.L. Berger 

C. Zhai 

X. Ling 

X.Wang 

J.D. Lafferty 

B.R. Schatz 

T. Liu 
W. Ma 

H. Zeng 

H. Li 

J. Pei 

J. Wang 

G. Karypis 

J. Reidl J.A. Konstan 

Y. Zhao 
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Grey: IR 
Pink: DM 

[Li et al., SDM’14] 



Part I: Brief Sum-Up 

 Proximity Pattern  
 Attribute-Structure Correlations  
 Cohesive Pattern 
 Itemset-sharing Pattern 
 Graph Topological pattern  
 Graph Anomaly  
 Frequent Network Pattern (Part II) 
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Part II  
Frequent Network Pattern for Social 

Applications 
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Frequent	
  Network	
  Pa/erns	
  for	
  Social	
  Applica8ons	
  

Mobile	
  User	
  Trajectory	
  and	
  Loca8on	
  Pa/erns	
  	
  



Some	
  Important	
  Characteris8cs	
  	
  

q  Single-graph setting  
 
 
q  Huge network size 

q  User-specified constraints 

  



Single network mining is not easy 
•  Support counting is tricky when more than one pattern 

embedding would be considered in a single data graph. 

•  The anti-monotone property of support is violated. 
•  All the frequency-based pruning techniques must fail. 
• No infrequent subgraph patterns can be pruned.  

A

B

A	
  

B	
  B	
  

A



How to fix it?  
q  Edge-disjoint  

q  Node-disjoint 
q  Overlap graph 
q  Maximum Independent Set 
q  MIS-support 

q  Kuramochi and Karipus 
q  MIS-support is antimonotone 
q  But MIS-support is too 

restrictive! 

q  Harmful overlap support 
q  Fiedler and Borgelt 

B CA B CA A

B CA A

B CA A
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Some	
  Important	
  Characteris8cs	
  	
  

q  Single-graph setting  
 
 
q  Huge network size 

q  User-specified constraints 

  



Not	
  all	
  pa/erns	
  are	
  wanted	
  
A Pattern Lattice Perspective 
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large 

K 
K+1 

q  Smaller patterns are 
affordable to be 
enumerated 

q  The number of patterns 
quickly explodes as 
pattern size grows 
larger 

q  The number of large 
patterns is small 

It’s all about different ways to traverse this pattern lattice. 



Some	
  Important	
  Characteris8cs	
  	
  

q  Single-graph setting  
 
 
q  Huge network size 

q  User-specified constraints 

  



Tradi8onal	
  Solu8on	
  for	
  User-­‐specified	
  Constraints	
  

patterns that are large but “fat”. As a result, as shown by our exper-
iments, skinny patterns with long diameters but sparse twigs will
often be missed.

Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
direct) with minimum visits to irrelevant ones (making it precise).
As illustrated in Figure 1 from a pattern lattice perspective [28], the
target mining result is “carved” by the constraint into pattern clus-
ters indicated by the shaded areas. Probabilistic methods cannot
accomplish the mining task because most of them are only capa-
ble of returning a sparse sample of the complete set of skinny pat-
terns. Traditional “enumerate-and-check” approaches try to return
all qualified results at the cost of exhaustively traversing the pattern
space, failing usually halfway due to intractability. The direct min-
ing approach, which we illustrate in this paper withSkinnyMine on
the skinny pattern mining problem, provides a much more efficient
way to reach straight some patterns in each of the target clusters
and only examine locally those relevant candidates. Direct mining
has been studied not on constraints on patterns but on certain util-
ity of patterns such as discriminativeness measured on the mining
results [4], which is a different problem from ours.

Figure 2: An architectural view of the direct mining framework

An architectural overview comparing our direct mining approach
and traditional mining approach is depicted in Figure 2. Suppose
user-specified mining requests are “find all skinny frequent patterns
with diameter of length l” with varied l. Upon request with each
l, traditional mining would make a almost exhaustive traversal of
the pattern space, and every time enumerate an exponential number
of frequent pattern candidates to check constraints before it finally
generates the target pattern set. In contrast, direct mining works
in a completely different way. It pre-computes all the minimal
constraint-satisfying patterns, which we will define later, and build
indexing structures to efficiently access the corresponding embed-

dings. Upon request with each l, it would directly access the proper
minimal patterns associated with that l, and only examine locally
all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.

Our Contributions. We propose a novel direct mining framework
for efficient constrained graph pattern mining and demonstrate the
idea and algorithms in the context of the skinny pattern mining
problem.
First, we develop SkinnyMine, an efficient algorithm to mine all

the l-long δ-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well
as achieving a partition of all skinny patterns into disjoint result
sets, thus enabling direct and precise mining. For example, sup-
pose users are interested in finding all δ-skinny patterns with diam-
eter length between l1 and l2 (l1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than l1 or longer than l2.
Second, we formally prove that, by maintaining the canonical di-

ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.
Third, interestingly, to mine the canonical diameters, which are

essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted by V (G)

and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.
DEFINITION 1. (Labeled Graph Isomorphism) Two labeled

graphs G and G′ are isomorphic if there exists a bijection f :
V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
We use G ∼=L G′ to denote that two labeled graphs G and G′
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iments, skinny patterns with long diameters but sparse twigs will
often be missed.

Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
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all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.
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for efficient constrained graph pattern mining and demonstrate the
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First, we develop SkinnyMine, an efficient algorithm to mine all

the l-long δ-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well
as achieving a partition of all skinny patterns into disjoint result
sets, thus enabling direct and precise mining. For example, sup-
pose users are interested in finding all δ-skinny patterns with diam-
eter length between l1 and l2 (l1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than l1 or longer than l2.
Second, we formally prove that, by maintaining the canonical di-

ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.
Third, interestingly, to mine the canonical diameters, which are

essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
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ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
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and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
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V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
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q Mine all frequent patterns 
q Pattern candidate generation 
q Frequency checking in the 

data graph 

q Check each frequent 
pattern for constraints 

q Output those constraint-
satisfying ones 

Problem:  pattern explosion! 
What we really need ---- Blended frequent pattern 
mining with constraint-checking  
	
  



Requirement	
  Summary	
  
q   Single-graph setting  

q  Be able to handle both single-graph setting 
and graph-transaction setting. 
  

q  Huge network size 
q  Avoid enumerating all the pattern candidates 

before reaching those of interest. 

q  User-specified constraints 
q  The mining should be “direct”.  

  



Representative Work 
q Graph-transaction setting 

q AGM, FSG, gSpan, FFSM, etc.  
q For mining complete pattern set. 
q Suffers from scalability issue for large patterns 

and input graphs due to exponential result size. 
q SPIN and MARGIN 

q Mining maximal patterns. 
q Still suffers from scalability issue as the number 

of maximal patterns could be formidable. 
q ORIGAMI 

q For mining a representative pattern set. 
q Returns a pattern set of mixed sizes. 



Representative Work 
q Single-graph setting 

q SUBDUE and SEuS  
q Pioneer work for mining complete pattern set. 
q Use different heuristics and work well for mining 

smaller patterns on certain classes of input graphs.  
q GREW 

q Mining incomplete pattern set. 
q Able to discover some large patterns, yet no 

guarantee on the pattern coverage of the answer set. 
q MoSS 

q State-of-the-art for mining complete pattern set. 
q Suffers from scalability issue for large patterns and 

input graphs due to exponential result size. 
  



SpiderMine: Frequent Large Patterns 
[Zhu et al. PVLDB’11] 

• Graph data is getting ever bigger, and so are 
the patterns. 

•  E.g., social networks like Facebook, Twitter, etc..  

• Often, large patterns are more informative in 
characterizing large graph data. 

•  E.g., in DBLP, small patterns are ubiquitous, larger 
patterns better characterize different research 
communities. 

•  E.g., in software engineering, large patterns reveal 
software backbones  



Top-K largest frequent patterns  
• To capture them exactly, no more and no less, 

we would have to generate all the smaller 
ones, which we cannot afford.  

• A probabilistic solution, with user-defined error 
bound.  

• SpiderMine --- designed to mine the top-K 
largest frequent patterns whose diameters are 
bounded by Dmax with a probability at least 1-ε  



Design Ideas   

• How to capture large graph patterns? 
• Observation: 

o Large patterns are composed of a large number of 
small components, called “spiders”, which will 
eventually connect together after some rounds of 
pattern growth. 



r-Spider 

• An r-spider is a frequent graph pattern P such 
that there exists a vertex u of P, and all other 
vertices of P are within distance r to u. u is 
called the head vertex.  

u
r



SpiderMine Overview 
1)  Mine the set S of all the r-spiders. 
2)  Randomly draw M r-spiders. 
3)  Grow these M r-spiders for t iterations. During 

the process, merge two patterns whenever 
possible. 

4)  Discard unmerged patterns. 
5)  Continue to grow the remaining ones to 

maximum size.  
6)  Return the top-K largest ones in the result. 

u  t = Dmax/2r 



Large patterns vs small patterns  
q  Why can SpiderMine preserve large patterns 

and prune small ones with good chance? 
1)  Small patterns are much less likely to be hit in 

the random draw.  
v   First pruning at the initial random draw 
 

2)  Even if a small pattern is hit, it’s even less 
likely to be hit multiple times.  

v   Second pruning after t iteration growth 

3)  The larger the pattern, the greater the chance 
it is hit and saved. 



How many r-spiders to draw?  

This means that as long as we pick more than one spider
within a large pattern P in the initial random draw, i.e.,
|HP | > 1, we can guarantee we will not miss P by retaining
all the merged patterns. On the other hand, for smaller pat-
terns, the probability that more than one spider within the
pattern get picked in the random draw is much lower than
that of large patterns. As such, keeping only the merged pat-
terns at the end of the iterations would highly likely prune
away patterns that would grow only toward small patterns.
Thus after the pruning, we are left with a small number of
candidates each of which, with high probability, is a sub-
graph of large patterns. We then use SpiderGrow() again to
further extend these candidates until no larger patterns can
be found.

Figure 1: SpiderMine.

To formally present our approach, we first define the con-
cept of a spider. Formally, an r-spider is defined as follows.

Definition 4. [r-spider] Given a frequent pattern P in
graph G and a vertex u ∈ V (P ), if P is r-bounded from u,
we call P an r-spider with head u.

Algorithm 1 SpiderMine

Input: input graph G, error bound ϵ, support threshold σ
diameter bound Dmax, # of patterns returned K

Output: Set of K patterns S
1: S ← ∅;
2: T (G) ← InitSpider(G, r,σ);
3: /* mine all patterns of diameter up to 2r;*/
4: Compute M based on T (G), ϵ and K;
5: S ← RandomSeed(T (G),M);
6: /*randomly select M spiders as the seed for growth*/
7: For i = 1 To Dmax

2r
8: S ← SpiderGrow(S, σ);
9: /* grow patterns by spiders and merge when possible*/
10:Prune unmerged patterns from S;
11:Do
12: S ← SpiderGrow(S, σ);
13:Until no new patterns can be found
14:S ← top K largest patterns in S;
15:Return S;

Our algorithm works in the following three stages. An
illustration is given in Figure 1. The main algorithm of Spi-
derMine is shown in Algorithm 1 with all details elaborated
in Appendix. The random drawing size M is an internal
parameter computed according to user-specified K and ϵ,
with details given in the next subsection. The discussion on
setting the spider radius size r is given in Subsection 4.2.

1. Stage I: Mining Spiders
Mine all r-spiders from the input graph G. By the end
of this stage, we know all the frequent patterns up to
a diameter 2r with all their embeddings in G.

2. Stage II: Large Pattern Identification
Randomly pickM spiders from all the spiders obtained
in Stage I as the initial set of frequent subgraphs. The
next step consists of Dmax

2r iterations. In each iter-
ation, use SpiderGrow() to grow each of the M sub-
graphs by extending its boundary with selected spiders
such that the radius of the subgraph is increased by r.
In each iteration, if we detect that two frequent sub-
graphs, whose embeddings are all previously disjoint,
begin to overlap on some of their embeddings as a re-
sult of growth in this iteration, we would merge them if
the resulting merged subgraph is frequent. Note that
we can avoid pair-wise checking for potential merging
because all patterns grow with spiders as units and we
only have to monitor the same spiders being used by
different patterns to detect overlapping. At the end
of the Dmax

2r iterations, keep only those frequent sub-
graphs which are generated as a result of merging at
some iteration. Let the set we keep be S. The frequent
subgraphs in S are believed to be subgraphs of large
patterns with high probability.

3. Stage III: Large Pattern Recovery
With high probability, each one of the top-K large
patterns now has some portion of it as a pattern in S.
To recover the full patterns, we grow each subgraph
in S by SpiderGrow() until no more frequent patterns
can be found. All the patterns discovered so far are
maintained in a list sorted by their size. Return the
top-K patterns.

We now show that, in Stage II of SpiderMine, how to
choose M , the number of initial seed spiders, to achieve the
discovery of top-K largest patterns with guaranteed proba-
bility. If more than one spider within a pattern P are chosen
in the random drawing process, we say that P is successfully
identified. We denote as Psuccess the probability that all
the top-K largest patterns are successfully identified. With
proof sketch detailed in the Appendix, we have the following
lemma,

Lemma 2. Given a network G and a user-specified K, we

have Psuccess ≥
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

.

Vmin is the minimum number of vertices in a large pat-
tern required by users, usually an easy lower bound that a
user can specify. Now to compute M , we just need to set
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

= 1 − ϵ and solve for M . It

follows that, once the user specifies K and ϵ, we could com-
pute M accordingly, and then if we pick M spiders initially
in the random drawing process, we are able to return the
top-K largest patterns with probability at least 1 − ϵ. For
example, with ϵ = 0.1, K = 10, and Vmin = |V (G)|

10 , we get
M = 85, which means to return top 10 largest patterns(each

of size at least |V (G)|
10 if any) with probability at least 90%,

we need to randomly draw 85 spiders initially. With the
analysis above, it is not hard to prove the following theo-
rem.

Theorem 1. Given a graph G, the error bound ϵ, the
diameter upper bound Dmax, the support threshold σ and
K, with probability at least 1 − ϵ, SpiderMine returns a set
S of top-K largest subgraphs of G such that for each P ∈ S,
|Psup| ≥ σ and diam(P ) ≤ Dmax.

This means that as long as we pick more than one spider
within a large pattern P in the initial random draw, i.e.,
|HP | > 1, we can guarantee we will not miss P by retaining
all the merged patterns. On the other hand, for smaller pat-
terns, the probability that more than one spider within the
pattern get picked in the random draw is much lower than
that of large patterns. As such, keeping only the merged pat-
terns at the end of the iterations would highly likely prune
away patterns that would grow only toward small patterns.
Thus after the pruning, we are left with a small number of
candidates each of which, with high probability, is a sub-
graph of large patterns. We then use SpiderGrow() again to
further extend these candidates until no larger patterns can
be found.

Figure 1: SpiderMine.

To formally present our approach, we first define the con-
cept of a spider. Formally, an r-spider is defined as follows.

Definition 4. [r-spider] Given a frequent pattern P in
graph G and a vertex u ∈ V (P ), if P is r-bounded from u,
we call P an r-spider with head u.

Algorithm 1 SpiderMine

Input: input graph G, error bound ϵ, support threshold σ
diameter bound Dmax, # of patterns returned K

Output: Set of K patterns S
1: S ← ∅;
2: T (G) ← InitSpider(G, r,σ);
3: /* mine all patterns of diameter up to 2r;*/
4: Compute M based on T (G), ϵ and K;
5: S ← RandomSeed(T (G),M);
6: /*randomly select M spiders as the seed for growth*/
7: For i = 1 To Dmax

2r
8: S ← SpiderGrow(S, σ);
9: /* grow patterns by spiders and merge when possible*/
10:Prune unmerged patterns from S;
11:Do
12: S ← SpiderGrow(S, σ);
13:Until no new patterns can be found
14:S ← top K largest patterns in S;
15:Return S;

Our algorithm works in the following three stages. An
illustration is given in Figure 1. The main algorithm of Spi-
derMine is shown in Algorithm 1 with all details elaborated
in Appendix. The random drawing size M is an internal
parameter computed according to user-specified K and ϵ,
with details given in the next subsection. The discussion on
setting the spider radius size r is given in Subsection 4.2.

1. Stage I: Mining Spiders
Mine all r-spiders from the input graph G. By the end
of this stage, we know all the frequent patterns up to
a diameter 2r with all their embeddings in G.

2. Stage II: Large Pattern Identification
Randomly pickM spiders from all the spiders obtained
in Stage I as the initial set of frequent subgraphs. The
next step consists of Dmax

2r iterations. In each iter-
ation, use SpiderGrow() to grow each of the M sub-
graphs by extending its boundary with selected spiders
such that the radius of the subgraph is increased by r.
In each iteration, if we detect that two frequent sub-
graphs, whose embeddings are all previously disjoint,
begin to overlap on some of their embeddings as a re-
sult of growth in this iteration, we would merge them if
the resulting merged subgraph is frequent. Note that
we can avoid pair-wise checking for potential merging
because all patterns grow with spiders as units and we
only have to monitor the same spiders being used by
different patterns to detect overlapping. At the end
of the Dmax

2r iterations, keep only those frequent sub-
graphs which are generated as a result of merging at
some iteration. Let the set we keep be S. The frequent
subgraphs in S are believed to be subgraphs of large
patterns with high probability.

3. Stage III: Large Pattern Recovery
With high probability, each one of the top-K large
patterns now has some portion of it as a pattern in S.
To recover the full patterns, we grow each subgraph
in S by SpiderGrow() until no more frequent patterns
can be found. All the patterns discovered so far are
maintained in a list sorted by their size. Return the
top-K patterns.

We now show that, in Stage II of SpiderMine, how to
choose M , the number of initial seed spiders, to achieve the
discovery of top-K largest patterns with guaranteed proba-
bility. If more than one spider within a pattern P are chosen
in the random drawing process, we say that P is successfully
identified. We denote as Psuccess the probability that all
the top-K largest patterns are successfully identified. With
proof sketch detailed in the Appendix, we have the following
lemma,

Lemma 2. Given a network G and a user-specified K, we

have Psuccess ≥
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

.

Vmin is the minimum number of vertices in a large pat-
tern required by users, usually an easy lower bound that a
user can specify. Now to compute M , we just need to set
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

= 1 − ϵ and solve for M . It

follows that, once the user specifies K and ϵ, we could com-
pute M accordingly, and then if we pick M spiders initially
in the random drawing process, we are able to return the
top-K largest patterns with probability at least 1 − ϵ. For
example, with ϵ = 0.1, K = 10, and Vmin = |V (G)|

10 , we get
M = 85, which means to return top 10 largest patterns(each

of size at least |V (G)|
10 if any) with probability at least 90%,

we need to randomly draw 85 spiders initially. With the
analysis above, it is not hard to prove the following theo-
rem.

Theorem 1. Given a graph G, the error bound ϵ, the
diameter upper bound Dmax, the support threshold σ and
K, with probability at least 1 − ϵ, SpiderMine returns a set
S of top-K largest subgraphs of G such that for each P ∈ S,
|Psup| ≥ σ and diam(P ) ≤ Dmax.

With	
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This means that as long as we pick more than one spider
within a large pattern P in the initial random draw, i.e.,
|HP | > 1, we can guarantee we will not miss P by retaining
all the merged patterns. On the other hand, for smaller pat-
terns, the probability that more than one spider within the
pattern get picked in the random draw is much lower than
that of large patterns. As such, keeping only the merged pat-
terns at the end of the iterations would highly likely prune
away patterns that would grow only toward small patterns.
Thus after the pruning, we are left with a small number of
candidates each of which, with high probability, is a sub-
graph of large patterns. We then use SpiderGrow() again to
further extend these candidates until no larger patterns can
be found.

Figure 1: SpiderMine.

To formally present our approach, we first define the con-
cept of a spider. Formally, an r-spider is defined as follows.

Definition 4. [r-spider] Given a frequent pattern P in
graph G and a vertex u ∈ V (P ), if P is r-bounded from u,
we call P an r-spider with head u.

Algorithm 1 SpiderMine

Input: input graph G, error bound ϵ, support threshold σ
diameter bound Dmax, # of patterns returned K

Output: Set of K patterns S
1: S ← ∅;
2: T (G) ← InitSpider(G, r,σ);
3: /* mine all patterns of diameter up to 2r;*/
4: Compute M based on T (G), ϵ and K;
5: S ← RandomSeed(T (G),M);
6: /*randomly select M spiders as the seed for growth*/
7: For i = 1 To Dmax

2r
8: S ← SpiderGrow(S, σ);
9: /* grow patterns by spiders and merge when possible*/
10:Prune unmerged patterns from S;
11:Do
12: S ← SpiderGrow(S, σ);
13:Until no new patterns can be found
14:S ← top K largest patterns in S;
15:Return S;

Our algorithm works in the following three stages. An
illustration is given in Figure 1. The main algorithm of Spi-
derMine is shown in Algorithm 1 with all details elaborated
in Appendix. The random drawing size M is an internal
parameter computed according to user-specified K and ϵ,
with details given in the next subsection. The discussion on
setting the spider radius size r is given in Subsection 4.2.

