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Discerning Influence Patterns with Beta-Poisson
Factorization in Microblogging Environments

Wei Zhao, Ziyu Guan∗ , Yuhui Huang, Tingting Xi, Huan Sun, Zhiheng Wang and Xiaofei He, Fellow, IAPR

Abstract—Social influence analysis in microblogging services has attracted much attention in recent years. However, most previous
studies were focused on measuring users’ (topical) influence. Little effort has been made to discern and quantify how a user is
influenced. Specifically, the fact that user i retweets a tweet from author j could be either because i is influenced by j (i.e., j is a topical
authority), or simply because he is “influenced” by the content (interested in the content). To mine such influence patterns, we propose
a novel Bayesian factorization model, dubbed Influence Beta-Poisson Factorization (IBPF). IBPF jointly factorizes the retweet data and
tweet content to quantify latent topical factors of user preference, author influence and content influence. It generates every retweet
record according to the sum of two causing terms: one representing author influence, and the other one derived from content influence.
To control the impact of the two terms, for each user IBPF generates a probability for each latent topic by Beta distribution, indicating
how strongly the user cares about the topical authority of the author. We develop an efficient variational inference algorithm for IBPF.
We demonstrate the efficacy of IBPF on two public microblogging datasets.

Index Terms—Social influence, Poisson factorization, Microblogging.
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1 INTRODUCTION

M ICROBLOGGING services such as Twitter have become
popular social media where users can freely follow

other users to receive various messages (tweets) from them.
One key feature is, they provide an information diffusion
mechanism (retweeting) which resembles word-of-mouth in
reality. This has triggered a lot of studies that analyze users’
behavior in information diffusion [28], [40] and model the
underlying dynamics [8], [32], [43], [56], [60].

Among the studies revolving around microblogging
data, social influence analysis has become a hot research
topic in recent years [2], [5], [15], [21], [30], [31], [32], [33],
[35], [42], [51]. Understanding influence patterns among
users can benefit many applications, such as tweet recom-
mendation [36], retweet prediction [56] and viral marketing
[38]. Although it is difficult to define influence exactly, it can
be reflected from social signals of users, e.g. followship [51],
retweets [33], [35], mentions [35] and favors [15]. Among the
different signals, retweets are regarded as salient evidences
of influence and widely used by influence measures [39].
A retweet is intrinsically a ternary record < i, j,m >,
providing an evidence that user i has retweeted tweet m
from author j. Note that j may not be the original author
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who wrote m. We use “author” to represent the notion that
a user gets retweeted with respect to the tweet. It has been
shown that in microblogging environments direct influence
dominates [32], [56].

However, most existing influence mining techniques for
microblogging services are focused on measuring to what
degree (and on what topics) a user influences other users.
Little effort has been made to discern and quantify how a
user is influenced. Specifically, the fact that user i retweets a
tweet from author j could be either because i is influenced
by j, or simply because he is “influenced” by the tweet
content. For example, for topics such as “President Trump”
a user may only retweet from the political commentators
he follows, while for funny and joke tweets he would
retweet from anyone, as long as the content interests him.
The underlying motive could be discerned as follows: (1)
if the involved author is influential on the topics of the
tweet, then it is very likely that the user is influenced by
the author; (2) if we often observe that the user retweets
tweets with similar topics from non-influential authors, then
content influence is more likely to explain the retweets. Most
traditional author influence measures treat every retweet
as an evidence of author influence and use them to assess
author influence. However, in this work we argue that we
should discern different influence patterns in retweets to
better measure influence in microblogging environments.
Mining such influence patterns can help us better under-
stand the information diffusion process and benefit related
applications. A similar idea of distinguishing viral users and
viral topics is described in [18]. Nevertheless, the proposed
model uses all latent factors to jointly explain each retweet
record, which hinders discerning the two causing factors.