1. Stage I: Mining Spiders
Mine all r-spiders from the input graph G. By the end
of this stage, we know all the frequent patterns up to
a diameter 2r with all their embeddings in G.

2. Stage II: Large Pattern Identification
Randomly pickM spiders from all the spiders obtained
in Stage I as the initial set of frequent subgraphs. The
next step consists of Dmax

2r iterations. In each iter-
ation, use SpiderGrow() to grow each of the M sub-
graphs by extending its boundary with selected spiders
such that the radius of the subgraph is increased by r.
In each iteration, if we detect that two frequent sub-
graphs, whose embeddings are all previously disjoint,
begin to overlap on some of their embeddings as a re-
sult of growth in this iteration, we would merge them if
the resulting merged subgraph is frequent. Note that
we can avoid pair-wise checking for potential merging
because all patterns grow with spiders as units and we
only have to monitor the same spiders being used by
different patterns to detect overlapping. At the end
of the Dmax

2r iterations, keep only those frequent sub-
graphs which are generated as a result of merging at
some iteration. Let the set we keep be S. The frequent
subgraphs in S are believed to be subgraphs of large
patterns with high probability.

3. Stage III: Large Pattern Recovery
With high probability, each one of the top-K large
patterns now has some portion of it as a pattern in S.
To recover the full patterns, we grow each subgraph
in S by SpiderGrow() until no more frequent patterns
can be found. All the patterns discovered so far are
maintained in a list sorted by their size. Return the
top-K patterns.

We now show that, in Stage II of SpiderMine, how to
choose M , the number of initial seed spiders, to achieve the
discovery of top-K largest patterns with guaranteed proba-
bility. If more than one spider within a pattern P are chosen
in the random drawing process, we say that P is successfully
identified. We denote as Psuccess the probability that all
the top-K largest patterns are successfully identified. With
proof sketch detailed in the Appendix, we have the following
lemma,

Lemma 2. Given a network G and a user-specified K, we

have Psuccess ≥
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

.

Vmin is the minimum number of vertices in a large pat-
tern required by users, usually an easy lower bound that a
user can specify. Now to compute M , we just need to set
(

1− (M + 1)(1− Vmin
|V (G)| )

M
)K

= 1 − ϵ and solve for M . It

follows that, once the user specifies K and ϵ, we could com-
pute M accordingly, and then if we pick M spiders initially
in the random drawing process, we are able to return the
top-K largest patterns with probability at least 1 − ϵ. For
example, with ϵ = 0.1, K = 10, and Vmin = |V (G)|

10 , we get
M = 85, which means to return top 10 largest patterns(each

of size at least |V (G)|
10 if any) with probability at least 90%,

we need to randomly draw 85 spiders initially. With the
analysis above, it is not hard to prove the following theo-
rem.

Theorem 1. Given a graph G, the error bound ϵ, the
diameter upper bound Dmax, the support threshold σ and
K, with probability at least 1 − ϵ, SpiderMine returns a set
S of top-K largest subgraphs of G such that for each P ∈ S,
|Psup| ≥ σ and diam(P ) ≤ Dmax.



Why Spiders? 
(1) Reducing combinatorial complexity 

Observation: 
o Spiders are shared by many large patterns.  
o Once obtained, they can be efficiently assembled to 

generate large patterns.  

4.2 Spider: Leaping Towards Large Patterns
We show why spiders could help recover large patterns

efficiently by the following arguments: (1) Spiders reduce
combinatorial complexity in recovering large patterns, and
(2) Spiders minimize the heavy cost of graph isomorphism
checking.

4.2.1 Reducing Combinatorial Complexity
It is well-known in graph mining that as the pattern sizes

increase, the number of frequent subgraph patterns grows
exponentially. Illustrated in the pattern lattice model, the
patterns of small sizes are the “tip” of the lattice, form-
ing a tiny part of the whole pattern space when compared
with the number of patterns of larger sizes. This leads us
to the following observation — larger patterns are composed
of smaller subgraphs which are shared among all the larger
patterns across the pattern space. If we are able to identify
these smaller components, we can generate larger patterns
with lower combinatorial complexity than in incremental
pattern growth model. An illustrative toy example is given
in Figure 2. In the first row are 6 spiders each of size 10,
denoted by A to F . In the second row are four larger pat-
terns each of which is composed by three spiders from the
first row. We assume a 20% overlapping on average. This
means each larger pattern is of size 10 × 3 × 80% = 24. If
we follow the traditional incremental growth paradigm, we
need 24× 4 = 96 steps to grow these four large patterns. In
SpiderMine, we first mine out the 6 spiders in 10 × 6 = 60
steps, then the four large patterns will be generated by as-
sembling these spiders in 3 × 4 = 12 steps. As such, we
will take 60 + 12 = 72 steps in total. We save 24 steps, a
30% speed-up. Although this is a much simplified example
ignoring all other mining cost such as frequency checking
and so on, it is evident that spiders could be very powerful
in reducing the inherent cost associated with combinatorial
complexity. Moreover, note that the cost for mining the spi-
ders is only a one-time cost. On the other hand, we can
run the remaining stages, i.e., the randomized seed selection
and iterative spider-growth, multiple times to increase the
probability of obtaining the top-K large patterns.

Figure 2: Patterns sharing the same set of spiders.

We note that it is a hard problem to decide what is the
optimal set of subgraphs such that this set is shared by
the most number of larger patterns, thus minimizing the
combinatorial complexity. However, as compared against
traditional incremental growth, it still pays tremendously
to leverage this finding and use subgraphs of small radius
and relatively uniform structure to obtain larger patterns.
How large should we set the spider radius r? A smaller
r means slower growth to large patterns while a larger r
means heavier load on the initial spider mining stage. Em-
pirically, we find that a small r, e.g., r = 1 or r = 2, is a
good trade-off choice which gives better overall mining per-
formance because the quality of the top-K mining result is

largely unaffected when we increase r further as a result of
our probabilistic framework. Experiments on r is given in
the Appendix.

4.2.2 Reducing Graph Isomorphism Checking
For a frequent pattern P and a vertex v ∈ V (P ), the r-

neighborhood of v is a frequent subgraph, and accordingly
an r-spider with head v. We denote an r-spider with head
vertex v as srh[v] and is written as sh[v] for simplicity when
r is fixed. In SpiderMine, each frequent pattern P is asso-
ciated with a spider-set representation, which is denoted as
S[P ] and is defined as a multi-set S[P ] = {sh[v]|v ∈ V (P )}.
For the example shown in Figure 3 (I), the spider-set rep-
resentation of the pattern consists of 8 distinct spiders in
total, with one of the spiders having two embeddings and
therefore 9 spiders in total. This shows the spider-set repre-
sentation is a multi-set. Here we set the radius of the spider
r = 1. The node underlined is the head of the spider. The
spider’s corresponding embeddings are given in the physical
vertex ID. Note that one of the spider has two embeddings.

Figure 3: Spider-Set Representation.

Note that it is natural to maintain the spider-set repre-
sentation for a pattern P in SpiderMine. Initially, a frequent
pattern P is simply a spider randomly chosen from the com-
plete set of all spiders mined from the input graph G. Set
S[P ] = {sh[v]} where v is the head of the chosen spider. For
each u ∈ V (P ), u ̸= v, we run BFS for depth at most r
to compute sh[u] within P , and add sh[u] into S[P ]. This
completes the initial computation for S[P ]. To update S[P ]
when P is extended by a new spider s′ at boundary vertex
u, we merge S[P ] with S[s′] and update those spiders whose
heads are within distance r to the common boundary of P
and s′. The reason to maintain a spider-set representation
for a pattern P is to reduce graph isomorphism test as much
as possible. Here is the observation — If two graphs P
and Q have the same spider-set representation, i.e.,
S[P ] = S[Q], it is with high probability that P ∼=L Q.
Intuitively, as the neighboring spiders overlap each other,
the topological constraints imposed upon each other signif-
icantly limit the flexibility to construct two non-isomorphic
graphs using exactly the same set of spiders. As in Figure 3
(I), it is in fact difficult to construct a graph Q with exactly
the same set of 9 spiders such that Q is not isomorphic to
the graph in the figure.

It is easy to prove the following theorem which shows that
two isomorphic graphs must have the same spider-set repre-
sentation.

Theorem 2. For two graphs P and Q, if P ∼=L Q, then
S[P ] = S[Q].



Why Spiders? 
(2) Reducing graph isomorphism checking 
 
q We propose a novel graph pattern representation 

--- spider-set representation. 
q   A pattern is represented by the set of its constituent 

r-spiders. 
q   Two same patterns must have the same spider-set 

representation. 
q   Two same spider-set representations highly likely 

correspond to the same pattern.  
q   The larger the r, the more effective the pruning.   



DBLP Collaborative Patterns  



SpiderMine’s	
  response	
  to	
  the	
  requirements	
  
q   Single-graph setting  

q  Handles overlapping embeddings 
  

q  Huge network size 
q  A probabilistic framework to capture only the 

top-k largest frequent patterns by leaping 
pattern growth. 

q  User-specified constraints 
q  Pushed deep into the mining process by 

serving as the probabilistic bound 

  



SkinnyMine --- Catching the long and 
skinny ones  

[Zhu et al. SIGMOD’13] 
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q Information 
diffusion patterns in 
social network 
q Viral topics, rumors, 

etc.  
q Diffusion paths are 

long backbones, 
associated ego-
networks and local 
communities are of 
small radius 



A Motivating Example 
q Mobile trajectory patterns in LBS and 

Check-in data 
q Trajectories are long backbones  
q Associated point of interest 



Skinny Graph Patterns 

are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .
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shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
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ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ
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patterns that are large but “fat”. As a result, as shown by our exper-
iments, skinny patterns with long diameters but sparse twigs will
often be missed.

Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
direct) with minimum visits to irrelevant ones (making it precise).
As illustrated in Figure 1 from a pattern lattice perspective [28], the
target mining result is “carved” by the constraint into pattern clus-
ters indicated by the shaded areas. Probabilistic methods cannot
accomplish the mining task because most of them are only capa-
ble of returning a sparse sample of the complete set of skinny pat-
terns. Traditional “enumerate-and-check” approaches try to return
all qualified results at the cost of exhaustively traversing the pattern
space, failing usually halfway due to intractability. The direct min-
ing approach, which we illustrate in this paper withSkinnyMine on
the skinny pattern mining problem, provides a much more efficient
way to reach straight some patterns in each of the target clusters
and only examine locally those relevant candidates. Direct mining
has been studied not on constraints on patterns but on certain util-
ity of patterns such as discriminativeness measured on the mining
results [4], which is a different problem from ours.

Figure 2: An architectural view of the direct mining framework

An architectural overview comparing our direct mining approach
and traditional mining approach is depicted in Figure 2. Suppose
user-specified mining requests are “find all skinny frequent patterns
with diameter of length l” with varied l. Upon request with each
l, traditional mining would make a almost exhaustive traversal of
the pattern space, and every time enumerate an exponential number
of frequent pattern candidates to check constraints before it finally
generates the target pattern set. In contrast, direct mining works
in a completely different way. It pre-computes all the minimal
constraint-satisfying patterns, which we will define later, and build
indexing structures to efficiently access the corresponding embed-

dings. Upon request with each l, it would directly access the proper
minimal patterns associated with that l, and only examine locally
all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.

Our Contributions. We propose a novel direct mining framework
for efficient constrained graph pattern mining and demonstrate the
idea and algorithms in the context of the skinny pattern mining
problem.
First, we develop SkinnyMine, an efficient algorithm to mine all

the l-long δ-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well
as achieving a partition of all skinny patterns into disjoint result
sets, thus enabling direct and precise mining. For example, sup-
pose users are interested in finding all δ-skinny patterns with diam-
eter length between l1 and l2 (l1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than l1 or longer than l2.
Second, we formally prove that, by maintaining the canonical di-

ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.
Third, interestingly, to mine the canonical diameters, which are

essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted by V (G)

and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.
DEFINITION 1. (Labeled Graph Isomorphism) Two labeled

graphs G and G′ are isomorphic if there exists a bijection f :
V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
We use G ∼=L G′ to denote that two labeled graphs G and G′
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essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted by V (G)

and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.
DEFINITION 1. (Labeled Graph Isomorphism) Two labeled

graphs G and G′ are isomorphic if there exists a bijection f :
V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
We use G ∼=L G′ to denote that two labeled graphs G and G′
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patterns that are large but “fat”. As a result, as shown by our exper-
iments, skinny patterns with long diameters but sparse twigs will
often be missed.

Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
direct) with minimum visits to irrelevant ones (making it precise).
As illustrated in Figure 1 from a pattern lattice perspective [28], the
target mining result is “carved” by the constraint into pattern clus-
ters indicated by the shaded areas. Probabilistic methods cannot
accomplish the mining task because most of them are only capa-
ble of returning a sparse sample of the complete set of skinny pat-
terns. Traditional “enumerate-and-check” approaches try to return
all qualified results at the cost of exhaustively traversing the pattern
space, failing usually halfway due to intractability. The direct min-
ing approach, which we illustrate in this paper withSkinnyMine on
the skinny pattern mining problem, provides a much more efficient
way to reach straight some patterns in each of the target clusters
and only examine locally those relevant candidates. Direct mining
has been studied not on constraints on patterns but on certain util-
ity of patterns such as discriminativeness measured on the mining
results [4], which is a different problem from ours.

Figure 2: An architectural view of the direct mining framework

An architectural overview comparing our direct mining approach
and traditional mining approach is depicted in Figure 2. Suppose
user-specified mining requests are “find all skinny frequent patterns
with diameter of length l” with varied l. Upon request with each
l, traditional mining would make a almost exhaustive traversal of
the pattern space, and every time enumerate an exponential number
of frequent pattern candidates to check constraints before it finally
generates the target pattern set. In contrast, direct mining works
in a completely different way. It pre-computes all the minimal
constraint-satisfying patterns, which we will define later, and build
indexing structures to efficiently access the corresponding embed-

dings. Upon request with each l, it would directly access the proper
minimal patterns associated with that l, and only examine locally
all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.

Our Contributions. We propose a novel direct mining framework
for efficient constrained graph pattern mining and demonstrate the
idea and algorithms in the context of the skinny pattern mining
problem.
First, we develop SkinnyMine, an efficient algorithm to mine all

the l-long δ-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well
as achieving a partition of all skinny patterns into disjoint result
sets, thus enabling direct and precise mining. For example, sup-
pose users are interested in finding all δ-skinny patterns with diam-
eter length between l1 and l2 (l1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than l1 or longer than l2.
Second, we formally prove that, by maintaining the canonical di-

ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.
Third, interestingly, to mine the canonical diameters, which are

essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted by V (G)

and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.
DEFINITION 1. (Labeled Graph Isomorphism) Two labeled

graphs G and G′ are isomorphic if there exists a bijection f :
V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
We use G ∼=L G′ to denote that two labeled graphs G and G′
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are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ

patterns that are large but “fat”. As a result, as shown by our exper-
iments, skinny patterns with long diameters but sparse twigs will
often be missed.

Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
direct) with minimum visits to irrelevant ones (making it precise).
As illustrated in Figure 1 from a pattern lattice perspective [28], the
target mining result is “carved” by the constraint into pattern clus-
ters indicated by the shaded areas. Probabilistic methods cannot
accomplish the mining task because most of them are only capa-
ble of returning a sparse sample of the complete set of skinny pat-
terns. Traditional “enumerate-and-check” approaches try to return
all qualified results at the cost of exhaustively traversing the pattern
space, failing usually halfway due to intractability. The direct min-
ing approach, which we illustrate in this paper withSkinnyMine on
the skinny pattern mining problem, provides a much more efficient
way to reach straight some patterns in each of the target clusters
and only examine locally those relevant candidates. Direct mining
has been studied not on constraints on patterns but on certain util-
ity of patterns such as discriminativeness measured on the mining
results [4], which is a different problem from ours.

Figure 2: An architectural view of the direct mining framework

An architectural overview comparing our direct mining approach
and traditional mining approach is depicted in Figure 2. Suppose
user-specified mining requests are “find all skinny frequent patterns
with diameter of length l” with varied l. Upon request with each
l, traditional mining would make a almost exhaustive traversal of
the pattern space, and every time enumerate an exponential number
of frequent pattern candidates to check constraints before it finally
generates the target pattern set. In contrast, direct mining works
in a completely different way. It pre-computes all the minimal
constraint-satisfying patterns, which we will define later, and build
indexing structures to efficiently access the corresponding embed-

dings. Upon request with each l, it would directly access the proper
minimal patterns associated with that l, and only examine locally
all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.

Our Contributions. We propose a novel direct mining framework
for efficient constrained graph pattern mining and demonstrate the
idea and algorithms in the context of the skinny pattern mining
problem.
First, we develop SkinnyMine, an efficient algorithm to mine all

the l-long δ-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well
as achieving a partition of all skinny patterns into disjoint result
sets, thus enabling direct and precise mining. For example, sup-
pose users are interested in finding all δ-skinny patterns with diam-
eter length between l1 and l2 (l1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than l1 or longer than l2.
Second, we formally prove that, by maintaining the canonical di-

ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.
Third, interestingly, to mine the canonical diameters, which are

essentially frequent paths of length l, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.
An important contribution of this study is that we generalize

the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION
As a convention, the vertex set of a graph G is denoted by V (G)

and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P , written as |P |.
In our setting, a graph G = (V (G), E(G)) is associated with a
label function lG : V (G) !→ Σ, where Σ is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.
DEFINITION 1. (Labeled Graph Isomorphism) Two labeled

graphs G and G′ are isomorphic if there exists a bijection f :
V (G) !→ V (G′), such that ∀u ∈ V (G), lG(u) = lG′(f(u)) and
(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).
We use G ∼=L G′ to denote that two labeled graphs G and G′
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are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ

iterations. In each iteration i, 1 ≤ i ≤ δ, a current pattern P is
extended by adding only two kinds of edges — (1) Edges connect-
ing one (i − 1)-level vertex and one i-level vertex; and (2) Edges
connecting two i-level vertices.

Figure 3 shows the corresponding patterns we would obtain by
the end of each iteration. Note that Iteration 0 is simply Stage I, i.e.
vertices on the canonical diameter are 0-level.

We maintain the following important loop invariant for each it-
eration as Loop Invariant 1.

LOOP INVARIANT 1. When growing a current pattern P with
canonical diameter L, L must remain the canonical diameter after
each edge extension.

By maintaining this loop invariant, we can guarantee the unique
generation of each skinny pattern. To see this, first observe that
the canonical diameters partition all l-long δ-skinny patterns into
disjoint sets, all patterns in each set sharing the same canonical di-
ameter. Within the same set, patterns are ordered lexicographically
in a similar fashion as in gSpan [23], the details of which are omit-
ted here due to space limit. Essentially, each pattern is encoded first
by the number of levels and within the same level, “forward” edge
and “backward” edges are defined similarly as in [23]. Each edge
is encoded lexicographically by the labels of the two end vertices.

3.2 Mining Canonical Diameters
The challenge of mining canonical diameters is how to efficiently

mine all the frequent paths of length l∗. Despite the much research
work in frequent graph mining, few, if any, has focused on mining
frequent simple paths to the best of our knowledge. Therefore we
propose the following two-step algorithm.

Step I. First, we mine all the frequent paths whose lengths are
powers of 2 and less than l∗, i.e., 20, 21, 22, . . .,2k, where k =
argmax

j
{j|2j ≤ l∗}. To get paths of length 2i, we concatenate

two current frequent paths of length 2i−1 with the initial set being
the set of all frequent edges of length 20. Compared against in-
cremental edge extension, this approach provides the most efficient
way to find all the paths with length of powers of 2, and we denote
the set as Sp.

Step II. Next, we use Sp to find all frequent paths of length l where
l is not a power of 2. We propose an efficient method that is based
on the observation that any path of length l can be obtained by
merging two paths of length 2k where k = argmax

j
{j|2j ≤ l}.

Note that in this case, in stead of concatenation, we merge two
paths that are partially overlapping. The efficiency of this method
is a result of the following two observations.
Firstly, any path L of length l can be uniquely obtained by merg-

ing two paths of length 2k where k = argmax
j

{j|2j ≤ l}. This

is because we have defined vH and vT as the head and tail of L,
which are unique unless L is self-isomorphic. It follows that, if L
is obtained by merging two paths, they must be the prefix of L con-
taining vH and the suffix of L containing vT , both of which are of
length 2k.
Secondly, the fact that there are fewer frequent paths of longer

lengths leads to the consequence that for longer paths, it is more
efficient to obtain them by merging two longer sub-paths than con-
catenating a series of sub-paths of lengths of distinct powers of 2.
For example, if L is of length 15, instead of concatenating 4 paths
of lengths of distinct powers of 2, i.e. 15 = 8+4+2+1, we only
need to merge 2 paths each of length 8.