The retweet data can be represented as a sparse tensor
encoding users’ implicit feedbacks [22] (i.e. there is no
explicit negative signals). Moreover, authors are usually
influential on only a few topics [18]; the tweets are very
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short, containing only a few topics (typically 1) [52]. These
characteristics of retweet data call for a method which
can efficiently learn sparse latent structures from implicit
feedbacks. Poisson factorization is a technique that meets all
the above requirements. Recently, Poisson factorization has
been applied on different user implicit feedback datasets,
generating superior performance in recommendation [12],
[13], [59].

In this paper, we propose a novel Bayesian factorization
model, dubbed Influence Beta-Poisson Factorization (IBPF),
to mine topical influence patterns from retweet data. IBPF
jointly factorizes the retweet tensor and tweet content to
quantify latent topical factors of user preference, author
influence and content influence simultaneously. In order
to learn sparse latent factors, we impose global sparse
Gamma priors on the latent factors except those for user
preference. The latent preference factors of each user have
a separate Gamma prior in which the rate parameter is in
turn generated by a global Gamma prior. The customized
rate parameters account for the variance in user activity,
i.e. some tending to retweet in more topics than others.
IBPF generates every retweet record according to the sum
of two causing terms: one representing author influence,
and the other one representing content influence. To control
the impact of the two terms, for each user IBPF generates a
probability for each latent topic by Beta distribution, indicat-
ing how strongly the user cares about the topical authority
of the author on that topic. If the author is influential on
the involved topics, the former term would dominate, while
the latter term would be in charge if we observe that many
similar tweets are retweeted from non-influential authors.
We develop an efficient variational inference algorithm for
IBPF. The optimization is efficient in that only nonzero
elements of the retweet tensor and the content matrix need
to be processed. To better learn topics from short tweets,
we initialize the model with topics learned from the Biterm
Topic Model (BTM) [52] which is exclusively designed for
short texts.

The contributions of this paper are summarized as fol-
lows. (1) We study how to discern author influence and
content influence for microblogging environments. The re-
sults can help to better understand information diffusion
and benefit applications such as recommendation. (2) We
develop a novel Bayesian factorization model IBPF for this
task. IBPF is efficient and explicitly differentiates the two in-
fluence sources. Although we develop IBPF on retweet data,
it can also be applied on other ternary relational data for
influence analysis, e.g. favor data where < i, j,m > means
user i favors tweet m from author j. (3) We demonstrate
the efficacy of IBPF on two microblogging datasets collected
from Twitter and Sina Weibo respectively. We also explore
integrating the learning results with state-of-art features
for retweet prediction/tweet recommendation. The results
show the performance can be boosted.

2 RELATED WORK

In this section, we review three fields that are most re-
lated to our work: social influence analysis, retweet predic-
tion/tweet recommendation, and Poisson factorization.

2.1 Social Influence Analysis
With the rapid growth of social Websites such as Facebook,
Flickr and Twitter, much work has been done for analyzing
and quantifying social influence. The pioneering work of
Kempe et al. proposed two simple influence models and
tried to locate the key influencers by influence maximization
under these models [25]. Early studies on social influence
were mainly focused on general influence [1], [9], [14].
Although general influence is useful for explaining global
behaviors, it cannot well handle fine-grained local behaviors
[34]. Tang et al. were among the first to quantitatively
measure topic-level influence and proposed a factor graph
model for the task [46].

In Microblogging environments, a lot of methods for
measuring user (topical) influence have been proposed.
Here we only provide a brief overview of related work.
Readers can refer to [39] for a complete survey. Among those
methods, some were built on the relatively static follow
relationships [2], [51], while recently users’ daily behaviors
were found to be more effective for influence evaluation,
including retweets [33], [35], mentions [35], replies [35] and
favors [15]. Among different behaviors, retweet is deemed
as a strong indication of influence [39]. In terms of method-
ology for computing influence scores, most methods fall into
three categories: (1) Feature characterization [10], [35]. This
kind of methods introduced various features to describe
each user, trying to capture influence from different aspects,
and then aggregated these features properly to generate
the final influence scores. (2) Link analysis [21], [42], [51].
Methods of this style constructed graphs for users (and
tweets) using various relational information (e.g. follow,
retweet) and performed link analysis on the graphs to assess
user influence. (3) Probabilistic generative models [2], [32].
In these methods, influence was modeled as latent variables
which were learned by inference.