3.3 Maintaining Canonical Diameters
Given a current pattern P with canonical diameter L, we have

shown that as long as we maintain Loop Invariant 1, we would be
able to guarantee the unique pattern generation. In Section 3.5, we
will further prove the completeness of our mining result as a con-
sequence of maintaining Loop Invariant 1. Now we first discuss
how to efficiently maintain Loop Invariant 1. A naive way is to in-
voke all-pair shortest path computation after each edge extension.
If Loop Invariant 1 is violated, we drop the pattern. This straight-
forward approach, however, is highly inefficient as all-pair shortest
path computation is high costly for large graphs. Therefore we
need to investigate smarter ways to maintain this constraint more
efficiently.
Recall that vH and vT denote the head and tail of the diameter

respectively. The key observation is that, when P is extended toP ′,
to maintain that L is still the canonical diameter of P ′ is equivalent
to maintaining the following three constraints:

1. Constraint I: Diameter is not increased.
This means D(P ′) ≤ D(P ), which guarantees that the edge
extension does not create a longer diameter.

2. Constraint II: L still realizes the shortest distance be-
tween vH and vT .
This means in P ′,Dist(vH , vT ) = |L| and therefore D(P ′)
≥ D(P ), which guarantees that the edge extension does not
shorten the distance between vH and vT .

3. Constraint III: L ≺ L
′ for any newly generated diameter

L
′ of the same length.

As indicated in Figure 3, we show (in red dotted lines) three
examples of edge extension each violating one of the three above-
mentioned constraints. For Constraint I, the extension would cre-
ate a longer diameter of [v1, v2, v3, v4, v5, v6, v11, v15] of length 7.
For Constraint II, the extension would shorten Dist(vH , vT ) to 5
via the new edge. For Constraint III, the extension would create
a new diameter [v1, v2, v3, v4, v5, v6, v16] with the same length as
the current canonical diameter but smaller in lexicographical order.
It is worth noting that these three constraints are independent of

one other, the satisfaction of any one of them does not guarantee
the satisfaction of the other two. However, when maintained si-
multaneously, they are sufficient and necessary to guarantee Loop
Invariant 1, i.e., the canonical diameter is preserved from P to P ′,
as proved by the following lemma.

LEMMA 1. Given a pattern P with its canonical diameter L =
[vH = v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n, for any
pattern P ′ such that P ′ is obtained from P by one edge extension,
P ⊂ P ′ and |E(P ′)| = |E(P )| + 1, Constraint I, II and III are
the sufficient and necessary conditions to guarantee that L is still
the canonical diameter of P ′.

PROOF. We first show these three constraints are the sufficient
conditions. The satisfaction of Constraint I means the diameter of
P ′ is either the same as P or shorter. Constraint II, if satisfied,
would then guarantee that the diameter of P ′ is not shorter than
that of P since D(P ′) ≥ Dist(vH , vT ) = |L| = n = D(P ).
Therefore, Constraint I and II combined lead to the fact that Lmust
be one of the diameter(s) of P ′. Constraint III then further guaran-
tees that, even the edge extension should create some new diameter
L
′, we will have L ≤ L

′, making L the canonical diameter by
definition. This completes the sufficient condition proof.
The necessary condition part is straightforward since if L is the

canonical diameter of P ′, the diameter of P ′ is then the length of L,
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two distances D^v_H and D^v_T. When adding new edge or 
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are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ

Constraint	
  I:	
  	
  Diameter	
  is	
  not	
  increased	
  

satisfying Constraint I. There cannot be other shorter path between
the head, vH , and the tail, vT , of L without violating the definition
of a diameter. Constraint III is also trivial by Definition 4, which
completes the necessary condition proof.

3.4 Efficient Constraint Maintanence
Next we discuss how to efficiently maintain the three constraints.

Recall that an i-level vertex is at distance i from the canonical di-
ameter. So 0-level vertices would just be those of the canonical
diameter itself. For each vertex u, we maintain two distances for
u, Du

H and Du
T , which denote the shortest distances from u to vH

and vT as the head and tail of the canonical diameter, respectively.
In the following, we prove that we only need to locally update Du

H

and Du
T to efficiently maintain all the three constraints.

3.4.1 Constraint I.
Tomaintain Constraint I, it turns out that we simply need to make

sure that, when a new vertex u is added on the current pattern,

Du
H ≤ D(P ) and Du

T ≤ D(P )

We need the following lemma before proving the correctness of the
approach.
LEMMA 2. Given a pattern P and any pattern P ′ such that P ′

is obtained from P by adding one edge (u, v) such that v ∈ V (P )
and u ∈ V (P ′) \ V (P ), we have Dist(u, v) ≤ max(Du

H , Du
T )

for any v ∈ V (P ).
PROOF. We prove by induction on i, the iteration number of pat-

tern growth. Recall that in the i-th iteration, only i-level vertices are
added. For i = 0, the pattern P is simply the canonical diameter L
itself. It is trivial to see that Dist(u, v) ≤ max(Du

H , Du
T ) for any

u, v ∈ V (P ). Assuming the proposition holds for i = n − 1,
we consider the case when i = n. In this case, the new edge
connects u and v that are (n − 1)-level vertices. Since by in-
duction Dist(v, v′) ≤ max(Dv

H , Dv
T ) for any v′ ∈ V (P ), and

Dist(u, v′) = Dist(u, v)+Dist(v, v′) = 1+Dist(v, v′) for any
v′ ∈ V (P ), we therefore have Dist(u, v′) = 1 + Dist(v, v′) ≤
1+max(Dv

H , Dv
T ) = max(Dv

H +1, Dv
T +1) = max(Du

H , Du
T ).

The proposition holds for i = n, which completes the proof.

THEOREM 1. Given a pattern P and any pattern P ′ such that
P ′ is obtained from P by adding one edge (u, v), to guarantee that
D(P ′) ≤ D(P ), it is sufficient to guarantee that Du

H ≤ D(P ) and
Du

T ≤ D(P ) (assuming u is the new vertex if any).
PROOF. There are only two cases for the new edge (u, v): (1)

u ∈ V (P ) and v ∈ V (P ), i.e., the new edge connects two existing
vertices; and (2) v ∈ V (P ) and u ∈ V (P ′) \ V (P ), i.e., the new
edge connects an existing vertex v with a new vertex u. In case
(1), since connecting two existing vertices would only decrease the
diameter, and we have Dist(v′, v′′) ≤ D(P ) for all vertex pair
v′, v′′ ∈ V (P ), we must have Dist(v′, v′′) ≤ D(P ) for all vertex
pair v′, v′′ ∈ V (P ′). In case (2), first, for any existing vertex pair
v′, v′′, Dist(v′, v′′) ≤ D(P ) still holds; we consider vertex pair
u, v in which v ∈ V (P ) and u ∈ V (P ′) \ V (P ). Due to Lemma
2, the proposition holds as well.

3.4.2 Constraint II.
To maintain Constraint II is to guarantee that the shortest dis-

tance between vH and vT is not reduced by the new edge. It is
possible to first generate the pattern and then check if the resulting
pattern satisfies Constraint II by running a breadth-first search with
vH as the root. However, a much more efficient way is make sure
that, when a new vertex u is added on the current pattern,

Du
H +Du

T ≥ D(P )

The correctness is shown by the following theorem.
THEOREM 2. Given a pattern P and any pattern P ′ such that

P ′ is obtained from P by adding one edge (u, v), to guarantee that
D(P ′) ≥ D(P ), it is sufficient to make sure that Du

H + Du
T ≥

D(P ).
PROOF. We prove by contradiction. Suppose for the purpose of

contradiction that, even though it is guaranteed that Du
H + Du

T ≥
D(P ) for a new vertex u added during the growth iterations, L still
is no longer the shortest path between vH and vT after adding edge
(u, v). Let the new shortest path between vH and vT be L′, and
we have |L′| < |L|. Notice that the new shortest path L

′ must
pass through this new vertex u, otherwise L will not be the shortest
path even before adding u. Now consider the two sub-paths of
L
′ divided by u, denoted as L′1 and L

′

2. By the property of sub-
modularity of shortest paths, L′1 must be the shortest path between
vH and u, and L

′

2 must be the shortest path between u and vT .
Accordingly we have |L′1| = Du

H and |L′2| = Du
T . Thus, we have

Du
H + Du

T = |L′1| + |L′2| = |L′| < |L| = D(P ), resulting in a
contradiction and completing the proof.

3.4.3 Contraint III.
To maintain Constraint III, it turns out that when P ′ is obtained

from P by adding one edge (u, v), we only need to check whether
L ≺ L

′ in the following two cases: (I) if v ∈ V (P ), u ̸∈ V (P )
and max (Dv

H , Dv
T ) = D(P ) − 1; and (2) if u, v ∈ V (P ) and

eitherDu
H +Dv

T = D(P )− 1 orDv
H +Du

T = D(P )− 1. In both
cases, the new diameter L′ passes through the new edge (u, v).

THEOREM 3. Given a pattern P and any pattern P ′ such that
P ′ is obtained from P by adding one edge (u, v), to guarantee that
L ≺ L

′ for any newly generated diameter L′, it is sufficient to check
two cases: (I) if v ∈ V (P ), u ̸∈ V (P ) and max (Dv

H , Dv
T ) =

D(P )−1; and (2) if u, v ∈ V (P ) and eitherDu
H+Dv

T = D(P )−1
orDv

H +Du
T = D(P )− 1.

PROOF. We prove case (I), and case (II) can be obtained simi-
larly. First, note that if both u, v ∈ V (P ), no new diameter would
be created and since L is already the canonical diameter of P , Con-
straint III is satisfied automatically. It then follows that the newly
generated diameter L′ must contain the newly added vertex u as
one of the end vertex. By Theorem 2, the other end vertex must be
either vH or vT . Since the new diameter must be of length n, we
have either Du

H = D(P ) or Du
T = D(P ). Therefore, the only case

this happens is when we havemax (Dv
H , Dv

T ) = D(P )− 1.

3.5 Proof of Completeness
We now prove why maintaining Loop Invariant 1 could guaran-

tee the completeness of our mining result. To do that, we first ob-
serve that for each target pattern P , there exists a canonical diam-
eter L. As the l-long δ-skinny constraint possesses the property of
weak pattern anti-monotonicity [27], P can be obtained through a
pattern growth sequence of sub-patterns of increasing sizes, which
all have L as their canonical diameter.
LEMMA 3. Given a graph pattern P , there must exist a canon-

ical diameter L.
PROOF. Immediate from Definition 3 and 4.

LEMMA 4. The constraintC of l-long δ-skinny is weak pattern-
antimonotone [27], i.e., for a graph P where |V (P )| ≥ k for some
constant k, fC(P ) = 1 → fC(P

′) = 1 for some P ′ ⊂ P such
that |E(P ′)| = |E(P )| − 1. In particular, for a l-long δ-skinny
graph pattern P with |E(P )| = m, there exists a sequence of sub-
graph patterns [Pl, Pl+1, . . . , Pm = P ] such that Pl ⊂ Pl+1 ⊂

H	
   T	
  

[6,2]	
  

are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ
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are isomorphic. Given two graphs P and G, a subgraph G′ of G is
called an embedding of P in G if P ∼=L G′. For a single graph G
and a pattern P , we use eP to denote a particular embedding of a
pattern P , and the set of all embeddings of P is denoted as E[P ].
Given a graph G, a path L of G is represented as a sequence

of vertices L = [vi1 , vi2 , . . . , vik ] where i1, i2, . . . , ik are their
physical vertex IDs and (vim , vim+1

) ∈ E(G), 1 ≤ m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in Σ, and for any two labels
l1, l2 ∈ Σ, denote as l1 ≺ l2 if l1 is ordered ahead of l2. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is lexicographically
smaller than L2, denoted as L1 ≺L L2, if (I) k1 < k2; or (II)
k1 = k2 and there exists an index i∗, 1 ≤ i∗ < k1, such that
l(v1im ) = l(v2jm ) for 1 ≤ m < i∗, and l(v1ii∗ ) ≺ l(v2ji∗ ). We
say L1 is lexicographically equal to L2, denoted as L1 =L L2, if
k1 = k2 and l(v1im ) = l(v2jm ) for 1 ≤ m ≤ k1.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths L1=[v1i1 , v

1
i2 , . . . , v

1
ik1

] and L2 = [v2j1 , v
2
j2 , . . . , v

2
jk2

] of
a graph G with label function l, we say L1 is smaller than L2, de-
noted as L1 ≺ L2, if (I) L1 ≺L L2; or (II) L1 =L L2 and there
exists an index i∗, 1 ≤ i∗ < k1, such that for their physical ID
sequences, we have im = jm for 1 ≤ m < i∗, and ii∗ < ji∗ .

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V (G), and is de-
noted as D(G). Given a connected graph G, let DG be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path inDG. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(G), let DG be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as LG, is de-
fined as L ∈ DG such that for any L′ ∈ DG, L ≺ L

′.

Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)
Let the canonical diameter of a current pattern P be L = [vH =

v1, v2, v3, . . . , vn+1 = vT ] with length |L| = n. Let vH and
vT denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter LG =
[v1, v2, v3, v4, v5, v6, v7], the head vH = v1 and the tail vT = v7.
Another path in the example is L′ = [v1, v2, v3, v4, v5, v6, v11]

which is of the same length as LG but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.
For a graph G with canonical diameter L and a vertex v ∈

V (G), let Dist(v,L) denotes the shortest distance from v to L,
i.e.,Dist(v,L) = argmin

Dist(v,u)
{Dist(v, u)|u ∈ V (L)}.

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v ∈ V (G) is called a d-level vertex if
Dist(v,L) = d.

Next we define a δ-skinny graph, followed by a l-Long δ-skinny
graph.

DEFINITION 6. [δ-skinnyGraph] A graphG is called δ-skinny
if for all v ∈ V (G) such that v is a d-level vertex, we have d ≤ δ.

DEFINITION 7. [l-Long δ-SkinnyGraph] A graphG is called
l-long δ-skinny if its canonical diameter L is of length l,i.e., |L| =
l, and G is δ-skinny.

Figure 3 presents an example of a 6-long 2-skinny graphG (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [l-Long δ-Skinny Pattern Mining]
Given a graph G, a frequency threshold σ, a length l and a skin-
niness bound δ, the problem of l-Long δ-Skinny Pattern Mining
((l, δ)-SPM) is to find all l-long δ-skinny subgraphs P of G such
that |E[P ]| ≥ σ.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH
3.1 Overview
As illustrated in Figure 1, to solve the (l, δ)-SPM problem with a

direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
frequent path of length l.

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold σ and a user mining re-
quest with diameter constraint l = l∗, we mine all frequent simple
paths of length l∗, and denote the result set as S0. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we

handle not just one mining request of a single l∗, but a sequence of
mining requests with different constraint values of l∗. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
l∗ with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L ∈ S0 such that |L| = l∗, grow L in at most δ
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satisfying Constraint I. There cannot be other shorter path between
the head, vH , and the tail, vT , of L without violating the definition
of a diameter. Constraint III is also trivial by Definition 4, which
completes the necessary condition proof.

3.4 Efficient Constraint Maintanence
Next we discuss how to efficiently maintain the three constraints.

Recall that an i-level vertex is at distance i from the canonical di-
ameter. So 0-level vertices would just be those of the canonical
diameter itself. For each vertex u, we maintain two distances for
u, Du

H and Du
T , which denote the shortest distances from u to vH

and vT as the head and tail of the canonical diameter, respectively.
In the following, we prove that we only need to locally update Du

H

and Du
T to efficiently maintain all the three constraints.

3.4.1 Constraint I.
Tomaintain Constraint I, it turns out that we simply need to make

sure that, when a new vertex u is added on the current pattern,

Du
H ≤ D(P ) and Du

T ≤ D(P )

We need the following lemma before proving the correctness of the
approach.
LEMMA 2. Given a pattern P and any pattern P ′ such that P ′

is obtained from P by adding one edge (u, v) such that v ∈ V (P )
and u ∈ V (P ′) \ V (P ), we have Dist(u, v) ≤ max(Du

H , Du
T )

for any v ∈ V (P ).
PROOF. We prove by induction on i, the iteration number of pat-

tern growth. Recall that in the i-th iteration, only i-level vertices are
added. For i = 0, the pattern P is simply the canonical diameter L
itself. It is trivial to see that Dist(u, v) ≤ max(Du

H , Du
T ) for any

u, v ∈ V (P ). Assuming the proposition holds for i = n − 1,
we consider the case when i = n. In this case, the new edge
connects u and v that are (n − 1)-level vertices. Since by in-
duction Dist(v, v′) ≤ max(Dv

H , Dv
T ) for any v′ ∈ V (P ), and

Dist(u, v′) = Dist(u, v)+Dist(v, v′) = 1+Dist(v, v′) for any
v′ ∈ V (P ), we therefore have Dist(u, v′) = 1 + Dist(v, v′) ≤
1+max(Dv

H , Dv
T ) = max(Dv

H +1, Dv
T +1) = max(Du

H , Du
T ).

The proposition holds for i = n, which completes the proof.

THEOREM 1. Given a pattern P and any pattern P ′ such that
P ′ is obtained from P by adding one edge (u, v), to guarantee that
D(P ′) ≤ D(P ), it is sufficient to guarantee that Du

H ≤ D(P ) and
Du

T ≤ D(P ) (assuming u is the new vertex if any).
PROOF. There are only two cases for the new edge (u, v): (1)

u ∈ V (P ) and v ∈ V (P ), i.e., the new edge connects two existing
vertices; and (2) v ∈ V (P ) and u ∈ V (P ′) \ V (P ), i.e., the new
edge connects an existing vertex v with a new vertex u. In case
(1), since connecting two existing vertices would only decrease the
diameter, and we have Dist(v′, v′′) ≤ D(P ) for all vertex pair
v′, v′′ ∈ V (P ), we must have Dist(v′, v′′) ≤ D(P ) for all vertex
pair v′, v′′ ∈ V (P ′). In case (2), first, for any existing vertex pair
v′, v′′, Dist(v′, v′′) ≤ D(P ) still holds; we consider vertex pair
u, v in which v ∈ V (P ) and u ∈ V (P ′) \ V (P ). Due to Lemma
2, the proposition holds as well.

3.4.2 Constraint II.
To maintain Constraint II is to guarantee that the shortest dis-

tance between vH and vT is not reduced by the new edge. It is
possible to first generate the pattern and then check if the resulting
pattern satisfies Constraint II by running a breadth-first search with
vH as the root. However, a much more efficient way is make sure
that, when a new vertex u is added on the current pattern,

Du
H +Du

T ≥ D(P )

The correctness is shown by the following theorem.
THEOREM 2. Given a pattern P and any pattern P ′ such that

P ′ is obtained from P by adding one edge (u, v), to guarantee that
D(P ′) ≥ D(P ), it is sufficient to make sure that Du

H + Du
T ≥

D(P ).
PROOF. We prove by contradiction. Suppose for the purpose of

contradiction that, even though it is guaranteed that Du
H + Du

T ≥
D(P ) for a new vertex u added during the growth iterations, L still
is no longer the shortest path between vH and vT after adding edge
(u, v). Let the new shortest path between vH and vT be L′, and
we have |L′| < |L|. Notice that the new shortest path L

′ must
pass through this new vertex u, otherwise L will not be the shortest
path even before adding u. Now consider the two sub-paths of
L
′ divided by u, denoted as L′1 and L

′

2. By the property of sub-
modularity of shortest paths, L′1 must be the shortest path between
vH and u, and L

′

2 must be the shortest path between u and vT .
Accordingly we have |L′1| = Du

H and |L′2| = Du
T . Thus, we have

Du
H + Du

T = |L′1| + |L′2| = |L′| < |L| = D(P ), resulting in a
contradiction and completing the proof.

3.4.3 Contraint III.
To maintain Constraint III, it turns out that when P ′ is obtained

from P by adding one edge (u, v), we only need to check whether
L ≺ L

′ in the following two cases: (I) if v ∈ V (P ), u ̸∈ V (P )
and max (Dv

H , Dv
T ) = D(P ) − 1; and (2) if u, v ∈ V (P ) and

eitherDu
H +Dv

T = D(P )− 1 orDv
H +Du

T = D(P )− 1. In both
cases, the new diameter L′ passes through the new edge (u, v).

THEOREM 3. Given a pattern P and any pattern P ′ such that
P ′ is obtained from P by adding one edge (u, v), to guarantee that
L ≺ L

′ for any newly generated diameter L′, it is sufficient to check
two cases: (I) if v ∈ V (P ), u ̸∈ V (P ) and max (Dv

H , Dv
T ) =

D(P )−1; and (2) if u, v ∈ V (P ) and eitherDu
H+Dv

T = D(P )−1
orDv

H +Du
T = D(P )− 1.

PROOF. We prove case (I), and case (II) can be obtained simi-
larly. First, note that if both u, v ∈ V (P ), no new diameter would
be created and since L is already the canonical diameter of P , Con-
straint III is satisfied automatically. It then follows that the newly
generated diameter L′ must contain the newly added vertex u as
one of the end vertex. By Theorem 2, the other end vertex must be
either vH or vT . Since the new diameter must be of length n, we
have either Du

H = D(P ) or Du
T = D(P ). Therefore, the only case

this happens is when we havemax (Dv
H , Dv

T ) = D(P )− 1.