However, previous works were mostly focused on the
“author” side. They did not investigate in detail how a
“user” was influenced. For some users, the influence may
only come from the topic itself. In this paper, we develop
a novel probabilistic factorization model to discern how a
user is influenced, which is the key difference compared to
previous work. In [18], Hoang and Lim studied a similar
problem of learning viral authors and viral topics from
retweets. They proposed a tensor factorization model call
V2S to address the problem. Our method is different from
theirs in that: (1) V2S explains each retweet by both viral
user and viral topic factors (thus cannot clearly separate
them), while IBPF explicitly separates the two explanatory
factors and uses the sum of them to generate each retweet;
(2) V2S requires negative feedbacks (view but not retweet)
which are hard to obtain, while IBPF can naturally handle
implicit feedback data; (3) As aforementioned, with proper
gamma priors IBPF could well capture the sparse latent
structures in microblogging data, while V2S does not enjoy
this property.

2.2 Retweet Prediction/Tweet Recommendation
Retweet prediction aims to predict whether a user will
retweet the tweets from his friends [53]. A related prob-
lem is predicting the spread or popularity of a tweet [53],
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[60]. In this paper we are focused on the former problem.
Boyd et al. explored the reasons for retweeting [4]. Suh
et al. investigated the correlation of several user statistical
features with retweeting [43]. Yang et al. proposed a semi-
supervised model with 22 features for retweet prediction,
but the features were not revealed and the model only
worked well on spread prediction. A social influence locality
feature was proposed in [55], [56] and shown to be effective
for retweet prediction. Recently, researchers also tried to use
different models for retweet prediction, e.g. nonparametric
generative models [57] and deep neural networks [58].

Tweet recommendation aims to address the information
overload problem and tries to recommend tweets that the
target user likes. It is closely related to retweet prediction
since studies on this problem treat retweets as preference
signals and perform evaluation accordingly. The difference
is that retweet prediction outputs binary prediction results,
while tweet recommendation shows users a ranked list
of tweets. Like retweet prediction, most works on tweet
recommendation also exploited different features to learn
user preference on tweets [7], [11], [20], [29], [36], [48].

Nevertheless, none of previous works tried to discern
author influence and content influence for retweet pre-
diction or tweet recommendation. In [26], a probabilistic
generative model was proposed for recommendation in
Twitter which generated each word of a user from either
personal interests or followees interests. However, it did
not learn from explicit influence evidences, e.g. retweets.
A tweet favored by a user’s followees would be ranked
high in recommendation, but the user may never retweet
such tweets from the followees. In [23], Jiang et al. tried
to model individual preference and interpersonal influence
separately for tweet recommendation. However, the user-
user influence learned was not topical and they did not
exploit the ternary retweet data either. In the more general
social recommendation literature, Wang et al. [50] tried
to infer social influence on users’ exposure to items and
recommended items considering both user preference and
the estimated exposure. In tweet recommendation, user
exposure is (almost) explicit via the “following” mechanism.
Our influence analysis is focused on the preference part
and is orthogonal to their work. Our aim is to learn au-
thor influence and content influence patterns from ternary
retweet data and investigate their helpfulness in retweet
prediction/tweet recommendation.

2.3 Poisson Factorization

Poisson factorization is closely related to nonnegative ma-
trix factorization [6]. Recently, different Poisson factoriza-
tion models have been developed for applications such as
recommendation [12], [13], [59], dynamic community detec-
tion [41] and anomaly detection [47]. The key difference
between IBPF and existing Poisson factorization models
is that we explain the data generation by combining two
causing terms and control the impact of the two terms by
Beta random variables. Since Beta distribution is not the
conjugate prior for Poisson distribution, we develop an
approximated variational inference algorithm for IBPF.

3 THE IBPF MODEL

This section details the design and specification of the IBPF
model. Firstly, we formally describe the problem and define
notations used by IBPF. Then model design and specifica-
tion follow.

3.1 Problem Formulation and Notations

We are given a set of users and a set of tweets that are
written or retweeted by the users. Let m ∈ {1, . . . ,M}
denote the index of the M tweets. The tweets are written
with a vocabulary of N words and n ∈ {1, . . . , N} denotes
the word index. Let i ∈ {1, . . . , I} be the index of I users
who have at least retweeted one tweet, and j ∈ {1, . . . , J}
be the index of J authors who have been retweeted by at
least one user. With a slight abuse of notation, we also use
the index variable to refer to the corresponding entity, e.g.
i can also represent the corresponding user. The retweet
collection R = {< i, j,m >} contains retweet records and
can be represented by a sparse tensor R ∈ {0, 1}I×J×M
where

Rijm =

{
1, if < i, j,m >∈ R
0, otherwise (1)

The tweet text contents can be represented as a sparse matrix
W ∈ IM×N :

Wmn =

{
occr num, if n occurs in m
0, otherwise (2)

Then the problem is, given R and W, to infer the latent
topical factors for author influence, user preference and
content influence for users.

The intuition is that each retweet record < i, j,m > is an
evidence of influence, meaning that user i is influenced by
either author j or the content ofm only. Let T be the number
of topics and t be the index. We define ui, vj , θm and βn
to be length-T vectors containing user i’s topical preference
intensities, author j’s topical influence intensities, tweet m’s
topic intensities and word n’s topic intensities respectively.
We further define a length-T vector of probabilities, αi,
where αit measures the likelihood that user i follows au-
thority authors on topic t. Since they are probabilities, we
have αit ∈ [0, 1],∀i, t. The lower the probability, the more
likely the user follows her own interests. Hence, the vector
αi can be regarded as encoding user i’s influence pattern.
The problem then becomes inferring ui, vj , θm, βn and αi
for all i, j, m, n, based on R and W. A summarization of
notations is provided in Table 1.

3.2 Model Design

The basic idea of Poisson factorization is that each observed
variable is generated by a Poisson distribution where the
parameter is decided by a dot product of the involved latent
variables. In our case, a straightforward idea is to generate
the retweet tensor by means of CANDECOMP/PARAFAC
(CP) decomposition [27]: Rijm ∼ Poisson(

∑
t uitvjtθmt).

Intuitively, this accumulates the author influence (vjt) and
user preference (uit) on topics of the tweet (θmt), represent-
ing the case that i is influenced by j. However, authors are
usually influential on only a few topics [18]. They cannot be
influential on every topic. This could be learned from the
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TABLE 1
A summarization of notations.

Symbols Descriptions
I/J/M/N/T No. of users/authors/tweets/words/topics
i/j/m/n/t Idx of users/authors/tweets/words/topics
ui user i’s latent topical preference
ξi user i’s customized prior rate parameter
αi influence pattern of user i
vj author j’s latent topical influence
fj author j’s scale factor
θm tweet m’s latent topics
βn word n’s topic associations
R, W observed retweets and tweet contents
au, aξ , av , aθ ,
aβ , aα, bα, af

shape hyperparameters of Gamma or Beta prior
distributions for the corresponding variables

bξ , bv , bθ , bβ ,
bf

rate hyperparameters of Gamma prior distribu-
tions for corresponding variables

retweet data: authors get retweeted frequently on certain
topics but receive few retweets on (or never concern about)
other topics. If j’s influence factors does not match the
topics of m,

∑
t uitvjtθmt will be very small regardless

of ui, rendering it not a good explanation for Rijm. For
example, a tweet about an emergency could attract many
retweets, but the author may rarely post or retweet about
the corresponding topics.

The above example means that the user is simply inter-
ested in the tweet itself. To model such content influence
cases, we construct two causing terms for data generation:∑
t αituitvjtθmt and

∑
t(1−αit)uitθmt. The first term is ac-

tivated when user i tends to only follow topical authorities
on the topics of tweet m, i.e. the probability αit is large;
the second term handles the case where user i is interested
in the content (αit is small) regardless of the author. Note
that the second term does not involve vj since the user only
cares about the content in that case. We model each retweet
evidence by the combination of the two causing terms:
Rijm ∼ Poisson(

∑
t αituitvjtθmt +

∑
t(1 − αit)uitθmt).