3.5 Proof of Completeness
We now prove why maintaining Loop Invariant 1 could guaran-

tee the completeness of our mining result. To do that, we first ob-
serve that for each target pattern P , there exists a canonical diam-
eter L. As the l-long δ-skinny constraint possesses the property of
weak pattern anti-monotonicity [27], P can be obtained through a
pattern growth sequence of sub-patterns of increasing sizes, which
all have L as their canonical diameter.
LEMMA 3. Given a graph pattern P , there must exist a canon-

ical diameter L.
PROOF. Immediate from Definition 3 and 4.

LEMMA 4. The constraintC of l-long δ-skinny is weak pattern-
antimonotone [27], i.e., for a graph P where |V (P )| ≥ k for some
constant k, fC(P ) = 1 → fC(P

′) = 1 for some P ′ ⊂ P such
that |E(P ′)| = |E(P )| − 1. In particular, for a l-long δ-skinny
graph pattern P with |E(P )| = m, there exists a sequence of sub-
graph patterns [Pl, Pl+1, . . . , Pm = P ] such that Pl ⊂ Pl+1 ⊂

[3,2]	
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5. A DIRECT MINING FRAMEWORK
In this section we generalize our approach in the skinny pattern

mining setting to present a direct mining framework for a class of
constrained frequent graph pattern mining problems, and discuss
the properties that a constraint should have in order to apply the
framework.

5.1 Framework
The general problem description for constrained frequent graph

pattern mining is the following:

DEFINITION 9. Given a single graph or a graph transaction
database D, a minimum frequency threshold σ, and a specified
constraint C, find all frequent subgraph patterns such that each
pattern satisfies C.

Note that the constraint C represents a general constraint that is
not limited to a single constraint and could be a conjunction of a set
of atomic constraints. As illustrated in Figure 2, our direct mining
framework for the general mining problem works in two stages:

1. Minimal Constraint-satisfying Pattern Generation.
This stage of mining the minimal constraint-satisfying pat-
terns can often be pre-computed off-line. The corresponding
embeddings of each minimal pattern can be then indexed for
efficient access later.

2. Constraint-preserving Pattern Growth.
Upon user request for mining with a particular constraint,
the corresponding minimal patterns can be fetched and the
proper embeddings are retrieved from graph database. Next
the constraint-preserving pattern growth stage will grow each
minimal pattern to find all target patterns.

In order to apply the direct mining framework, the constraint of
interest needs to have certain properties, namely reducibility and
continuity, which we detail as follows.

5.2 Minimal Constraint-satisfying Pattern
The first stage of our mining framework is to find certain “an-

chor” pattern node to start the mining process. As we are adopting
a pattern-growth paradigm, the best choice is to find the minimal
pattern that satisfies the constraint. In our skinny pattern problem
setting, if the constraint is being l-long δ-skinny, then the mini-
mal constraint-satisfying patterns are the frequent paths of length
l, which is why we mine them first. The importance of this stage
is that, due to the reduced pattern size and simplified constraint, it
is usually possible to develop more efficient algorithms customized
for mining these minimal patterns than using general-purpose min-
ing algorithms to get them by enumerate-and-check.
To enable this stage, the given constraint must admit the exis-

tence of such minimal patterns of non-trivial size, e.g. it cannot be
a single vertex. Formally, we have the following property. Given a
constraint C, we denote as fC(.) the boolean predicate defined on
the pattern space such that for a pattern P , fC(P ) = 1 if and only
if P satisfies constraint C.

PROPERTY 1. [Reducibility] A graph constraint C is called re-
ducible if there exists a positive integer k and a nonempty set S
of graph patterns such that for each P ∈ S, |E(P )| ≥ k and
fC(P ) = 1, and for any pattern P ′ ⊂ P , fC(P ′) = 0.

Note that not every graph constraint is reducible. Consider the
constraint ofMaxDegree(G) ≤ K, i.e., the maximum node de-
gree is smaller than K. It is easy to verify that there is no minimal

constraint-satisfying patterns except for the trivial single vertices.
This means that no efficient algorithm can be proposed to mine a
targeted subset of the whole pattern space in order to reduce pattern
enumeration. Indeed, in this case, all frequent patterns must be ex-
amined because the constraint does not define a subset of patterns
of non-trivial size.

5.3 Constraint-preserving Pattern Growth
The second stage of our mining framework is to grow each min-

imal constraint-satisfying pattern generated at the first stage while
still preserving the constraint during growth. Again as in our skinny
problem setting, we preserve the constraint by making sure that the
canonical diameter remains to be the canonical diameter after each
edge extension. Will we miss any target pattern in this way? In or-
der to mine the complete pattern set, the constraint must admit the
following property, which essentially states that the target patterns
within one pattern cluster defined by a minimal pattern should be
adjacent to some subpatterns in the same cluster.

PROPERTY 2. [Continuity] A graph constraint C is called con-
tinuous if for each pattern P such that fC(P ) = 1, one of the
following is true: (1)P is a minimal constraint-satisfying pattern;
(2)there exists at least one patternP ′ such thatP ′ ⊂ P , |E(P ′)| =
|E(P )|− 1 and fC(P ′) = 1.

This property guarantees that we will not miss any target pattern
by growing from the minimal constraint-satisfying patterns. Note
that not every graph constraint is continuous. Consider the con-
straint that “Degree(v) = Degree(v′) for all vertex pair v, v′ ∈
V (P )”, i.e., each vertex of the graph has the same degree. It is easy
to verify that this constraint is not continuous.

6. EXPERIMENTAL RESULTS
In this section, we present our performance study onSkinnyMine.

We first present our evaluation methodology.

6.1 Evaluation Methodology
We use both synthetic data and real data for our evaluation. On

synthetic data, we systematically evaluate SkinnyMine for both
effectiveness and scalability (Section 6.2). On real data sets, we
present interesting pattern examples in our mining result to demon-
strate the application of skinny patterns (Section 6.3).

6.1.1 Effectiveness
We demonstrate in Section 6.2.1 thatSkinnyMine is able to mine

out skinny patterns that cannot be discovered by other algorithms.
We examine both graph-transaction setting and single graph set-
ting, and compare against the state-of-the-art algorithms. In each
setting, we first compare SkinnyMine against existing algorithms
under various data settings to show the difference in the patterns ob-
tained. Due to the inherent bottleneck in existing algorithms, these
comparisons have to be constrained to graphs with relatively small
sizes to allow all competing algorithms to run to completion. When
the limits of other algorithms are reached, we further demonstrate
the performance of SkinnyMine by itself.

6.1.2 Scalability
To demonstrate the scalability of SkinnyMine, we show the fol-

lowing in Section 6.2.2: (I) we compare SkinnyMine with existing
algorithms; (II) we present the runtime of SkinnyMine against var-
ied constraints, i.e., pattern diameter l and pattern skinniness δ.
Experiments in this part also illustrate the impact of the two

properties of Reducibility andContinuity of our direct mining frame-
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5.1 Framework
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pattern satisfies C.
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of atomic constraints. As illustrated in Figure 2, our direct mining
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pattern that satisfies the constraint. In our skinny pattern problem
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sizes to allow all competing algorithms to run to completion. When
the limits of other algorithms are reached, we further demonstrate
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DBLP Collaborative Patterns 
q Real Data:  DBLP 

Figure 21: DBLP skinny pattern example 1: A temporal col-
laborative pattern across 20 years.

Figure 22: DBLP skinny pattern example 2: A temporal col-
laborative pattern across 20 years.

vyakant Agrawal (1991 to 2010), Amr El Abbadi (1991 to 2010)
and Jeffrey F. Naughton (1988 to 2007). This pattern shows that,
since their early research career, these researchers have already col-
laborated with some fairly productive authors.

Sina Weibo.
Sina Weibo is a popular, Twitter-like micro-blogging service plat-
form originated from China 2. It is reported to have a registered
total user base of 358 million, of which roughly 36.5 million ac-
tive users daily. Two important features that are not yet available
on Twitter are (I) a user can comment on any other user’s tweets,
which results in more user interaction; and (II) the retweeting chain
is visible to the public, which is critically important for studying the
information diffusion process and user interaction pattern.
We use aWeibo dataset consisting of more than 1.8million users

and 230 million tweets, of which 111 million are original tweets.
From this dataset, we create a graph dataset for all the popular
tweets that have been retweeted more than 100 times. We define
a conversation as the graph formed with the author of the origi-
nal tweet as the root, and each retweet and comment would add an
edge between the user performing the action and the target user.
Note that a user could appear multiple times within the same con-
versation. All users are assigned one of three labels: (1) the root
user, i.e., author of the original tweet, (2) the users who follow the
root user, and (3) all other users. A conversation example is shown
in Figure 23, in which the nodes in red represent the root user. We
set the length constraint as at least 10 as we aim to find long diffu-
sion paths, and frequency threshold as 2. Out of a resulting graph
dataset of a total number of 2, 236, 424 vertices and 1, 978, 311
edges, SpiderMinemined 13, 847 frequent skinny patterns in 806
seconds.
Pattern Example. Figure 24 shows an example of a frequent inter-
action pattern mined from the conversations. The skinny diffusion
chain is a 13-long 3-skinny pattern. The arrow denotes the direction
that the information flows, i.e., the direction in which the tweet gets
disseminated. The red nodes are the same root user who originates
the tweet, and the green nodes are all her followers. This pattern
reveals two interesting insights. First, the root user is the type of
micro-bloggers who enjoy interacting with her followers and would
indeed engage in dialogues with them as her tweets get passed on.
Second, each time the root users engage in the conversation, the
tweet get further promoted to reach a larger audience.

7. RELATED WORK
Many efficient algorithms have been developed to find frequent
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patterns in graph transactions, e.g., AGM by Inokuchi et al., [10,
11], FSG by Kuramochi and Karypis, [12], Borgelt and Berthold,
[1], gSpan by Yan and Han, [23] and FFSM by Huan et al., [9].
These algorithms aim to find the complete frequent pattern set, but
suffer from the fact that due to combinatorial complexity, the size
of the complete pattern set is exponential even for graphs of moder-
ate sizes. To void the search on a complete pattern set, SPIN [17]
and MARGIN [20] find all maximal patterns. Unfortunately, the
number of all maximal patterns could still be too large to handle.
ORIGAMI as proposed in [7] is an algorithm to find a represen-
tative pattern set based on output space sampling. Other works
include structural leap search introduced by Yan et al. [22], which
adopts structural similarity to mine significant graph patterns effi-
ciently and directly from two graph datasets. Mining frequent pat-
tern in single-graph setting is harder than mining in graph-transaction
setting due to the complexity of support computation [13, 26]. One
of the most recent work in this category is SpiderMine [26] which
is designed to find the top-K largest patterns with a high proba-
bility of 1 − ϵ for any user-specified error bound ϵ. Due to its
constraint on diameter bound and spider-based merging, it is hard
for SpiderMine to find skinny patterns as we defined. Other im-
portant works in single graph setting include SUBDUE [8], SEuS
was proposed by Ghazizadeh and Chawathe [6], and GREW [13],
which have been thoroughly discussed in [26]. MoSS [5] is pro-
posed for mining complete patterns in single graphs, which, as any
other algorithm mining for the complete pattern set, suffers from
the same scalability issue as the input graph size grows. All these
algorithms are not designed to mine patterns with constraints di-
rectly as described in our direct mining framework.
Constraint-based pattern mining is of interest in a wide applica-

tions where a task integrates constraints into the mining process.
Recent work has highlighted the importance of constraint-based
mining in the context of mining frequent itemsets, sequential pat-
terns, associations, and graphs. Pei et al. [16] identify a class of
hard constraints called convertible constraints and develop its push-
ing method in itemset setting. The study [15] overviews the prin-
ciples of pattern-growth methods for constrained frequent pattern
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posed for mining complete patterns in single graphs, which, as any
other algorithm mining for the complete pattern set, suffers from
the same scalability issue as the input graph size grows. All these
algorithms are not designed to mine patterns with constraints di-
rectly as described in our direct mining framework.
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SkinnyMine’s	
  response	
  to	
  the	
  requirements	
  
q   Single-graph setting  

q  Handles overlapping embeddings 
  

q  Huge network size 
q  A direct mining strategy to reach target patterns as 

quickly as possible, and locally identify only those of 
interest 

q  User-specified constraints 
q  Pushed deep into the mining process by 

guaranteeing the non-redundant pattern generation 
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Part III 
Collaboration Patterns 



Collaborations Are Everywhere 
Question answering 
in a social network 

Customer service 

Business referral 

Collaborator finding 
in the academic world 

Software development 
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Collaborations In This Talk 

Peer Interaction 
oPatterns 
oPrediction 
oOptimization  
 

 
Team Joint Collaboration  

oPatterns 
oPrediction 
oOptimization  
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Collaborations In This Talk 

Peer Interaction 
oPatterns 
oPrediction 
oOptimization  
 

 
Team Joint Collaboration  

oPatterns 
oPrediction 
oOptimization  
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Collaborative Network 

Enterprise problem ticket 

Eclipse bug record 

Collaborative Networks 

Information Flow 
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Social Networks VS. Collaborative Networks 

Traditional Social Networks 
(Facebook, Twitter …) 
• Non-task driven information diffusion    

Collaborative Networks  
(problem solving, team work ...) 
•Task-driven information flow 

6 



We want to analyze… 

7 

• How do experts make routing decisions? 
 

• Who have made inefficient routing decisions? 
 

• How to optimize the routing performance through targeted 
training? 
 

• Can the completion time of a task be predicted so that one 
can act early for difficult tasks?  

 
       In order to understand human factors in real task routing and 

the inefficiency bottleneck, take early actions, and further 
improve real collaborative networks.  



We want to analyze… 
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• How do experts make routing decisions? 
• Who have made inefficient routing decisions? 
• How to optimize the routing performance through targeted 

training? 
• Can the completion time of a task be predicted so that one 

can act early for difficult tasks?  
 

If we use intelligent algorithms to replace humans,  
 
• Can we predict next best experts? 

 
• How to model the collaborative networks? 
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can act early for difficult tasks?  

 
• Can we predict next best experts? 

 
• How to model the collaborative networks? 



Observations on Routing Decision Making  
Observation 1 

Tasks with similar content, but different routing sequences 
e.g., two problem tickets in IBM IT service department      

 Task ID Task Content Routing Sequence 

492 Need password reset for kasperj on 
machine "pathfinder"".  Route to 
NUS_N_DCRCHAIX 

12 505  1914 
1915 1916 247 

 

494 Need password reset for jhallacy on 
machine ""pathfinder"".  Route to 
NUS_N_DCRCHAIX 

12  13  86 

Routing decision is not deterministic, given a certain 
task.  

10 
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Observations on Routing Decision Making 

Observation 2 
An expert might not directly send a task to a resolver.     

Is it because he does not understand the task very well, thus 
randomly routing it? Or 
 
he believes the other expert has a better chance to solve it, or a 
better chance to find the right expert to solve it?  

ei 

ej 

ek 
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Observation 3 
An expert tends to transfer a task to some expert whose expertise is 
neither too close nor too far from his own, i.e., not necessarily the final 
resolver! 
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log-normal density: 

Observations on Routing Decision Making 
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Modeling Expert Decision Logic 

 A Two-Phase Assumption 
 

     When an expert  transfers a task, 
             

 
 

 
 
 

   
 

Phase I Phase II 

Candidate pool establishment Specific expert selection 

ei 

ei 
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Modeling Expert Decision Logic 

6 particular routing patterns 
 

      
 

Task-Neutral 
Routing (TNR) 

Task-Specific 
Routing (TSR) 

Uniform Random (UR) 

Volume-biased Random (VR) 

Expertise Difference  (EX) 

TNRur

TNR vr

TNR ex

TSRur

TSR vr

TSR ex
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Phase II 

Phase I 

[Sun et al., KDD’14] 



Modeling Expert Decision Logic 

Generative model 
      Assume: the routing decision of an expert is generated 
through a mixture of 6 routing patterns. 

 
      

 
For each expert ei to transfer tasks, 
    -Draw the mixture weights of 6 routing patterns:  
       
       
      (reflecting ei ’s preferences over adopting different routing patterns) 
 
    -For each task t to be transferred by expert ei,   
         * Draw a pattern label:  
         * Draw an expert from the candidate pool to receive t. 

Decision generation process: 

~ Dirichlet( )iθ α

,Z ~ Mult( )i t iθ

15 
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 Evaluation Measure 
o Completion Time (CT): Number of experts contacted before a 

task is resolved 
 

o Mean Absolute Error (MAE) 
 
 
 Results 

 
 

 

 

        

 
 

 

 
 

 

 
 

    

 

       
 

      
 

Test Set

1MAE= | CT CT |
| Test Set | t t

t∈
−∑

DB2 

Models MAE 
TNR+TSR 0.08 

Miao et al.  0.68 

Support Vector Regression 0.80 

Bayesian regression 0.84 

Evaluation 
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Experiments 
 Resolution Efficiency of Routing Patterns TNR vs. TSR 

 
  

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
       

 

      
 

Experts favoring TNR  Weight on TNR patterns      Weight on TSR patterns. 

Experts favoring TSR Weight on TNR patterns      Weight on TSR patterns 

>

<
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Application: Optimizing Collaborations  
 Which expert should be trained first to adopt the most efficient 

routing patterns? How much efficiency improvement can we 
expect?  

 
o Random: random selection 

 
o Frequent transferor: select the expert who transfers the most tasks 

 
o Least efficient: select the least efficient expert       
 
 
 
 
 
 

 

       
 

      
 

Methods Efficiency Improvement (%) 

Random 0.27 

Frequent Transferor 0.91 

Least Efficient 1.21 

Recommendation using our model 2.75 
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We want to analyze… 
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• How do experts make routing decisions? 
 

• Who have made inefficient routing decisions? 
 

• How to optimize the routing performance through targeted 
training? 
 

• Can the completion time of a task be predicted so that one 
can act early for difficult tasks?  

 
• Can we predict next best experts? 

 
• How to model the collaborative networks? 



Ticket Resolution 

 Managing problem tickets is a key issue in IT service industry. 
 

 The efficiency of solving tickets highly depends on how they are 
routed.  
 

 How to develop efficient automated algorithms for ticket routing?  
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Automate Ticket Resolution: 
Sequence Mining Approach 

D

G
A

B

E

C

F

H

An interconnected 
network of experts 

A set of tickets reported to 
the expert network 

Routing sequence of 
tickets 

Goal: Minimize the average 
length of routing sequences 
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t1 

t2 
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Markov Modeling 
Capture ticket transfer patterns embedded in historical 

resolution sequences 
o State: an expert group holding the ticket 
o Transition probability: given the previous groups, the probability of 

the ticket being transferred to group gi, in the next step  

 
 
 

 
 

0
=)|( )(ki SgP )(/),( )()( kki SNSgN{

else

if )( )(kSN

# of  instances with a set of group 
transfers 

# of instances that a ticket is transferred 
to group gi , after being processed by 
S(k) 
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Routing Algorithms 

First-order Memoryless (FM) 
o Relies on the current state to make transfer decisions 
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Routing Algorithms 

First-order Multiple active State (FMS) 
o Ticket transfer decision is based on any one of the past states 

(instead of the current state). 
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Routing Algorithms 

Variable order Multiple active State (VMS) 
o With multiple active states, use higher-order whenever it can 

make more confident prediction 
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Incorporate Ticket Content:  
Generative Models 

t1

t2
D

G
A

B

E

C

F

H

An interconnected 
network of experts 

t3

A set of tickets reported to 
the expert network DB2 

logon 

Word description of tickets 

Routing sequence of 
tickets 

Goal: Minimize the average length 
of routing sequences 

26 

[Miao et al., KDD’10] 



Resolution Model (RM) 
Each expert has an expertise profile 

o An expert is likely to be able to resolve tickets similar to 
what he/she has resolved previously 
 

D 

B 

C 

H 

G 
A 

E 

F 

t 1 

t 2 
t 3 

Tickets resolved by expert E 
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Transfer Model (TM) 
Expertise awareness between experts 

o An expert transfers similar tickets to another expert 

 

D 

B 

C 

H 

G 

A 
E 

F 

t 1 

t 2 
t 3 

Tickets transferred from expert B to expert F 
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Optimized Network Model (ONM) 
Transfer profiles optimized for the entire expert 

network 
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Routing Algorithms: 
                    Ranked Resolver 
Match the ticket content with the expertise profiles 

A

B

C

H

G

D

E

F

DB2 
Logon 
failure 

P(A) = 30% 
DB2 10% 
Logon 5% 
failure 15% 

P(D) = 20% 
DB2 1% 
Logon 2% 
failure 20% 

P(F) = 10% 
DB2 5% 
Logon 1% 
failure 1% 

A

D

F

A: 2.2 e-4 

D: 8.0 e-6 

F: 5.0 e-7 
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Routing Algorithms: 
                 Greedy Transfer 
Match the ticket with the transfer profiles 

D

B

C

H

G
A

E

F

0.4 

0.3 

0.2 
0.1 

0.2 
0.3 
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DB2 
Logon 
failure 

D 

A 

B 
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Routing Algorithms: 
                 Holistic Routing 
All possibilities are explored 

D

B

C

H

G
A

E

F
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Evaluation 
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We want to answer… 
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• How do experts make routing decisions? 
 

• Who have made inefficient routing decisions? 
 

• How to optimize the routing performance through targeted 
training? 
 

• Can the completion time of a task be predicted so that one 
can act early for difficult tasks?  

 
• Can we predict next best experts? 

 
• How to model the collaborative networks? 



Collaborative Network Observations 

35 

[Miao et al., WWW’12] 



Collaborative Network Observations 
Clustering effect 

oEclipse or Netbeans network 
• Developers are loosely organized 

• Lower clustering coefficients 

oEnterprise network 
• Agents are more organized in groups by specialty  

• Agents inside a group is more likely to collaborate with each other 

• Higher clustering coefficient 

Clustering coefficient of studied networks 
 

Eclipse 
Network 

NetBeans 
Network 

Enterprise 
Network 

0.198 0.21 0.35 
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Modeling Approach 

 Network Model 
oSimulates static network connectivity 

 

Routing Model 
oSimulates dynamic human behavior in information 

routing 
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Network Model: Simulation results 
Real 

Simulation  
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Routing Model: 
 Simulating Task Execution 

Intuitions 
o If an expert cannot resolve a problem, she tends to 

forward it to a neighbor “closer to resolver” 
o If an expert doesn’t know which neighbor is closer to 

resolver, she tends to choose a well-connected 
neighbor who is more likely to be connected to the 
resolver 

oAmong all neighbors, an expert randomly chooses 
one to forward the task based on some probability 
distribution 
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Routing Model: Simulation Results 
Real 

Simulation  

Note: Simulation results were obtained by running proposed routing model on a 2-D network topology, which is a 
neighborhood-preserving representation of real collaborative networks, using the method of spectral embedding. 
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Agent pool optimization: 
Putting the models in use 

 Environment 
o A problem management function of an IT service provider, consisting 

of 5000 agents with varying expertise  

 Business Problem 
o Constantly restructure agent pools to accommodate the evolving 

workload and human resource availability, while maintaining efficiency 
in problem resolution 
 

 Trade-offs 
o Dividing agents into smaller pools 

o Dividing agents into larger pools 

o Correct initial dispatching (with 
probability p) is also critical to 
improving routing efficiency 
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How to effectively organize workforces? 

Problem Definition  
o Each task is associated with one difficulty value x 
o Each worker i is characterized with their ability w_i 
o Each worker can solve the task if and only if x<=w_i 
o If a worker cannot solve a given task, the task must be forwarded 

to a worker of greater ability.  
 
Goal:  
 
Given a set of worker abilities W and a distribution P over task 
difficulty,  design efficient forwarding structure,  that minimizes both 
the maximum workload of any worker, and the number of workers 
that need to attempt a task.  

42 
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Results 
o Omniscient workload  

Assign a task to any worker that is capable of solving it.  
For any W and task difficulty distribution P, precisely 

characterize the optimal omniscient  maximum workload M 
 

o Near-Optimal depth-workload tradeoffs  
By hierarchically arranging the workers in balanced b-ary trees, 

we can simultaneously obtain a multiplicative factor of b2 of M in 
terms of maximum workload, with a resulting depth of 
log(n)/log(b). 

How to effectively organize workforces?  
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Collaborations In This Talk 

 Peer Interaction 
oPatterns 
oPrediction 
oOptimization  
 

 
 Team Joint Collaboration  

oPatterns 
oPrediction 
oOptimization  
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Collaborative Teams 

 Work together to produce music, movies, games, and other 
cultural products.  
o Wikipedia 
o Open Source Software (OSS) 

 
Questions:  
 How do teams form?  

 
 What factors will influence the success of teams?  
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The Formation and Success of Online Creative 
Collaborations 

 Existing theories on common bond, social identity, and social 
exchange [Kraut et al., 2007, Taifel et al, 1982, Emerson et al., 
1976]  
o Communication richness 
o Shared interests 
o Status within the community  
o Balance of efforts 
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The Formation and Success of Online Creative 
Collaborations 

 Data  
o February Album Writing Month (FAWM) 
    6116 users; 39,103 FAWM songs  

 
 Goal: to predict whether a pair of users posted a collaborative 

song to the website or not.  
 

 Method  
o Logistic regression   
 
 

 

47 

[Settles et al., CHI’13] 



The Formation and Success of Online Creative 
Collaborations 

 Features: 
      Various Paths that can  

connect two users in  
FAWM network 
e.g., 
A-->follows--B, 
A<--messaged--B 
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The Formation and Success of Online Creative 
Collaborations 

Results 
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The Formation and Success of Online Creative 
Collaborations 

 Results        
 

  
 
 

 

Key findings on team success:  
 
1. Balance of effort improves satisfaction. 

 
2. Higher-status partners may enjoy Collabs less. 

 
3. Frequent communication helps (usually).  
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The Formation and Success of Online Creative 
Collaborations 

Results 
        

 
  

 
 

 

Key findings on team formation:  
 
1. Communication Exchanges predict collaboration, such as 

following a partner’s song feed, direct messaging, and 
commenting on the partner’s  songs.  
 

2. Collabs form out of shared interests, but different skills  
 

3. Small status differences are positively associated with collabs.  
(Neither too different, nor exactly the same. similar to our 
finding in KDD’14) 
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Success Factors in Online Creative 
Collaboration  

 Collaborative animated movies (Collab) 
o Newgrounds: 2,200,000 registered users; 180,000 animated 

movies and games  
 

 Success definition:  
o The completion of a Collab 
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Success Factors in Online Creative 
Collaboration 

Three factor types:   
o Planning & Structure 

Collabs with initial planning and structure, especially technical 
specifications, are more likely to be successful.  
 

o Reputation & Experience  
 Animators who are well-known in the community are more likely to 

lead successful collabs.  
 Animators who have experience with Flash and past collabs are 

more likely to lead successful collabs.  
 

o Communication & Dedication  
Collabs whose members frequently communicate are more likely to 

be successful  
Collabs whose leaders frequently communicate are more likely to 

be successful.  
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Success Factors in Online Creative 
Collaboration 

Experiments  

Each row stands for one category of planning/structural elements in the first 
posts of Collab threads.  Completed Collabs tend to have more planning and 
structure than failed ones.  
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Part III: Sum-Up 
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Collaborations:  
Peer Interaction 
Team Joint Collaboration 
Questions:  
  

 

• How do experts make routing decisions? 
• Who have made inefficient routing decisions? 
• How to optimize the routing performance through targeted training? 
• Can the completion time of a task be predicted so that one can act 

early for difficult tasks?  
• Can we predict next best experts? 
• How to model the collaborative networks? 

 
• How do teams form? 
• What factors will influence the success of teams?  
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Part IV  
Relationship Mining 

 



Relationships embedded in 
network structure   

• Network links represent general relationships 
of longer term 
o Friendship of mutual consent, e.g., Facebook. 
o Follow link, e.g., Twitter. 
o Collaboration, e.g., DBLP. 
o Negative relationships, e.g., distrust (Epinion), foe 

(slashdot). 
• Can we discover more specific and implicit 

relationships from these links? 



Example: Role Discovery 
Information network without 

role/relationship info, e.g. a 
company’s email network 

CEO 

Employee 

How	
  to	
  
infer	
  

Manager	
  

Latent relationship graph 

3  
Courtesy	
  of	
  Chi	
  Wang	
  for	
  this	
  slide	
  



Twitter is a unique social platform 
1.  The	
   “follow”	
   links	
   are	
   established	
   without	
   mutual	
  

consent.	
  
§  An	
  explosion	
  of	
  social	
  links	
  

§  Everyone	
   has	
   a	
   large	
   number	
   of	
   followers	
   and	
  
followees.	
  

§  A	
   huge	
   number	
   of	
   tweets	
   are	
   generated	
  
everyday.	
  	
  	
  (~300	
  million	
  tweets/daily)	
  

§  A	
  further	
  shrinkage	
  of	
  the	
  network	
  diameter	
  
§  InformaJon	
  diffusion	
  is	
  much	
  faster	
  

2.  It	
  is	
  a	
  mixture	
  of	
  social	
  network	
  and	
  news	
  media	
  
§  H.Kwak	
  et	
  al	
  	
  	
  WWW	
  2010	
  



Follow network = real-life social network? 

How	
  much	
  of	
  this	
  follow	
  network	
  reflects	
  a	
  
user’s	
  real-­‐life	
  offline	
  social	
  network?	
  

§  Mutual	
  follow	
  links	
  do	
  not	
  necessarily	
  indicate	
  real-­‐life	
  interacJon.	
  
	
  
§  The	
  number	
  of	
  followees	
  and	
  followers	
  varies	
  significantly.	
  	
  

Problem:	
  	
  Given	
  a	
  TwiRer	
  follow	
  network	
  of	
  a	
  target	
  user,	
  
idenJfy	
  the	
  user’s	
  offline	
  community	
  by	
  examining	
  the	
  follow	
  
linkage	
  alone.	
  	
  



Motivation 
1.  More	
  accurate	
  and	
  robust	
  user	
  interest	
  modeling	
  

2.   Online	
  vs	
  Offline	
  relaConship	
  understanding	
  	
  

3.   User	
  idenCty	
  alignment	
  across	
  different	
  plaIorms	
  

4.   Spam,	
  Zombie	
  account	
  detecCon	
  

5.   Business	
  compeCCve	
  analysis	
  

And	
  more	
  …	
  



Principle I: Mutual Reachability  
InformaCon	
  should	
  be	
  able	
  to	
  flow	
  in	
  both	
  direcCons	
  
within	
  a	
  small	
  distance	
  between	
  real-­‐life	
  friends.	
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Figure 1. Mutual Reachability.
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Figure 2. Friendship Retainability.

!

"

#

$%

$&

%!

!
'
"
(
!
'
"
)

!
'
"
)
(
!
'
)

!
'
)
(
!
'
)
)

!
'
)
)
(
!
'
&

!
'
&
(
!
'
&
)

!
'
&
)
(
!
'
*

!
'
*
(
!
'
*
)

!
'
*
)
(
!
'
#

!
'
#
(
!
'
#
)

!
'
#
)
(
!
'
+

!
'
+
(
!
'
+
)

!
'
+
)
(
$
'
!

!
"
#
$
%

&'!

Figure 3. Community Affinity.

nity members who do not have direct two-way follow
links with the target user yet do have strong connec-
tions with other off-line community members. The fol-
lowing experiment further illustrates the principle. For
each of our 65 Twitter target user u, we examine each
user v in u’s neighborhood, and count how many off-line
friends of u have direct two-way follow links with v. We
rank them by the count and compute AUC(Area Under
ROC Curve) of the rank list based on the ground-truth
off-line friends of u. Figure 3 shows that for most users
(52 out of 65), the AUC value is greater than 0.8. This
means off-line friends indeed share more direct two-way
follow links with other off-line friends, exhibiting much
stronger community affinity than online friends. Here
we use direct two-way follow links as an indication of
greater connection strength.

Principle 3. Community Affinity. Given a tar-
get user u, for a user v ∈ Nk

u , let S = {w|w ∈ Cu
⋂
Nk

v },
the larger the cardinality of S, the more likely we have
v ∈ Cu with respect to Nk

u .

ALGORITHM
With incorporating the three principles, we propose
our algorithm based on the idea of random walk with
restart(RWR). It is defined in [6] with the following
equation.

r⃗i = (1− c)W̃ r⃗i + ce⃗i (1)

In our problem setting, given the Twitter network G =
(V,E), a target user u ∈ V and a number k, we focus on
G’s subgraph Gk

u induced by Nk
u

⋃
{u} , which is sim-

plified as Gu when k is fixed. A probability transition
matrix W is defined for V (Gu) such that, for two nodes
v, w ∈ V (Gu), the entry W (v, w) denotes the probabil-
ity of v transmitting to w at any step. In accordance
with Principle (II), we define W (v, w) as

W (v, w) =

{ 1
|F 1

v→| if w ∈ F 1
v→

0 if w ̸∈ F 1
v→

(2)

In Equation 1, W̃ is the transpose of the probability
transition matrix W as defined above. e⃗i is the starting

indicator vector such that ei,i = 1 and ei,j = 0 where
i ̸= j. r⃗i is the probability vector for node i such that
ri,j is the probability of transmitting to node j from i. c
is restart probability. It has been shown that r⃗i can be
computed iteratively and it finally converges[6]. When
it converges, the steady-state probability vector r⃗i re-
flects the bandwidth of information flow originated from
user i to user j for every j ∈ V (Gu). We use this steady-
state probability to define the closeness score ci,j for
two users i and j:

ci,j = ri,j ∗ rj,i (3)

The closeness score thus defined satisfies Principle (I).
We next explore how to take advantage of the off-line
community to identify other unknown members, imple-
menting Principle (III). The idea is to discover the off-
line community iteratively, adding new members into
the known set in each round. For that purpose, we
introduce an auxiliary dummy node, v̂, to provide a
threshold to cut the new off-line community bound-
ary for each round. v̂ is constructed as a virtual node
such that (I). v̂ and the target user u follow each other,
i.e., v̂ ∈ F 1

u←
⋂

F 1
u→, (II). v̂ only associates with u,

i.e., for each v ∈ (Nk
u \ {u}), v̂ ̸∈ (F 1

v←
⋃
F 1
v→), and

(III). the number of followers of v̂ is set to be the me-
dian of the number of followers of all users in u’s k-
hop network with the hub users excluded, i.e., |F 1

v̂→| =
medianv∈(Nk

u\H){|F 1
v→|}. Hub users, denoted as H, re-

fer to those accounts with more than 2000 followers,
which typically belong to celebrities, news media, etc.
The dummy node is defined in such a way as to set the
lower-bound case for an off-line friend. It simulates the
scenario in which the target user u finds by chance this
random user v̂ who has no connections with u’s off-line
community. Finding him/her interesting, u follows v̂,
who then also follows back somehow. As such, v̂ repre-
sents a connection to u almost as weak as any off-line
real-life friend should be.

On a high level, the algorithm works in iterations as
follows. Given a target user u, compute the closeness
score between u and all the other users as well as v̂. A
ranking list of all the users together with v̂ in decreas-
ing order of the closeness score is thus generated. All



Principle II: Friendship Retainability  
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Figure 3. Community Affinity.

nity members who do not have direct two-way follow
links with the target user yet do have strong connec-
tions with other off-line community members. The fol-
lowing experiment further illustrates the principle. For
each of our 65 Twitter target user u, we examine each
user v in u’s neighborhood, and count how many off-line
friends of u have direct two-way follow links with v. We
rank them by the count and compute AUC(Area Under
ROC Curve) of the rank list based on the ground-truth
off-line friends of u. Figure 3 shows that for most users
(52 out of 65), the AUC value is greater than 0.8. This
means off-line friends indeed share more direct two-way
follow links with other off-line friends, exhibiting much
stronger community affinity than online friends. Here
we use direct two-way follow links as an indication of
greater connection strength.

Principle 3. Community Affinity. Given a tar-
get user u, for a user v ∈ Nk

u , let S = {w|w ∈ Cu
⋂
Nk

v },
the larger the cardinality of S, the more likely we have
v ∈ Cu with respect to Nk

u .

ALGORITHM
With incorporating the three principles, we propose
our algorithm based on the idea of random walk with
restart(RWR). It is defined in [6] with the following
equation.

r⃗i = (1− c)W̃ r⃗i + ce⃗i (1)

In our problem setting, given the Twitter network G =
(V,E), a target user u ∈ V and a number k, we focus on
G’s subgraph Gk

u induced by Nk
u

⋃
{u} , which is sim-

plified as Gu when k is fixed. A probability transition
matrix W is defined for V (Gu) such that, for two nodes
v, w ∈ V (Gu), the entry W (v, w) denotes the probabil-
ity of v transmitting to w at any step. In accordance
with Principle (II), we define W (v, w) as

W (v, w) =

{ 1
|F 1

v→| if w ∈ F 1
v→

0 if w ̸∈ F 1
v→

(2)

In Equation 1, W̃ is the transpose of the probability
transition matrix W as defined above. e⃗i is the starting

indicator vector such that ei,i = 1 and ei,j = 0 where
i ̸= j. r⃗i is the probability vector for node i such that
ri,j is the probability of transmitting to node j from i. c
is restart probability. It has been shown that r⃗i can be
computed iteratively and it finally converges[6]. When
it converges, the steady-state probability vector r⃗i re-
flects the bandwidth of information flow originated from
user i to user j for every j ∈ V (Gu). We use this steady-
state probability to define the closeness score ci,j for
two users i and j:

ci,j = ri,j ∗ rj,i (3)

The closeness score thus defined satisfies Principle (I).
We next explore how to take advantage of the off-line
community to identify other unknown members, imple-
menting Principle (III). The idea is to discover the off-
line community iteratively, adding new members into
the known set in each round. For that purpose, we
introduce an auxiliary dummy node, v̂, to provide a
threshold to cut the new off-line community bound-
ary for each round. v̂ is constructed as a virtual node
such that (I). v̂ and the target user u follow each other,
i.e., v̂ ∈ F 1

u←
⋂

F 1
u→, (II). v̂ only associates with u,

i.e., for each v ∈ (Nk
u \ {u}), v̂ ̸∈ (F 1

v←
⋃
F 1
v→), and

(III). the number of followers of v̂ is set to be the me-
dian of the number of followers of all users in u’s k-
hop network with the hub users excluded, i.e., |F 1

v̂→| =
medianv∈(Nk

u\H){|F 1
v→|}. Hub users, denoted as H, re-

fer to those accounts with more than 2000 followers,
which typically belong to celebrities, news media, etc.
The dummy node is defined in such a way as to set the
lower-bound case for an off-line friend. It simulates the
scenario in which the target user u finds by chance this
random user v̂ who has no connections with u’s off-line
community. Finding him/her interesting, u follows v̂,
who then also follows back somehow. As such, v̂ repre-
sents a connection to u almost as weak as any off-line
real-life friend should be.

On a high level, the algorithm works in iterations as
follows. Given a target user u, compute the closeness
score between u and all the other users as well as v̂. A
ranking list of all the users together with v̂ in decreas-
ing order of the closeness score is thus generated. All

The	
  size	
  of	
  a	
  user’s	
  offline	
  community	
  has	
  an	
  upper-­‐bound	
  
threshold	
  σ	
  related	
  to	
  Dunbar’s	
  number	
  



Figure 6: Case study of a user’s follow network.

5. EXPERIMENTAL STUDY
An implementation of our algorithm as a demo system –

TwiCube1 – is publicly available.

5.1 Case Study
We now present a case study on a real user X who par-

ticipated in our evaluation. X has 107 followers and follows
385 other users. Figure 6 illustrates the discovery of his core
community in a total of 4 iterations each indicated by a dif-
ferent color. In summary, 34 users are identified in Iteration
1, 19 in Iteration 2, 3 in Iteration 3 and only one user in
the last iteration. The precision and recall for this result
of X’s core community is 0.8947 and 0.9807 respectively. It
can be observed from Figure 6 that there is a dense clusters
of core community members heavily linked among one an-
other (lower left to X) and another such cluster of non-core-
community users similarly linked (upper right to X). This
shows that approaches based on dense subgraph mining or
structural clustering would have a hard time in distinguish-
ing between these two similarly-structured communities and,
consequently, identifying the true core community. In fact,
this cluster of non-core-community users consists of media,
business and active Twitter users sharing similar interests
and topics, which is a good indicator of those of X’s own.
In Figure 6, we pick out two particular users, magnify

their follow links with X and present them in two cases (a)
and (b) (marked by arrows in the figure). In (a), we show
the follow network between X and a non-core-community
user“tuniu”, which is a travel business. Note that although
X and this business node directly follow each other, satis-
fying our Principle 1, this node is still correctly excluded
from the core community by our algorithm. This is mainly
because it connects mostly with other non-core-community
users by follow links, exhibiting weak core community affin-

1http://twitterbud2011.appspot.com/

ity withX. This case would fail the naive approach trying to
identify core community members by two-way follow links.
In (b), we show the follow networks between X and a core
community member Y , who is discovered in Iteration 3. In
this case, X follows Y but Y does not follow X. Moreover, it
is not until more core community members have been iden-
tified at Iteration 1 and 2 that Y ’s sophisticated connections
with the core community are revealed. In this tricky case,
by unleashing the power of iterated core community identi-
fication, our algorithm is still able to correctly identify Y .

5.2 Effectiveness
One naive method to identify the core community of a tar-

get user u is to find the set of users who have direct two-way
follow links with u, i.e., they and u follow each other. Do di-
rect two-way follow links provide good indication for off-line
real-world friendship? Our experiments suggest that these
links are not sufficient. In Figure 7 we show the comparison
on the distribution (among the 65 user evaluations)of pre-
cision, recall and F score between our algorithm CCD and
the naive algorithm. In general our solution outperforms
the naive solution by a large margin. To conduct more de-
tailed comparison between the two methods, let’s take a
closer examination at each user. We compute the difference
of precision and recall between two solutions for each user.
In Figure 8, each point represents one user and the coordi-
nate is defined as (PCCD − Pnaive, RCCD − Rnaive) where
PCCD and RCCD is the precision and recall of our algorithm
respectively, Pnaive and Rnaive is the precision and recall of
the naive approach respectively. The result shows that for
most users, our solution outperforms the naive solution for
both precision and recall. In particular, in two cases, the
difference is even close to 1. There is only one single case
in which our algorithm is prevailed for both precision and
recall.