Intuitively, αi encodes the influence pattern of user i. αit
should be large if we observe that user i always retweet
from topical authorities on topic t; it should be small if user
i retweet a lot from non-influential authors on topic t.

A straightforward idea for discerning authority influ-
ence and content influence is to define a binary “switch”
random variable bijm for each retweet evidence. If bijm = 1,
Rijm ∼ Poisson(

∑
t uitvjtθmt); if bijm = 0, we generate

Rijm by Poisson(
∑
t uitθmt). However, this idea has three

drawbacks: (1) it requires defining a binary variable for ev-
ery element in R. The space and time costs (O(IJM)) could
quickly become prohibitive as the counts of users, authors
and tweets increase. (2) the large number of parameters
it introduces would make the model more vulnerable to
overfitting. (3) bijm is not explicitly correlated to the topical
factors. Hence, it is difficult to capture influence patterns at
the topic level. Our design of the α variables can (1) enjoy
the sparsity property of R to allow efficient model learning
(will be discussed at the end of this section); (2) generate a
moderate number of parameters and (3) naturally capture
topical influence patterns.

To ensure the latent factors capture topics in text, we fac-
torize the content matrix W as Wmn ∼ Poisson(

∑
t θmtβnt)

[13].

Next, we discuss the design of priors on the latent
variables. Firstly, recall αit represents the probability that
user i follows influential authors on topic t. The Beta
distribution is a natural choice for priors of probabilities
(e.g. as a prior for the probability parameter of Bernoulli
distributions). In this work, we impose a balanced unimodal
Beta prior on αi’s, which means no bias is imposed on
users’ influence patterns. Secondly, we place Gamma priors
on the latent variables for users, authors, tweets and words,
since the Gamma distribution is conjugate with the Poisson
distribution and can naturally govern nonnegative variables
[6], [12], [13]. Moreover, in the microblogging environment,
(1) an author is usually known to be influential on a few
topics; (2) tweets are limited in length and only convey a
few topics; (3) a specific word does not appear in many
topics (we remove stop words and general words). The
Gamma distribution is desirable here for encouraging sparse
representations of vj ’s, θm’s and βn’s. This can be achieved
by placing a Gamma prior on these variables with shape
parameter less than 1 [12]. Finally, we impose a hierarchical
Gamma prior on ui’s to account for different activity de-
grees of users [12]. Details of IBPF are presented in the next
subsection.

i

i Rijm

i=1,...,I

m

i

au

a b
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bv
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fj

af

bf

Fig. 1. The graphical model of IBPF.

3.3 Model Specification

The graphical model of IBPF is shown in Figure 1. Here
we detail the model by the order of data generation and
then discuss how IBPF can efficiently handle sparse implicit
retweet data.

The latent factors of each ui are generated according to
the following hierarchical process [12]:

ξi ∼ Gamma(aξ, bξ)

uit ∼ Gamma(au, ξi), ∀t ∈ {1, . . . , T}

where ξi is the rate parameter of the Gamma prior for ui,
which is in turn generated by another Gamma prior. In this
way, each user has a customized Gamma prior due to ξi. As
a result of properties of the Gamma rate parameter, users
with smaller ξ tend to have a latent preference vector with
larger size. In other words, smaller ξ corresponds to those
users who tend to retweet more actively and on more topics
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than other users. The influence pattern varibles of user i is
generated by a Beta prior:

αit ∼ Beta(aα, bα), ∀t ∈ {1, . . . , T}

where we set aα = bα > 1 to achieve a balanced unimodal
distribution. The t-th latent factors of vj , θm and βn are
generated as

vjt ∼ Gamma(av, bv),

θmt ∼ Gamma(aθ, bθ),

βnt ∼ Gamma(aβ , bβ)

With all the latent vectors in hand, we then can generate R
and W as discussed in Section 3.2.

The whole generative process of IBPF is summarized as
follows:

1) For each user i:
a) Draw activity ξi ∼ Gamma(aξ, bξ);
b) For each topic t, draw topic preference uit ∼

Gamma(au, ξi) and author influence probability
αit ∼ Beta(aα, bα).