Principle III: Community Affinity  
A	
  user’s	
  off-­‐line	
  friends	
  usually	
  group	
  into	
  clusters	
  such	
  that	
  

within	
  each	
  cluster	
  members	
  know	
  each	
  other	
  	
  



Approach 

                             Wei Xie, Cheng Li, Feida Zhu, Ee-Peng Lim 

Case Study 

When a Friend in Twitter is a Friend in Life 

 Twitter Off-line Community  

Approach 

Three Principles  

Model Accuracy 

Principle I:  Mutual Reachability 
Information should be able to flow in both directions 
between real-life friends. 

Principle II: Friendship Retainability 
In general, the number of real-life close friends of any 
user should have a reasonable upper-bound. 

Principle III: Community Affinity 
    A user’s real-life friends usually group into clusters 
within each of which the members also know each other 
personally.  

 

!  Twitter follow network is formed in a unique way.  
!  How much does a user’s Twitter follow network reflect 
his/her offline real-life social network?  
!  We call it Twitter Off-line Community the portion of a 
user’s follow network which maps to the user’s off-line 
social network.  
!  The ability to identify a user’s Twitter off-line community 
is important in understanding user online social behavior, 
building accurate and robust user interest profile and better 
content recommendation. 

We define a hub user as a user with more than 2000 followers.
The set of all hub users in Nu is denoted as H.

3. CORE COMMUNITY CHARACTERIZA-
TION

In order to identify the core community of a user u, we
need to understand the difference between a user v ∈ Cu

and a user v′ ̸∈ Cu. Three principles play important roles
in characterizing a user in the core community. The first
principle is Mutual Reachability.

Principle 1. Mutual Reachability. Given a target
user u, for any user v ∈ Cu with respect to Nk

u , we should
have v ∈ Nk

u→
⋂

Nk
u←.

Principle 1 is based on the simple observation that informa-
tion should be able to flow in both directions between two
real friends. The follow link between two users on Twitter
only indicates a one-way information flow from the followee
to follower, i.e., if u ← v, while all v’s tweets are delivered to
u, those of u’s are not automatically visible to v. Principle 1
in this case translates into requiring both u and v are in each
other’s k-hop followee network and k-hop follower network
simultaneously.

The second principle is Friendship Exclusivity.

Principle 2. Friendship Exclusivity. Given a target
user u, for any user v ∈ Cu with respect to Nk

u such that
k is a small number, e.g., k = 1 or k = 2, we should have
|Nk

v→
⋂

Nk
v←| ≤ σ where σ is a upper-bound threshold mea-

suring friendship exclusivity.

Principle 2 says that, in general, the number of real-life close
friends of any user should have a reasonable upper-bound.
Exceeding the bound indicates violation of exclusivity, which
invites serious doubt upon the strength of friendship be-
tween the two parties. Note that we impose a small value for
k in this case such that the exclusivity is checked upon the
set of users enjoying mutual reachability among the target
user’s immediate follow network. We consider these users,
most of whom often connected to the target user by two-
way follow links, reasonable candidates for real-life off-line
friends.

The third principle is Community Affinity

Principle 3. Community Affinity. Given a target user
u, for a user v ∈ Nk

u , let S = {w|w ∈ Cu
⋂

Nk
v←

⋂
Nk

v→},
the larger the cardinality of S, the more likely we have v ∈
Cu with respect to Nk

u .

Principle 3 recognizes the importance of using a user’s already-
identified partial core community in judging whether a given
user belongs to the core community as well. This princi-
ple is based on the common observation that a user’s off-
line friends usually group into clusters within each of which
members also know each other personally. Principle 3 is

useful in identifying those core community members who do
not have direct two-way follow links with the target user
yet do have strong connections with other core community
members, which will be otherwise missed. Such cases are
illustrated shortly.

Figure 1: Three Types of Core Community Mem-
bers.

We now show how these three principles help us identify
core communities members of different kinds. Based on our
study, we categorize a user’s follow network based on three
attributes each reflects one of the above-mentioned princi-
ples. Note that these attributes and their corresponding
parameters are proposed for the categorization only, none of
which will be actually computed in our algorithm. Suppose
the target user is u and the user in consideration is v.

(I) Mutual Following. The first attribute is whether u
and v directly follow each other. There are two cases: (I). u
and v follow each other, i.e., v ∈ N1

u←
⋂

N1
u→. We call this

a two-way follow case. (II). Either u follows v or v follows
u, but not both, i.e., v ∈ N1

u←
⋃

N1
u→ \ N1

u←
⋂

N1
u→. We

call this a one-way follow case. Principle 1 is immediately
satisfied in a two-way follow case as tweets of both u and v
are delivered directly to each other, while in a one-way follow
case, computation considering the k-hop neighborhood of u
is necessary to determine the satisfiability of Principle 1.

(II) Friendship Exclusivity. The second attribute is the
larger one between |Fu←| and |Fu→|. For simplicity, we use
|Fu←| to illustrate while the analysis with |Fu→| can be done
similarly. This attribute indicates the number of other users
in whom u is interested in hearing about. In general, this
reflects either curiosity in knowing more about that partic-
ular followee or eagerness in receiving updates on daily life
from that person, both of which are good signs of friendship.
Assume two parameters σ1 and σ2 can be estimated empiri-
cally, there are three cases to indicate friendship exclusivity
from high to low. (I) When |Fu←| < σ1, we call it a highly
exclusive case. (II) When σ1 ≤ |Fu←| ≤ σ2, we call it a
medium exclusive case. (III) When |Fu←| > σ2, we call it a
barely exclusive case.

(III) Community Affinity. The third attribute is whether
v has strong connections with other core community mem-
bers of u. We mainly distinguish two cases: (I) strong affin-
ity ; (II) weak affinity.

A categorization of different types of users in a target user’s
follow network is shown in Table 1. We use “highly likely”,
“maybe” and “unlikely” to indicate the chance of such a user
being a off-line real-life friend of the target user being high,
medium and low respectively. The symbols “

√
” and “×”

means a particular principle is satisfied or not respectively.
Symbol “?” means the satisfiability has to be judged case
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by case. In general, core community members belong to
one of the following types, each correspondent to a “highly
likely” cell in Table 1. Figure 1 illustrates these three types
in which u is the target user, the shaded area represents u’s
core community, w1, w2 and w3 are already-identified core
community members. The size of the node is in proportion
to the user’s friendship exclusivity — the smaller the size,
the higher the exclusivity.

1. Active online, socially discriminating and mu-
tually following. As illustrated as type“A” in Figure
1, this type of core community members displays the
strongest online social connection with the target user.
They directly follow the target user, and vice versa,
representing a two-way follow case. In the meantime,
they demonstrate a reasonable degree of discrimina-
tion by not having a huge number of other users in
direct two-way follow case. They are also active on-
line, having close connections with other users in the
target user’s core community. Therefore, these users
satisfy all three principles of Principle 1, 2 and 3

2. Inactive online, socially discriminating and mu-
tually following. Not all people are heavy Twitter
users. In fact, many people register a Twitter account
out of curiosity, log in Twitter occasionally ever since
and respond passively to follow links. Most of these
users only have a small number of close friends in their
follow network, and have two-way follow links with al-
most all of them. As illustrated as type “B” in Figure
1, these users satisfy Principle 1 and 2 but not 3.

3. Active online, socially discriminating and indi-
rectly following. As illustrated as type “C” in Fig-
ure 1, this is a type of core community members that
are trickier to identify. The fact that there is at most
one-way follow links between the target user and the
core community member easily disguises the off-line
friendship from an unmindful examination. It is only
by noticing the strong follow connections between this
member and other core community members of the
target user that the highly likely off-line friendship is
revealed. These users satisfy both Principle 2 and 3,
but not 1.

4. ALGORITHM
The analysis in Section 3 leads to the conclusion that any
effective algorithm for core community identification should
incorporate the three principles we proposed. In particu-
lar, it should be able to (I) tell whether information origi-
nated from either user could reach the other party by flowing
along the follow links, (II) give priority to users with higher

friendship exclusivity, and (III) make better use of the con-
nections with and among other core community members to
more intelligently measure the user’s likelihood of being a
core community member of the target user.

We propose our algorithm based on the idea of random walk
with restart(RWR). RWR has been successfully used to mea-
sure the relevance score between two nodes in a weighted
graph [13, 9, 2, 12]. It is defined in [9] with the following
equation.

r⃗i = (1− c)W̃ r⃗i + ce⃗i (1)

In this setting, given a weighted graph, a particle starts from
node i and conducts random movement. It transmits to the
neighborhood of its current node with a probability propor-
tional to the edge weights. At each step, the particle also
returns to the start node i with some probability c. The
relevance score of node j with respect to i is defined as the
steady-state probability ri,j that the particle finally stays at
node j .

In our problem setting, given the Twitter network G =
(V,E), a target user u ∈ V and a number k, we focus on
G’s subgraph Gk

u induced by Nk
u , which is simplified as Gu

when k is fixed. A probability transition matrix W is de-
fined for Gu(V ) such that, for two nodes v, w ∈ Gu(V ), the
entry W (v, w) denotes the probability of v transmitting to
w at any step. In accordance with Principle (II), we define
W (v, w) as

W (v, w) =

{ 1
|Fv→| if w ∈ Fv→

0 if w ̸∈ Fv→
(2)

In Equation 1, W̃ is the transpose of the probability transi-
tion matrix W as defined above. e⃗i is the starting indicator
vector such that ei,i = 1 and ei,j = 0 where i ̸= j. r⃗i is the
probability vector for node i such that ri,j is the probability
of transmitting to node j from i. It has been shown that
r⃗i can be computed iteratively and it finally converges to
c(I− (1−c)W̃ )−1e⃗i [9]. When it converges, the steady-state
probability vector r⃗i reflects the bandwidth of information
flow originated from user i to user j for every j ∈ Gu(V ).
We use this steady-state probability to define the closeness
score ci,j for two users i and j:

ci,j = ri,j ∗ rj,i (3)

The closeness score thus defined satisfies Principle (I). It
has the following desirable properties, the proofs of which
are omitted due to space limit.

Property 1. Given a Twitter follow network G(V,E)
and two users i, j ∈ V , ci,j is symmetric, i.e., ci,j = cj,i.
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by case. In general, core community members belong to
one of the following types, each correspondent to a “highly
likely” cell in Table 1. Figure 1 illustrates these three types
in which u is the target user, the shaded area represents u’s
core community, w1, w2 and w3 are already-identified core
community members. The size of the node is in proportion
to the user’s friendship exclusivity — the smaller the size,
the higher the exclusivity.

1. Active online, socially discriminating and mu-
tually following. As illustrated as type“A” in Figure
1, this type of core community members displays the
strongest online social connection with the target user.
They directly follow the target user, and vice versa,
representing a two-way follow case. In the meantime,
they demonstrate a reasonable degree of discrimina-
tion by not having a huge number of other users in
direct two-way follow case. They are also active on-
line, having close connections with other users in the
target user’s core community. Therefore, these users
satisfy all three principles of Principle 1, 2 and 3

2. Inactive online, socially discriminating and mu-
tually following. Not all people are heavy Twitter
users. In fact, many people register a Twitter account
out of curiosity, log in Twitter occasionally ever since
and respond passively to follow links. Most of these
users only have a small number of close friends in their
follow network, and have two-way follow links with al-
most all of them. As illustrated as type “B” in Figure
1, these users satisfy Principle 1 and 2 but not 3.

3. Active online, socially discriminating and indi-
rectly following. As illustrated as type “C” in Fig-
ure 1, this is a type of core community members that
are trickier to identify. The fact that there is at most
one-way follow links between the target user and the
core community member easily disguises the off-line
friendship from an unmindful examination. It is only
by noticing the strong follow connections between this
member and other core community members of the
target user that the highly likely off-line friendship is
revealed. These users satisfy both Principle 2 and 3,
but not 1.

4. ALGORITHM
The analysis in Section 3 leads to the conclusion that any
effective algorithm for core community identification should
incorporate the three principles we proposed. In particu-
lar, it should be able to (I) tell whether information origi-
nated from either user could reach the other party by flowing
along the follow links, (II) give priority to users with higher

friendship exclusivity, and (III) make better use of the con-
nections with and among other core community members to
more intelligently measure the user’s likelihood of being a
core community member of the target user.

We propose our algorithm based on the idea of random walk
with restart(RWR). RWR has been successfully used to mea-
sure the relevance score between two nodes in a weighted
graph [13, 9, 2, 12]. It is defined in [9] with the following
equation.

r⃗i = (1− c)W̃ r⃗i + ce⃗i (1)

In this setting, given a weighted graph, a particle starts from
node i and conducts random movement. It transmits to the
neighborhood of its current node with a probability propor-
tional to the edge weights. At each step, the particle also
returns to the start node i with some probability c. The
relevance score of node j with respect to i is defined as the
steady-state probability ri,j that the particle finally stays at
node j .

In our problem setting, given the Twitter network G =
(V,E), a target user u ∈ V and a number k, we focus on
G’s subgraph Gk

u induced by Nk
u , which is simplified as Gu

when k is fixed. A probability transition matrix W is de-
fined for Gu(V ) such that, for two nodes v, w ∈ Gu(V ), the
entry W (v, w) denotes the probability of v transmitting to
w at any step. In accordance with Principle (II), we define
W (v, w) as

W (v, w) =

{ 1
|Fv→| if w ∈ Fv→

0 if w ̸∈ Fv→
(2)

In Equation 1, W̃ is the transpose of the probability transi-
tion matrix W as defined above. e⃗i is the starting indicator
vector such that ei,i = 1 and ei,j = 0 where i ̸= j. r⃗i is the
probability vector for node i such that ri,j is the probability
of transmitting to node j from i. It has been shown that
r⃗i can be computed iteratively and it finally converges to
c(I− (1−c)W̃ )−1e⃗i [9]. When it converges, the steady-state
probability vector r⃗i reflects the bandwidth of information
flow originated from user i to user j for every j ∈ Gu(V ).
We use this steady-state probability to define the closeness
score ci,j for two users i and j:

ci,j = ri,j ∗ rj,i (3)

The closeness score thus defined satisfies Principle (I). It
has the following desirable properties, the proofs of which
are omitted due to space limit.

Property 1. Given a Twitter follow network G(V,E)
and two users i, j ∈ V , ci,j is symmetric, i.e., ci,j = cj,i.

Property 2. Given a Twitter follow network G(V,E),
two users i, j ∈ V and k, ci,j > 0 if and only if i and j
satisfy Principle 1 — i ∈ Nk

j→
⋂

Nk
j← and j ∈ Nk

i→
⋂

Nk
i←,

i.e., tweets originated from either user i or j should be able
to reach the other one in k hops.

Property 3. Given a Twitter follow network G(V,E),
two users i, j ∈ V and k, obtain a node j′ resulted from
removing a set S of users from j’s immediate neighborhood
such that for each v ∈ S, either v ∈ Fj→ \ Nk

i← or v ∈
Fj← \Nk

i→. We have ci,j ≤ ci,j′ .

Figure 2: Core Community Discovery

Property 2 and 3 shows how our closeness score definition
incorporates the first two points as pointed out at the begin-
ning of this section. We next explore how to take advantage
of the core community to identify other unknown members,
implementing Principle (III). The idea is to discover the core
community iteratively, adding new members into the known
set in each round. For that purpose, we introduce an auxil-
iary dummy node, v̂, to provide a threshold to cut the new
core community boundary for each round. v̂ is constructed
as a virtual node such that (I). v̂ and the target user u follow
each other, i.e., v̂ ∈ Fu←

⋂
Fu→, (II). v̂ only associates with

u, i.e., for each v ∈ (Nk
u \ {u}), v̂ ̸∈ (Fv←

⋃
Fv→), and (III).

the number of followers of v̂ is set to be the median of the
number of followers of all users in u’s k-hop network with the
hub users excluded, i.e., |Fv̂→| = medianv∈(Nk

u\H){|Fv→|}.
This dummy node is defined in such a way as to set the lower-
bound case for an off-line friend. It simulates the scenario
in which the target user u finds by chance this random user
v̂ who has no connections with u’s core community. Finding
him/her interesting, u follows v̂, who then also follows back
somehow. As such, v̂ represents a connection to u almost as
weak as any off-line real-life friend should be. Therefore, if
the closeness score between u and any user w is even lower
than that between u and v̂, w is highly unlikely to be in
u’s core community. In Section 5, we show that in fact our
algorithm is fairly robust with respect to the choice of v̂’s
follower number.

On a high level, the algorithm works in iterations as follows.
Given a target user u, compute the closeness score between
u and all the other users as well as v̂. A ranking list of all
the users together with v̂ in decreasing order of the close-
ness score is thus generated. All the users ranked before v̂
are identified as core community members, which ends the
current iteration. In the next iteration, the key point is
that we now treat the whole core community identified so
far as one virtual user node ũ. Instead of computing the

closeness score between u and all the rest users, this time
we compute the closeness score between ũ and every other
user. From the ranking list thus generated, if any user jumps
ahead of v̂ in this iteration, the user will be added to the
core community of u, which ends this iteration. So on and
so forth. Figure 2 illustrates the process. The target user u
is shown in red in the center and the auxiliary dummy node
v̂ is shown in purple. In iteration 1, the core community is
just u itself, which is indicated by the shaded circle covering
u. The highlighted blue nodes and follow links represents
Fu←

⋃
Fu→. After computing the closeness score cu,v for all

v, three users are found to be ahead of v̂ in the resulting
ranking list. They are therefore added to the core commu-
nity, indicated by their color changed from blue to orange.
In iteration 2, we use the new core community ũ, consisting
now of 4 users, to compute the closeness scores cũ,v for all
rest nodes v. Those ranked ahead of v̂ will be added to the
core community. The iterations continue until no new user
can be added to the core community, ending the algorithm.
As the virtual user node ũ is actually a set, we now define
RWR and closeness score between a user node i and a set S
as follows.

ri,S =
∑

j∈S

ri,j (4)

rS,i =
∑

j∈S

rj,i (5)

ci,S = cS,i = ri,S ∗ rS,i (6)

Given a user node i, the probability transition matrix W ,
the restart probability c and a tolerant threshold ϵ, the al-
gorithm for computing r⃗i is given in Algorithm 1.

Algorithm 1 NodeRWR

Input: node i, probability transition matrix W
restart probability c, tolerant threshold ϵ

Output: r⃗i
1: Initialize r⃗i ← e⃗i;
2: Do

3: r⃗′i ← (1− c)W̃ r⃗i + ce⃗i;

4: △r⃗i ← r⃗′i − r⃗i;

5: r⃗i ← r⃗′i;
6: While |△r⃗i| > ϵ
7: Return r⃗i;

Algorithm 2 iteratively finds the core community for a target
user u. At Line 1, we add an auxiliary dummy node v̂ into
the network to help us to set the cut-off threshold for each
iteration. Line 2 constructs the probability transition matrix
for RWR. From Line 3 to Line 6, we compute the closeness
score c⃗u between u and rest of the nodes inNu, and generates
a ranked list. From Line 7 to Line 16, we compute the
core community Cu and, for each core community member,
maintain in r⃗ the iteration in which it is identified.

5. EXPERIMENTAL STUDY
5.1 Data
To provide ground-truth evaluation for our algorithm, we
hired 65 real Twitter users from different countries to par-
ticipate in our user assessment test. Figure 3 shows the

Figure 4: Case study of a user’s follow network.

Figure 6: The relative result of two solutions.

of precision and recall between two solutions for each user.
In Figure 6, each point represents one user and the coordi-
nate is defined as (PCCD − Pnaive, RCCD − Rnaive) where
PCCD and RCCD is the precision and recall of our algorithm
respectively, Pnaive and Rnaive is the precision and recall of
the naive approach respectively. The result shows that for
most users, our solution outperforms the naive solution for
both precision and recall. In particular, in two cases, the
difference is even close to 1. There is only one single case
in which our algorithm is prevailed for both precision and
recall.

5.4 On Ranking

Besides identifying a core community through iterations, our
algorithm also generates a closeness ranking of all users in
the follow network for the target user. Compared against the
core community found by a clear-cut threshold, this ranking
in many cases could be just as useful. For example, when
recommending users you have not yet follow, recommending
those ranked high in this ranking could be safe. The ranking
is based on the closeness score computation in Algorithm 2.
For a target user u, we can use the following function to
compare two users:

compare1(v1, v2) =

⎧
⎪⎨

⎪⎩

1, cu,v1 − cu,v2 > 0

0, cu,v1 − cu,v2 = 0

−1, cu,v1 − cu,v2 < 0

(7)

Alternatively, iteration information, e.g., in which iteration
the user is identified, could be incorporated into the com-
parison as follows.

compare2(v1, v2) =

⎧
⎪⎨

⎪⎩

1, rv1 − rv2 < 0

compare1(v1, v2), rv1 − rv2 = 0

−1, rv1 − rv2 > 0

(8)

Which one is better? We evaluate these two rankings by
computing their AUC value for each users. The distribu-
tions of the AUC values are showed in Figure 7. The results
shows that for both rankings, more than 60% users’ AUC
values are greater than 0.9 and more than 80% users’ AUC

A real Twitter user: following 385; followers 107    

Figure 5: Comparison on distribution of precision, recall and F score.