2) For each author j:
a) Draw j’s scale factor fj ∼ Gamma(af , bf )
b) For each topic t, draw j’s influence on t: vjt ∼

Gamma(av, bv).
3) For each tweet m and each topic t, draw m’s intensity

on t: θmt ∼ Gamma(aθ, bθ).
4) For each word n and each topic t, draw n’s intensity on
t: βnt ∼ Gamma(aβ , bβ).

5) For each combination of m and n, draw word count W
as Wmn ∼ Poisson(

∑
t θmtβnt).

6) For each combination of i, j and m, draw the binary
retweet behavior Rijm ∼ Poisson(fj [

∑
t αituitvjtθmt+∑

t(1− αit)uitθmt]).

In the generation of variables for authors, we also draw a
scale factor fj for each author j. When generating Rijm, fj
provides a normalization effect. The reason for introducing
normalization terms is that the number of retweets received
by an author usually follows a power law distribution.
Without normalization, the most popular authors could
dominate the learning process, squeezing the latent topical
space into a few dimensions. To explain in detail, a popular
author j could easily obtain extremely high intensity values
on some topical dimensions in vj due to large numbers
of retweets from j on those topics. Therefore, the model
would tend to use those topical factors to explain every
retweets from j, dragging tweets (and also related users) on
minority topics to those dominating topics (recall that we
impose a sparse Gamma prior on tweet latent factors). Our
preliminary experiments also confirmed this phenomenon.
The scale factor fj could help alleviate this domination issue
in vj by jointly explaining the retweets from j. As shown by
Step 6 of the generation process, fj is engaged in explaining
all the retweets from j. Therefore, more popular authors
would have higher f , which could help keep the values
of all the dimensions in v at a moderate level. On the other
hand, fj does not affect the topical assignment of eachRijm,
since every latent dimension t is multiplied by the same
author scale factor fj .

Note that in the last two steps we iterate through all the
elements in R and W. Nevertheless, the inference of IBPF
is efficient since we only need to process nonzero elements.
This can be reflected from the data likelihood under IBPF
which is an important part in posterior inference. Take the
retweet tensor R as an example. The likelihood of Rijm is

p(Rijm|ui,αi,vj ,θm)

=

(∑
t

fjuitθmt(αitvjt + 1− αit)
)Rijm

× exp

[
−
∑
t

fjuitθmt(αitvjt + 1− αit)
]

Here we omit the factorial normalizer since Rijm can only
take 0 or 1. The log likelihood of the whole tensor is

log p(R|u,y,v,θ)

=
∑

Rijm=1

Rijm log

(∑
t

fjuitθmt(αitvjt + 1− αit)
)

−
∑
t

(
(
∑
i

uitαit)(
∑
j

fjvjt)(
∑
m

θmt)

+ (
∑
i

uit(1− αit))(
∑
j

fj)(
∑
m

θmt)

)
Hence, only the nonzero part of R affects data likelihood,
i.e. the first line on the right hand side of =. Since the latent
factors are nonnegative, the second term can be calculated
efficiently, and indicates that the zero part of R only con-
tributes to making latent factors sparse.

4 INFERENCE

Let Ω = {ξi,ui,αi,vj ,θm,βn, fj |∀i, j,m, n} be the set of
all latent variables and ∆ = {aξ, bξ, au, aα, bα, av, bv, aθ, bθ,
aβ , bβ , af , bf} be the set of all hyperparameters. The objec-
tive of Bayesian inference is to learn the posterior distribu-
tion p(Ω|R,W,∆). However, the posterior is very complex
and computationally intractable. We resort to mean-field
variational inference [24] to learn the model.