Figure 7: AUC comparison for rankings with and without incorporating iteration information.

values are greater than 0.8. The right graph in Figure 7
shows that in most cases, the ranking with iteration informa-
tion incorporated is superior than the ranking based solely
on closeness score. This demonstrates that core community
information helps the ranking.

5.5 On Iteration
It has been observed in our experiments that the core com-
munity discovery process ends after a few iterations. One
interesting question is whether core community members
identified in later iterations are as good as those found in
earlier iterations. If we set a maximum number of iteration
allowed in the algorithm to force termination, will the result
give better precision and recall? Our experiments suggest
a negative answer. Figure 8 shows that the average pre-
cision, recall and F-score for varied maximum number of
iterations allowed from 1 to 10 as well as unlimited. As the
maximum number of iterations allowed increases, although
average precision drops slightly, recall improves significantly,
and so does the F-score. Intuitively, earlier iterations tend
to capture those closest members to the target user, which
results in a higher precision yet at the cost of missing out
many other core community members with more sophisti-
cated social connections with the target user. By setting no
maximum number of iterations and allowing the core com-
munity itself to take shape, much greater gain in recall could
be achieved, offering a better result overall. In most cases,
core communities stabilize after 5 or 6 iterations, as shown
in Figure 9 which presents the distribution of number of

iterations of all our evaluation participants.

5.6 Modeling User Interests
How to model user interests is of critical importance in con-
tent recommendation and linkage prediction in Twitter data.
Furthermore, our study reveals that core community discov-
ery could significantly enhance user interest modeling in the
following two aspects: (I) For a target user u, its core com-
munity members themselves are less informative in charac-
terizing u’s interests than the rest user nodes in the follow
network. u follow them mostly because they are off-line real-
life friends anyway. On the other hand, it is similar interests
or topics that drive u to follow other non-core-community
users. As such, when investigating u’s interests, the first
step is to distinguish u’s core community from the rest fol-
low network. (II). Although the core community members
themselves may not necessarily reflect u’s interests, those
users followed by these core community members neverthe-
less could help understand u’s interests, e.g., close friends
could follow media/celebrity/business users of similar kinds.
In our experiments, we identify and hire three real Twitter
users, A,B and C to help us evaluate. The ground truth is
that A and B share much more similar profile in terms of
interests, background and life-style than A and C. However,
if we check the common non-core-community users followed
by A and B, they have 15 such users in common (shown
in Figure 11), while A and C have 18 in common (shown
in Figure 12). This means that, without the help of core
community, C could be considered more similar to A than

Figure 5: Comparison on distribution of precision, recall and F score.

Figure 7: AUC comparison for rankings with and without incorporating iteration information.

values are greater than 0.8. The right graph in Figure 7
shows that in most cases, the ranking with iteration informa-
tion incorporated is superior than the ranking based solely
on closeness score. This demonstrates that core community
information helps the ranking.
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It has been observed in our experiments that the core com-
munity discovery process ends after a few iterations. One
interesting question is whether core community members
identified in later iterations are as good as those found in
earlier iterations. If we set a maximum number of iteration
allowed in the algorithm to force termination, will the result
give better precision and recall? Our experiments suggest
a negative answer. Figure 8 shows that the average pre-
cision, recall and F-score for varied maximum number of
iterations allowed from 1 to 10 as well as unlimited. As the
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average precision drops slightly, recall improves significantly,
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to capture those closest members to the target user, which
results in a higher precision yet at the cost of missing out
many other core community members with more sophisti-
cated social connections with the target user. By setting no
maximum number of iterations and allowing the core com-
munity itself to take shape, much greater gain in recall could
be achieved, offering a better result overall. In most cases,
core communities stabilize after 5 or 6 iterations, as shown
in Figure 9 which presents the distribution of number of
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How to model user interests is of critical importance in con-
tent recommendation and linkage prediction in Twitter data.
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ery could significantly enhance user interest modeling in the
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munity members themselves are less informative in charac-
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network. u follow them mostly because they are off-line real-
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less could help understand u’s interests, e.g., close friends
could follow media/celebrity/business users of similar kinds.
In our experiments, we identify and hire three real Twitter
users, A,B and C to help us evaluate. The ground truth is
that A and B share much more similar profile in terms of
interests, background and life-style than A and C. However,
if we check the common non-core-community users followed
by A and B, they have 15 such users in common (shown
in Figure 11), while A and C have 18 in common (shown
in Figure 12). This means that, without the help of core
community, C could be considered more similar to A than
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Figure 7: AUC comparison for rankings with and without incorporating iteration information.
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users. As such, when investigating u’s interests, the first
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themselves may not necessarily reflect u’s interests, those
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Figure 11: Interest profile comparison for A and B Figure 12: Interest profile comparison for A and C

bi-directional way and relies on no other attribute informa-
tion.

7. CONCLUSION
In this paper, we proposed the problem of identifying a user’s
Twitter core community. We put forward three principles to
characterize core community members. Based on these prin-
ciples, we developed an algorithm to iteratively discover the
core community by random walk with restart. Along with
the core community, our algorithm also generates a list of all
users ranked by their closeness score. We presented a case
study of a real Twitter user to demonstrate the effectiveness
of our algorithm in correctly identifying core communities
members in a number of scenarios. Results manually evalu-
ated by real Twitter users are shown to illustrate both the
effectiveness and the robustness of our algorithm. With real
user data, we also discussed using core community to en-
hance user interest profiling.
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B, contradicting the truth. In fact, we can use core com-
munity to remedy the situation. Similar as in the idea of
TF-IDF [11], for target user u, we use the following formula
to compute the weight for each non-core-community user v

wu(v) =

|Fv→
⋂

Cu|
|Cu|

log |Fv→| (9)

As such, for a target user u, we obtain a vector x⃗u where each
dimension is one non-core-community member. For two tar-
get users u1 and u2, we compute the similarity between their

interest profile as Sim(u1, u2) =
x⃗u1 ·x⃗u2

|x⃗u1 ||x⃗u2 | . In Figure 11 and

Figure 12, we show the relative ratio between user A and B,
where the percent for user A on dimension v is computed by

wA(v)
wA(v)+wB(v) , and

wB(v)
wA(v)+wB(v) for user B. Now if we com-

pare A,B and C again using the core-community-enhanced
interest profile, we have Sim(A,B) = x⃗A · x⃗B = 0.3058 and
Sim(A,C) = x⃗A · x⃗C = 0.0907, indicating B is much more
similar to A than C, which is consistent with the ground
truth.

5.7 Robustness
In our algorithm, we have set the number of followers of the
auxiliary dummy node as the median of all others in the fol-
low network. It is certainly not the only way to set the value,
and we have observed that different settings work better for
different user cases. However, as we show in Figure 10, our
algorithm exhibits certain robustness when we perturb the
number of followers of the dummy node. We perturbed the
original number of followers of the dummy node, i.e., the
median, by −20%, −10%, 10% and 20% respectively. Fig-
ure 10 shows that these perturbation result in fairly little
changes in precision, recall and F-score values.

6. RELATED WORK
The recent boom of online social network services (SNS),
e.g., Facebook, LinkedIn, Twitter and so on, has invigo-
rated much research interests. One direction is to analyze
the similarity or difference between the SNS and the real-
life social network. In particular, [5, 4] have tried to under-
stand the underlying similarities between the development

of SNS and real-life social networks. [14] looked at how Face-
book has influenced the establishment of new friendship re-
lationships. Another related direction is to use SNS to infer
real-life friendship or relationship strength. [1] is an early
work using hyperlinks and text information on homepages to
predict relationships between individuals. [6, 7] considered
further information including network topology and interac-
tions to predict relationship strength. [17] has approached
the same problem with a link-based latent variable model.

While the relationship between a user’s online and off-line
social network has been investigated in standard SNS like
Facebook, few studies have so far pose the same questions
on Twitter network. More importantly, compared against
Facebook, Twitter has two important different characteris-
tics — (I) As shown in [8], Twitter functions as a mixture
of news media and social network combining features from
both. (II) Follow links on Twitter are established without
mutual consent. These unique characteristics make people
wonder how much Twitter network reflects one’s real-life so-
cial network. Our work aims to address these questions. Due
to its unrivaled popularity, Twitter has already attracted
huge amount of research interests from data mining and web
community [3, 8, 16, 18, 10]. However, the existing body of
work has largely focused on exploring its textual content as-
pect based on the tweets, e.g., the categorization of tweets
and their traits based on their content [10], the topics of in-
terests [15, 18], the quantification of influence based on user
attributes and tweet content [3]. While these works have
lent valuable insight into the Twitter data, it is our observa-
tion that little attention has as yet been given to the follow
network to be studied by itself.

Random walk with restart (RWR) has been successfully ap-
plied in many applications. [9] used it to find correlations
across different medias. [12] used it to find neighbor nodes
in bipartite graphs. [13] developed methods to accelerate
the computation of RWR for large graphs. [2] used super-
vised random walk combining network information and the
attributes of nodes and edges to predict links in social net-
works. The intuition behind [2] is that the “closer” the users
are in the network, the more likely they will interact in the
future. Although we use RWR to measure user closeness
similarly, our closeness definition incorporates RWR in a
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set in each round. For that purpose, we introduce an auxil-
iary dummy node, v̂, to provide a threshold to cut the new
core community boundary for each round. v̂ is constructed
as a virtual node such that (I). v̂ and the target user u follow
each other, i.e., v̂ ∈ Fu←

⋂
Fu→, (II). v̂ only associates with

u, i.e., for each v ∈ (Nk
u \ {u}), v̂ ̸∈ (Fv←

⋃
Fv→), and (III).

the number of followers of v̂ is set to be the median of the
number of followers of all users in u’s k-hop network with the
hub users excluded, i.e., |Fv̂→| = medianv∈(Nk

u\H){|Fv→|}.
This dummy node is defined in such a way as to set the lower-
bound case for an off-line friend. It simulates the scenario
in which the target user u finds by chance this random user
v̂ who has no connections with u’s core community. Finding
him/her interesting, u follows v̂, who then also follows back
somehow. As such, v̂ represents a connection to u almost as
weak as any off-line real-life friend should be. Therefore, if
the closeness score between u and any user w is even lower
than that between u and v̂, w is highly unlikely to be in
u’s core community. In Section 5, we show that in fact our
algorithm is fairly robust with respect to the choice of v̂’s
follower number.
On a high level, the algorithm works in iterations as fol-

lows. Given a target user u, compute the closeness score
between u and all the other users as well as v̂. A ranking
list of all the users together with v̂ in decreasing order of the
closeness score is thus generated. All the users ranked be-
fore v̂ are identified as core community members, which ends
the current iteration. In the next iteration, the key point is
that we now treat the whole core community identified so
far as one virtual user node ũ. Instead of computing the
closeness score between u and all the rest users, this time
we compute the closeness score between ũ and every other
user. From the ranking list thus generated, if any user jumps
ahead of v̂ in this iteration, the user will be added to the
core community of u, which ends this iteration. So on and
so forth. Figure 5 illustrates the process. The target user u
is shown in red in the center and the auxiliary dummy node
v̂ is shown in purple. In iteration 1, the core community is
just u itself, which is indicated by the shaded circle covering
u. The highlighted blue nodes and follow links represents
Fu←

⋃
Fu→. After computing the closeness score cu,v for all

v, three users are found to be ahead of v̂ in the resulting
ranking list. They are therefore added to the core commu-
nity, indicated by their color changed from blue to orange.
In iteration 2, we use the new core community ũ, consisting
now of 4 users, to compute the closeness scores cũ,v for all
rest nodes v. Those ranked ahead of v̂ will be added to the
core community. The iterations continue until no new user
can be added to the core community, ending the algorithm.
As the virtual user node ũ is actually a set, we now define

RWR and closeness score between a user node i and a set S
as follows.

ri,S =
∑

j∈S

ri,j (4)

rS,i =
∑

j∈S

rj,i (5)

ci,S = cS,i = ri,S ∗ rS,i (6)

Given a user node i, the probability transition matrix W ,
the restart probability c and a tolerant threshold ϵ, the al-
gorithm for computing r⃗i is given in Algorithm 1.

Algorithm 1 NodeRWR

Input: node i, probability transition matrix W
restart probability c, tolerant threshold ϵ

Output: r⃗i
1: Initialize r⃗i ← e⃗i;
2: Do

3: r⃗′i ← (1− c)W̃ r⃗i + ce⃗i;

4: △r⃗i ← r⃗′i − r⃗i;

5: r⃗i ← r⃗′i;
6: While |△r⃗i| > ϵ
7: Return r⃗i;

Algorithm 2 CoreCommunityDiscovery(CCD)

Input: target node u, network Nu, restart probability c
and tolerant threshold ϵ

Output: core community Cu, iteration register vector i⃗r
and closeness score c⃗u

1: add auxiliary dummy node v̂ into network Nu;
2: construct W from network Nu by Equation 2;
3: For each v ∈ Nu

4: r⃗v ← NodeRWR(v,W, c, ϵ);
5: For each v ∈ Nu \ {u}
6: cu,v ← ru,v ∗ rv,u;
7: t ← 0;Cu ← {u}; i⃗r ← 0⃗;
8: Do
9: t ← t+ 1;
10: T ← ∅;
11: For each v ∈ Nu

12: If v ̸∈ Cu and cCu,v > cCu,v̂

13: irv ← t;
14: T ← T

⋃
{v};

15: Cu ← Cu
⋃

T ;
16:While |T | > 0
17:Return Cu, i⃗r, c⃗u;

Algorithm 2 iteratively finds the core community for a
target user u. At Line 1, we add an auxiliary dummy node
v̂ into the network to help us to set the cut-off threshold for
each iteration. Line 2 constructs the probability transition
matrix for RWR. From Line 3 to Line 6, we compute the
closeness score c⃗u between u and rest of the nodes in Nu,
and generates a ranked list. From Line 7 to Line 16, we
compute the core community Cu and, for each core com-
munity member, maintain in i⃗r the iteration in which it is
identified.

Figure 5: Core Community Discovery

set in each round. For that purpose, we introduce an auxil-
iary dummy node, v̂, to provide a threshold to cut the new
core community boundary for each round. v̂ is constructed
as a virtual node such that (I). v̂ and the target user u follow
each other, i.e., v̂ ∈ Fu←

⋂
Fu→, (II). v̂ only associates with

u, i.e., for each v ∈ (Nk
u \ {u}), v̂ ̸∈ (Fv←

⋃
Fv→), and (III).

the number of followers of v̂ is set to be the median of the
number of followers of all users in u’s k-hop network with the
hub users excluded, i.e., |Fv̂→| = medianv∈(Nk

u\H){|Fv→|}.
This dummy node is defined in such a way as to set the lower-
bound case for an off-line friend. It simulates the scenario
in which the target user u finds by chance this random user
v̂ who has no connections with u’s core community. Finding
him/her interesting, u follows v̂, who then also follows back
somehow. As such, v̂ represents a connection to u almost as
weak as any off-line real-life friend should be. Therefore, if
the closeness score between u and any user w is even lower
than that between u and v̂, w is highly unlikely to be in
u’s core community. In Section 5, we show that in fact our
algorithm is fairly robust with respect to the choice of v̂’s
follower number.
On a high level, the algorithm works in iterations as fol-

lows. Given a target user u, compute the closeness score
between u and all the other users as well as v̂. A ranking
list of all the users together with v̂ in decreasing order of the
closeness score is thus generated. All the users ranked be-
fore v̂ are identified as core community members, which ends
the current iteration. In the next iteration, the key point is
that we now treat the whole core community identified so
far as one virtual user node ũ. Instead of computing the
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rest nodes v. Those ranked ahead of v̂ will be added to the
core community. The iterations continue until no new user
can be added to the core community, ending the algorithm.
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Figure 6: Case study of a user’s follow network.

5. EXPERIMENTAL STUDY
An implementation of our algorithm as a demo system –

TwiCube1 – is publicly available.

5.1 Case Study
We now present a case study on a real user X who par-

ticipated in our evaluation. X has 107 followers and follows
385 other users. Figure 6 illustrates the discovery of his core
community in a total of 4 iterations each indicated by a dif-
ferent color. In summary, 34 users are identified in Iteration
1, 19 in Iteration 2, 3 in Iteration 3 and only one user in
the last iteration. The precision and recall for this result
of X’s core community is 0.8947 and 0.9807 respectively. It
can be observed from Figure 6 that there is a dense clusters
of core community members heavily linked among one an-
other (lower left to X) and another such cluster of non-core-
community users similarly linked (upper right to X). This
shows that approaches based on dense subgraph mining or
structural clustering would have a hard time in distinguish-
ing between these two similarly-structured communities and,
consequently, identifying the true core community. In fact,
this cluster of non-core-community users consists of media,
business and active Twitter users sharing similar interests
and topics, which is a good indicator of those of X’s own.
In Figure 6, we pick out two particular users, magnify

their follow links with X and present them in two cases (a)
and (b) (marked by arrows in the figure). In (a), we show
the follow network between X and a non-core-community
user“tuniu”, which is a travel business. Note that although
X and this business node directly follow each other, satis-
fying our Principle 1, this node is still correctly excluded
from the core community by our algorithm. This is mainly
because it connects mostly with other non-core-community
users by follow links, exhibiting weak core community affin-

1http://twitterbud2011.appspot.com/

ity withX. This case would fail the naive approach trying to
identify core community members by two-way follow links.
In (b), we show the follow networks between X and a core
community member Y , who is discovered in Iteration 3. In
this case, X follows Y but Y does not follow X. Moreover, it
is not until more core community members have been iden-
tified at Iteration 1 and 2 that Y ’s sophisticated connections
with the core community are revealed. In this tricky case,
by unleashing the power of iterated core community identi-
fication, our algorithm is still able to correctly identify Y .

5.2 Effectiveness
One naive method to identify the core community of a tar-

get user u is to find the set of users who have direct two-way
follow links with u, i.e., they and u follow each other. Do di-
rect two-way follow links provide good indication for off-line
real-world friendship? Our experiments suggest that these
links are not sufficient. In Figure 7 we show the comparison
on the distribution (among the 65 user evaluations)of pre-
cision, recall and F score between our algorithm CCD and
the naive algorithm. In general our solution outperforms
the naive solution by a large margin. To conduct more de-
tailed comparison between the two methods, let’s take a
closer examination at each user. We compute the difference
of precision and recall between two solutions for each user.
In Figure 8, each point represents one user and the coordi-
nate is defined as (PCCD − Pnaive, RCCD − Rnaive) where
PCCD and RCCD is the precision and recall of our algorithm
respectively, Pnaive and Rnaive is the precision and recall of
the naive approach respectively. The result shows that for
most users, our solution outperforms the naive solution for
both precision and recall. In particular, in two cases, the
difference is even close to 1. There is only one single case
in which our algorithm is prevailed for both precision and
recall.
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Figure 13: The result for limiting
the max # of iterations allowed.
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Figure 15: Robustness

and edges to predict links in social networks. The intuition
behind [2] is that the “closer” the users are in the network,
the more likely they will interact in the future. Although we
use RWR to measure user closeness similarly, our closeness
definition incorporates RWR in a bi-directional way, incor-
porating the feature of the existence of unidirectional follows
in Twitter, and relies on no other attribute information.

7. CONCLUSION
In this paper, we proposed the problem of identifying a

user’s Twitter core community. We put forward three prin-
ciples to characterize core community members. Based on
these principles, we developed an algorithm to iteratively
discover the core community by random walk with restart.
Along with the core community, our algorithm also gener-
ates a list of all users ranked by their closeness score. We
presented a case study of a real Twitter user to demon-
strate the effectiveness of our algorithm in correctly identi-
fying core communities members in a number of scenarios.
Results manually evaluated by real Twitter users are shown
to illustrate both the effectiveness and the robustness of our
algorithm.
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and edges to predict links in social networks. The intuition
behind [2] is that the “closer” the users are in the network,
the more likely they will interact in the future. Although we
use RWR to measure user closeness similarly, our closeness
definition incorporates RWR in a bi-directional way, incor-
porating the feature of the existence of unidirectional follows
in Twitter, and relies on no other attribute information.

7. CONCLUSION
In this paper, we proposed the problem of identifying a

user’s Twitter core community. We put forward three prin-
ciples to characterize core community members. Based on
these principles, we developed an algorithm to iteratively
discover the core community by random walk with restart.
Along with the core community, our algorithm also gener-
ates a list of all users ranked by their closeness score. We
presented a case study of a real Twitter user to demon-
strate the effectiveness of our algorithm in correctly identi-
fying core communities members in a number of scenarios.
Results manually evaluated by real Twitter users are shown
to illustrate both the effectiveness and the robustness of our
algorithm.
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Mining Advisor-advisee Relationship 
[Wang et al, KDD’10] 

•  Input: research publication network. 
• Output: potential advising relationship and their 

ranking – (r, [st, ed]) 
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Overall Framework 
• ai: author i 
• pj: paper j 
• py: paper year 
• pn: paper# 
•  lij: local feature 
•  sti,yi: start time 
• edi,yi: end time 
•  ri,yi: ranking 

score 
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Basic Constraints 

•  If ay advises ax since the year stx 
o ay can only advise ax after it graduated 
è edy<stx<edx 
o ay must have a longer history of publication than ax 

before stx. 
è The candidate graph H’ is a DAG. 