4.1 Variational Inference

The basic idea of variational inference is to approximate
the posterior distribution by a variational distribution q(Ω)
where the latent variables are governed by free parameters.
The marginal log likelihood of the observed data can then
be rewritten as

log p(R,W|∆) =

∫
q(Ω) log p(R,W|∆)dΩ

=

∫
q(Ω) log

p(R,W,Ω|∆)q(Ω)

p(Ω|R,W,∆)q(Ω)
dΩ

=

∫
q(Ω) log

p(R,W,Ω|∆)

q(Ω)
dΩ

+

∫
q(Ω) log

q(Ω)

p(Ω|R,W,∆)
dΩ

(3)

The second term of (3) is the Kullback-Leibler (KL) diver-
gence between q(Ω) and the posterior which is our objective
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to minimize. Since the marginal data likelihood is a constant,
minimizing the KL-divergence is equivalent to maximizing
the first term of (3), a lower bound for the marginal data log
likelihood:

L(q) , Eq[log p(R,W,Ω|∆)]− Eq[log q(Ω)] (4)

where Eq denotes taking expectation under q(Ω).
To specify q(Ω), we first note that the Poisson generative

distributions ofWmn andRijm involve a summation in their
rate parameters. This makes the inference difficult. Follow-
ing [6], [12], [13], we exploit the superposition property of
Poisson random variables to add auxiliary latent variables
for facilitating the inference. Specifically, for each Rijm we
define two length-T vectors of latent variables Sαijm and
Sᾱijm, where Sαijmt ∼ Poisson(αituitfjvjtθmt), Sᾱijmt ∼
Poisson((1−αit)uitfjθmt), and Rijm =

∑
t(S

α
ijmt+Sᾱijmt);

for each Wmn, we add one length-T vector of latent vari-
ables Zmn and let Zmnt ∼ Poisson(θmtβnt) and Wmn =∑
t Zmnt. Note these auxiliary variables are random only

for nonzero Rijm and Wmn. Hence, we do not need to
concern about auxiliary variables for zeros in R and W.
The computational cost brought by the auxiliary variables is
still linear in the number of positive training evidences (i.e.,
nonzero elements in R and W).

After adding these auxiliary variables, the IBPF model
becomes conditionally conjugate, except for the influence
pattern variables αi’s. The Poisson likelihood based on α
is not conjugate with the corresponding prior which is a
Beta distribution. Hence, we adopt the Laplace variational
technique proposed in [49] to optimize α. The key idea is
using Laplace approximation to approximate the general
optimal form of log q(ωk), the logarithm of the variational
distribution for the k-th latent variable. The optimal form is
[3]

log q(ωk) ∝ Eq(¬k)[log p(X,Ω)] , g(ωk) (5)

where X denotes the observed data and Eq(¬k)[·] means
taking expectation with respect to all the q distributions
except q(ωk). g(ωk) is approximated by a second-order
Taylor expansion around its maximum:

g(ωk) ≈ g(ω∗k) +
1

2
(ωk − ω∗k)T∇2g(ω∗k)(ωk − ω∗k) (6)

where ω∗k denotes the value that maximizes g(ωk). Since the
approximation is around ω∗k , the first-order term vanishes
as ∇g(ω∗k) = 0. According to Eqs. (5) and (6), q(ωk) then
becomes

q(ωk) ∝ exp(g(ωk))

≈ exp

[
g(ω∗k) +

1

2
(ωk − ω∗k)T∇2g(ω∗k)(ωk − ω∗k)

]
(7)

Eq. (7) suggests that we can approximate q(ωk) by a normal
distribution:

q(ωk) ≈ N (ω∗k,−[∇2g(ω∗k)]−1) (8)

It also shows how we update the mean and variance vari-
ables by ω∗k and g(·). The normal form of q(ωk) arises
naturally in the derivation.

The other latent variables are all conjugate, so their
factorized mean-field variational distributions take the same

form as their complete conditionals, the conditional distribu-
tions given all the other variables [3]. It can be easily ver-
ified that the complete conditionals for concat(Sαijm,S

ᾱ
ijm)

and Zmn are multinomial distributions and those for the
other conjugate variables are all Gamma distributions. In
summary, we define q(Ω) as

q(Ω) =
∏
i

Gamma(ξi|ãξi , b̃
ξ
i )
∏
i,t

Gamma(uit|ãuit, b̃uit)∏
i,t

N (αit|µit, σ2
it)
∏
j,t

Gamma(vjt|ãvjt, b̃vjt)∏
m,t

Gamma(θmt|ãθmt, b̃θmt)
∏
n,t

Gamma(βnt|ãβnt, b̃
β
nt)∏

i,j,m

Mult(concat(Sαijm,S
ᾱ
ijm)|Rijm,φSijm)∏

m,n

Mult(Zmn|Wmn,φ
Z
mn)