 
The model can incorporate other intuitions as factor 

functions into a Time-constrained Probabilistic Factor 
Graph (TPFG) 
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Why is network structure helpful? 
• More than pairwise features: interdependency 
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Experiment on DBLP 
• DBLP data: 654, 628 authors, 1076,946 

publications, publishing time provided. 
• Labeled data: MathGenealogy Project; AI 

Gealogy Project; Faculty Homepage 
Datasets	
   RULE	
   SVM	
   TPFG	
  

TEST1	
   69.9%	
   73.4%	
   80.2%	
   84.4%	
  

TEST2	
   69.8%	
   74.6%	
   81.5%	
   84.3%	
  

TEST3	
   80.6%	
   86.7%	
   88.8%	
   91.3%	
  

Empirical	
  
parameter	
  

OpJmized	
  
parameter	
  

HeurisJcs	
   Supervised	
  
learning	
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Case Study & Scalability 
Advisee	
   Top	
  	
  Ranked	
  Advisor	
   Time	
   Note	
  

David	
  M.	
  Blei	
   1.	
  Michael	
  I.	
  Jordan	
   01-­‐03	
   PhD	
  advisor,	
  2004	
  grad	
  

2.	
  John	
  D.	
  Lafferty	
   05-­‐06	
   Postdoc,	
  2006	
  

Hong	
  Cheng	
   1.	
  Qiang	
  Yang	
   02-­‐03	
   MS	
  advisor,	
  2003	
  

2.	
  Jiawei	
  Han	
   04-­‐08	
   PhD	
  advisor,	
  2008	
  

Sergey	
  Brin	
   1.	
  Rajeev	
  Motawani	
   97-­‐98	
   “Unofficial	
  advisor”	
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Application: Expert Finding 
An	
  example	
  on	
  a	
  real	
  
system:	
  Arnetminer	
  

Performance	
  
improvement	
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Representative work 
•  “Relation Mining” [Kadri 03, Rinaldi 06, Coppola 08] 

o Mainly text mining and language processing on text data and 
structured data. 

•  “Relational Learning” [Getoor 07, Tang 09] 
o The classification when objects and entities are presented in 

multiple relations 

•  Relationship with semantic meaning 
o  [Diehl 07]: a supervised approach 

• Positive-Negative relationship 
o Leskovec et al. [ WWW’10] 

•  Social circle in ego network 
o McAULEY et al. [TKDD’14] 

24  



References 
•  W. Xie, C. Li, F. Zhu, E. Lim and X. Gong, "When a Friend 

In Twitter is a Friend In Life”, ACM Int. Conf. on Web 
Science 2012. 

•  C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu and J. 
Guo , “Mining advisor-advisee relationships from 
research publication networks”.  KDD 2010.  

•  J. Leskovec, D. Huttenlocher and J. Kleinberg, 
"Predicting Positive and Negative Links in Online Social 
Networks", WWW 2010.  

•  J. Mcauley and J. Leskovec,  "Discovering social 
circles in ego networks”, TKDD, 2014. 



Part V  
User Identity Linkage 



User Identity Linkage 
Link up all the accounts of the same user across 

different social platforms 

2	
  



Why do we care? 
• Completeness 

•  Cross-platform user linkage would enrich an 
otherwise fragmented user profile to enable an all-
around understanding of a user’s interests and 
behavior patterns. 

• Consistency 
•  Cross-checking among multiple platforms helps 

improve the consistency of user information. 

•  Continuity 
•  User identity linkage makes it possible to integrate 

useful user information from those platforms that have 
over time become less popular or even abandoned. 
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Example: A Not So Easy Case 
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Research Challenges 
•  Usernames are not always reliable 

o Traditional approaches that heavily rely on username 
parsing to link users may fail on more diversified 
communities. 

o Statistical models (e.g. SVM) or rule based models 
constructed with mere username and attribute analysis are 
far from being robust to accurately identify user linkage 
across online social communities. 
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Research Challenges 
• Missing Information 

o At least 80% of users are missing at least 2 profile 
attributes out of the 6 most popular ones, and merely 
5% of users have all attributes filled up. 
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Research Challenges 
•  Data Misalignment  

o Platform Difference. 
o Heterogeneous 

behavior:  
Ø The user behavior can 

be represented by 
various types of 
media, e.g., locations, 
blogs, tweets, videos 
and images 

o Behavior Asynchrony. 
o Data Imbalance. 

7 



Where are the hopes in social data? 

•  User behavior trajectory along temporal dimension 
o Over a sufficiently long period of time, a user’s social behavior 

exhibits a high level of consistency across different platforms. 
•  User’s core social network structure 

o A user’s core social network structures across different platforms 
share great similarity and offer a highly discriminative 
characterization of the user. 
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HYDRA: a user identity linkage framework  
[Liu et al. SIGMOD’14] 
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Figure 3: HYDRA framework.
Step 2. Structure Information Modeling. We construct the struc-
ture consistency graph on user pairs by considering both the core
network structure of the users and their behavior similarities. De-
tails are discussed in Section 5.
Step 3. Multi-objective Optimization with Missing Informa-
tion: Based on the previous two steps, we convert the SIL prob-
lem into a two-class classification problem and construct multi-
objective optimization which jointly optimizes the prediction ac-
curacy on the labeled user pairs and multiple structure consistency
measurements across different platforms. Details are discussed in
Section 6.

5. HETEROGENEOUS BEHAVIOR MODEL
The key challenges in modeling user behavior across different

social media platforms are (I) the heterogeneity of user social data
and (II) the temporal misalignment of user behavior across plat-
forms. The high heterogeneity of user social data can be appre-
ciated by the following categorization of all the data about a user
available on a typical social platform.

1. User Attributes. Included here are all the traditional struc-
tured data about a user, e.g., demographic information, con-
tact, etc. (Subsection 5.1)

2. User Generated Content (UGC). Included here are the un-
structured data generated by users such as text (reviews, micro-
blogs, etc.), images, videos and so on. Modeling is primarily
targeted at topic (Subsection 5.2) and style (Subsection 5.3).

3. User Behavior Trajectory. User behavior trajectory refers
to all the social behavior of a user as exhibited on the plat-
forms along the time-line, e.g., befriend, follow/unfollow,
retweet, thumb-up/thumb-down, etc. (Subsection 5.4)

4. User Core Social Network. A user’s core social network is
the social network formed among those who are the closet to
the user. (Subsection 5.5)

To address these two challenges, we propose a behavior mod-
eling framework which computes similarity between users from a
variety of aspects to effectively capture the heterogeneous behavior
as well as the characteristics of their temporal evolution.

5.1 User Attribute Modeling
Textual Attributes. The profile information is informative in

distinguishing different users. Common textual attributes in a user
profile include name, gender, age, nationality, company, education,
email account, etc. A simple matching strategy can be built on such
a set of information. However, the relative importance of these
attributes are not identical, because attributes such as gender and
common names like “John" are not as discriminative as others such
as email address in identifying user linkage. Yet, the weights of the

Figure 4: The workflow of face recognition for identity linkage.
A face detector is employed to extract the face from a pair of
profile images. Then a pre-trained face classifier outputs a con-
fidence score in [0, 1] indicating how likely the two faces belong
to one person.
attributes used in the matching can be learned from large training
set by probabilistic modeling.

Specifically, given a set of N labeled training user pairs from
different platforms, the relative importance of the attributes can
be estimated by data counting. For a specific attribute a

k

, k =

1, ...,M
A

, we estimate the relative importance score by the follow-
ing equation:

m
t

(k) = PD(k)
PD(k)+ND(k) ,

m
t

(k) = mt(k)+"

MAP

k0=1

mt(k0)+MA"

(3)

where P
D

(k) represents the number of user pairs matched on a
k

in the positive labeled set P
D

, and N
D

(k) represents the number
of pairs matched ona

k

in the negative labeled set N
D

. " denotes a
small real number that avoids over-fitting.

Given a user pair, an M
A

dimensional attribute matching feature
can be calculated. For example, if the user pair (i, i0) is matched
on 1st, 2nd, and 5-th attributes, where the corresponding weight of
them are 0.1, 0.3, and 0.2, respectively, then the attribute feature of
the user pair is [0.1, 0.3, 0, 0, 0.2, ...]. If any k-th attribute of user i
or i0 is absent, we denote the k-th feature as missing.

Visual Attributes. Besides textual attributes, visual attributes
such as face images used in the profile can also be used to link
users. However, as many users may not use their true face images,
or use those with poor illumination and severe occlusion, such in-
formation could be very noisy. We designed a matching scheme as
shown in Figure 4 to safely compare two user profile images. In
particular, if faces have been detected from both images, the pre-
trained classifier is used to determine if the two faces correspond to
the same person. We use the face detector, facial feature extraction
and face classifier provided by [14].

5.2 User Topic Modeling
An important feature of social media platform is that in general,

over a sufficiently long period of time, the UGC of a user collec-
tively gives a faithful reflection of the user’s topical interest. Fak-
ing one’s interests all the time defeats the purpose of using a social
network service. Therefore, we propose to model a user’s topical
interest by a long-term user topic model. We first construct a latent
topic model using Latent Dirichlet Allocation on each textual mes-
sage, the output of which is a probability distribution in the topic
space. We then calculate the multi-scale temporal topic distribution
within a given temporal range for a user using the multi-scale tem-
poral division similar to [19]. Specifically, as shown in Figure 5,
the time axes is firstly divided into multiple time buckets with dif-
ferent scales (we use 1, 2, 4, 8, 16 and 32 days in this paper,which
guarantees the optimal performance), then all the topic distribution
vectors within each buckets are accumulated into a single distribu-
tion, which represents the topic distribution pattern within this time
buckets. In Figure 5, C

t

denotes the number of time buckets when
the scale is selected to be 16. Correspondingly, the number of time



User Online Identity Data 
• User attributes (numeric, categorical) 

o Demographics, location, personal interest, etc.  
• User Generated Content (topics, sentiments) 

o Reviews, tweets, ratings, multimedia, etc. 
• User Core Social network (snapshot/static view) 

o Friend network, followers/followees network, 
communities/interest groups, etc. 

• User Behavior trajectory (dynamic, evolutionary) 
o  content sharing history, social interaction pattern, 

network formation, etc.   



Main Stages 
• Behavior Similarity Modeling 

o Calculate the multi-dimensional similarity vector 
between two users of a pair for all user pairs via 
heterogeneous behavior modeling. 

• Structure Information Modeling 
o Construct the structure consistency graph on user 

pairs by considering both the core network structure 
of the users and their behavior similarities. 

• Multi-objective Optimization with Missing 
Information 
o A two-class classification model via optimizing two 

kinds of objective functions simultaneously. 
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Multi-resolution Behavior Modeling 
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Core Social Network Modeling 
• People’s closest friends are similar across different 

social platforms. 
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A Structure Consistency modeling framework	
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Multi-objective Optimization Framework 

• Supervised Learning 

• Structure Consistency Modeling 

• Multi-objective Optimization 

A two-class classification problem --- construct multi-
objective optimization which jointly optimizes the prediction 
accuracy on the labeled user pairs and multiple structure 

consistency measurements across different platforms. 
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Multi-objective Optimization Framework 
• Decision Model on Pairwise Similarity 

• High Order Structure Consistency 

• Multi-objective Optimization 
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Experiments  
for the problem in hand. To effectively handle information miss-
ing without any completion of the missing features, we revise the
discriminative model f(x) by a normalized margin as [6]:

f(x) = wii

0
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where wii

0
denotes the instance specific vector obtained by taking

the entries of w that are relevant to x
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||w||2 is a normalized scalar that can be estimated iteratively,
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where h·, ·i

Rii0
denotes the kernel calculation using only the non-

missing indices of user pair ii0. Consequently, the objective dual
problem in Eqn. 21 is revised as:
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where each element of K
n

is calculated by polynomial kernel:
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with the inner product calculated over valid features hx
ii

0 , x
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0
(r). It is straightforward to see that K

n

is

a kernel, since user pairs with missing values can be filled with
zeros. In summary, the details of the model are described in Algo-
rithm 1. The proposed model is guaranteed to converge to a local
optimal solution within 5 iterations, according to experiments in
this paper and in [6].

Finally, we represent the subset of labeled training pairs whose
↵
ii

0 are not zeros as PSV

l

(namely, the support vectors), then the
bias term b can be well represented as:
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Algorithm 1 The HYDRA algorithm
Input: Data: X,Y, Parameters: �

L

, �
M

, p, �
S

, �
D

Output: ↵, �, b
1: Select the candidate pair set P

u

by comparing the pair-wise
similarity.

2: Construct structure consistency graph M.
3: Initialize s for all the labeled and unlabeled training pairs as:

s0
ii

0 = 1�#absent_feat/#feat_dim.
4: while the stopping criterion is not reached do
5: Find optimal �t,↵t, w(t) by solving the standard convex

problem (Eqn. 21 and 25) based on st�1.
6: Update st based on w(t), using Eqn. 24
7: end while
8: Calculate b according to Eqn. 27

7. EXPERIMENTAL EVALUATION

7.1 Experiment Setup
Real Data. We use two publicly available large-scale real data sets
for our experiments. The first one, referred to as “Chinese”, in-
cludes five popular social networks services which were originated
from China and have since gained global popularity.

1. Sina Weibo: (www.weibo.com) A hybrid of Twitter and Face-
book with a user base of 500 million users and 47 million
daily active users by December 2012.

2. Tecent Weibo: (t.qq.com) Another twitter-like micro-blogging
service with 500 million users and over 100 million daily ac-
tive users.

3. Renren: (www.renren.com) A social network service dubbed
as the Facebook of China with 162 million registered users.

4. Douban: (www.douban.com) A social network service for
people to share content on topics of movies, books, music,
and other off-line events in Chinese cities, with over 100 mil-
lion monthly unique visitors.

5. Kaixin: (www.kaixin001.com) A social network service with
160 million registered users.

We use 5 million users in this data set, each with accounts on
every one of the five platforms. The time span of this data set is
from June 2012 to June 2013.

The second one, referred to as “English”, includes two globally
popular social networks: (1) Twitter (twitter.com); and (2) Face-
book (www.facebook.com). We use 5 million users in this data set
each with accounts on both Twitter and Facebook. The time span
of this data set is from June 2012 to June 2013.

We have the ground truth of the linkage of each user across all
the platforms in each data set. In the following experiment results,
x-axis are all decreasing ranked results (user is by degree, and com-
munity is by size). The ratio between the labeled data to unlabeled
data is set to 1/5, but we have also tested other ratio settings in our
experiment.
Experiment Environment. Our experiments and latency obser-
vations are conducted on a standard server (Linux), with Intel (R)
Xeon (R) Processor E7-4870 (30M Cache, 2.40 GHz, 6.40 GT/s
Intel (R) QPI, 10 cores), 64 GB main memory and 10,000RPM
server-level hard disks.
Compared Methods. We compare both our methods with the fol-
lowing state-of-the-art approaches and our own baselines.

(I) MOBIUS: a behavior-modeling approach to link users across
social media platforms [35].

(II) Alias-Disamb: an unsupervised data-driven approach based
on username analysis to link users across platforms [18].

(III) SMaSh: a record linkage approach finding linkage points
over Web data [13].

(IV) SVM-B: binary prediction on user pairs using support vec-
tor machines on the proposed similarity calculation schemes.

(V) HYDRA-Z: a degenerate version of our model HYDRA where
all the missing features are filled with zeros (Eqn. 21).

(VI) HYDRA-M: our model HYDRA with missing features prop-
erly handled (Eqn. 25 and Algorithm 1). Without specification, we
call HYDRA-M as HYDRA.
Parameter Settings. To achieve better performance of all the ap-
proaches, a validation set with 5 million user pairs and their ground
truth labels have been used.

For the pair-wise similarity calculation in this paper, the parame-
ters (e.g., " for user profiling, q and � for multi-resolution temporal
similarity modeling) are tuned by a grid search procedure to maxi-
mize the performance of a linear SVM on the validation set. Then
the optimized multi-dimensional similarity x

ii

0 are used for model
construction of (IV), (V) and (VI).

For both HYDRA-Z and HYDRA-M, we need to tune the model
parameters �

L

, �
M

, p, �
S

and �
D

. We construct the models on the
training data and conduct parameter tuning on the validation set. In
the following sections, we will illustrate the functional properties
with respect to different model parameter settings.



Performance Evaluation 
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(d) p = 4

Figure 8: Performance curve with different settings of �
M

and
�
T

under different p.
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(a) Precision in Chinese
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(b) Recall in Chinese
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(c) Precision in English
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(d) Recall in English
Figure 9: Performance w.r.t. #labeled pairs.

Evaluation Metrics. In our experiments, we use precision and
recall to evaluate the effectiveness, and the total execution time (at
different scales) to evaluate the efficiency. Precision is defined as
the fraction of the user pairs in the returned result that are correctly
linked. Recall is defined as the fraction of the actual linked user
pairs that are contained in the returned result. The parameters of all
the kernels for HYDRA are tuned strictly according to the methods
described in the previous sections.

7.2 Effectiveness Evaluation
Performance w.r.t. Different �

M

and �
L

. We compare the per-
formance of our approaches with different settings of �

M

and �
L

under p = 1, 2, 3, 4, and show the performance curves in Figure 8.
From Section 6 we see that �

M

and �
L

determine the relative im-
portance of the problems in MOO framework from the decision
maker’s perspective, while p determines how the learned model
approximates the Utopia solution, thus determining the intrinsic
structure of the Utility function. However, for real data, a decision
maker’s preference does not necessarily correspond to the best per-
formance, as can be seen from Figure 8. The results tell us that
different settings of p lead different optimal setting of �

M

and �
L

.
Performance w.r.t. Different p. Figure 10 shows our performance
with p varied from p = 1 to p = 10 and the optimal setting of
�
M

and �
L

. Although increasing p will help obtain the complete
Pareto optimal solution, it does not necessarily correspond to the
optimal solution of our SIL problem. In fact, imposing larger p
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(b) Recall
Figure 10: The precision and recall curve w.r.t. different p.
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(a) Precision in Chinese
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(b) Recall in Chinese
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(c) Precision in English
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(d) Recall in English
Figure 11: Performance w.r.t. #unlabeled pairs.

leads to heavier preference on objective functions with larger val-
ues, leading inevitably to model over-fitting. We see from Figure
10 that both precision and recall reach optimum with an appropri-
ate setting of p (p = 6 and p = 5 for best precision and recall,
respectively).
Performance w.r.t. Different Number of Labeled Pairs. Fixing
the level of structure information, we vary the number of labeled
user pairs from one million to five million users. The experiment
results are reported in Figure 9. Note that, although the perfor-
mance of all five methods shows improvement along with the in-
creasing number of labeled pairs, the improvement of HYDRA’s
is the most significant and exhibits noticeably greater acceleration
compared to the baseline methods. Another interesting observa-
tion is that the performance on English platforms are better than
Chinese ones, which is also true for Figure 11. Our interpreta-
tion of it goes as follows. First, the complexity of the SIL problem
grows with the number of platforms involved — we used five Chi-
nese platforms and only two for English platforms. Second, the
social structure and behavior on Chinese platforms are character-
ized with a higher complexity and greater temporal dynamics than
those on English platforms. We use real data to illustrate this in
Figure 14 (comparing Twitter and Sina Weibo as an example). In
Figure 14 (a), we plot the diffusion speed for retweets. In compar-
ison, Sina Weibo has much more retweets and a higher diffusion
speed for retweet than Twitter, which means the information diffu-
sion in Sina Weibo is much faster than in Twitter. Combined with
Figure 14 (b), the retweet distribution, we can tell that Sina Weibo
contains much richer and more dynamic information than Twitter,
presenting a much more challenging task for the SIL problem. In
Figure 14 (c) and Figure 14 (d) 3, we plot the follower and fol-
lowee distribution. Note that most users in Sina Weibo have much
3Spikes in Figure 14 (d) are due to the default setup of Twitter and
Sina Weibo whereby (1) every Twitter new user are recommended
with 10 followees by default (the left spike); and (2) For Twitter
and Sina Weibo, there are a 2,000-followee limit (the right spike).
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Inferring Anchor Links across Multiple 
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Extract Heterogeneous Cross-Network Features 
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Conclusion 
• Network structure and user behavior play 

important roles in network mining and analysis for 
social applications. 

•  In particular, we have shown how they can be 
employed to study 
o Network Correlation and Patterns  
o Frequent Network Patterns  
o Collaboration Patterns 

• When combined, they can even shed new light into 
o Relationship Mining 
o User Identity Linkage 
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