∏
j

Gamma(fj |ãfj , b̃
f
j )

where ã’s, b̃’s are variational shape and rate parameters for
the corresponding variables, µit, σ2

it are mean and variance
of the normal variational distribution of αit, and φSijm/φZmn
are variational multinomial parameters residing on 2T/T
simplex.

Replacing q(Ω) in Eq. (4) with the above definition, we
get a computable L(q). Next, we show how to optimize L(q)
with respect to all the variational parameters. The influence
pattern variable αit can be updated according to Eq. (8).
However, in our case we need to specify g(·) and how to
maximize it. In particular, g(αit) is derived as follows

g(αit) =Eq(¬αit)[log p(R,W,Ω|∆)]

= log p(αit|aα, bα) +
∑
j,m

Eq(¬αit)[log p(Sαijmt, S
ᾱ
ijmt

|uit, αit, vjt, θmt, fj)] + const

=(aα − 1 +
∑
j,m

Rijmφ
S
ijmt) logαit + (bα − 1

+
∑
j,m

Rijmφ
S
ijm(t+T )) log(1− αit) + αit

ãuit
b̃uit

× (
∑
m

ãθmt
b̃θmt

)(
∑
j

ãfj

b̃fj
(1−

ãvjt

b̃vjt
)) + const

,c1 logαit + c2 log(1− αit) + c3αit + const (9)

Since p(R,W,Ω|∆) can be factorized according to the de-
pendency graph in Figure 1, Eq(¬αit)[log p(R,W,Ω|∆)] is
actually a summation of the expectations of the logarithms
of those factorized probability terms. The first two terms
after the second equal sign in the above derivation are
those in Eq(¬αit)[log p(R,W,Ω|∆)] related to αit, and const
represents terms that do not involve αit. For clarity, we use
c1, c2 and c3 to denote the coefficients of logαit, log(1−αit)
and αit, respectively. To maximize g(αit), we simply differ-
entiate it with respect to αit and set the derivative to 0:

c3α
2
it + (c1 + c2 − c3)αit − c1 = 0 (10)

If c3 = 0, the solution is simply α∗it = c1/(c1 + c2). Recall
that we place a balanced unimodal Beta prior on αit, which
means aα > 1 and bα > 1. Hence, it is guaranteed that
c1 > 0, c2 > 0, and consequently we obtain a valid α∗it in
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[0, 1]. When c3 6= 0, Eq. (10) is a typical quadratic equation
which has two solutions. In this case we need to prove that a
valid solution exists. The following proposition shows that
Eq. (10) must have a solution in (0, 1) and provides a guide
for selecting the valid solution.

Proposition 1. If we set aα > 1 and bα > 1, the following
solution of (10) always lies within (0, 1):

s ,

√
(c1 + c2 − c3)2 + 4c1c3 − (c1 + c2 − c3)

2c3
(11)

Proof. Since aα > 1, bα > 1 and
∑
j,mRijmφ

S
ijmt and∑

j,mRijmφ
S
ijm(t+T ) are always nonnegative, we have c1 >

0, c2 > 0. c3 can be either positive or negative (the case
of c3 = 0 is already discussed). We analyze the two cases
separately.

When c3 > 0, we know c1c3 > 0 and c2c3 > 0. we can
derive the lower bound of s:

s >
|c1 + c2 − c3| − (c1 + c2 − c3)

2c3

If c1 + c2 − c3 ≥ 0, this fraction is equal to 0; Otherwise,
c1 + c2 − c3 < 0, which leads to (c1 + c2)/c3 < 1. The
fraction becomes 1 − (c1 + c2)/c3 > 0. Therefore, we can
safely conclude s > 0. The upper bound of s can be obtained
as follows

s =

√
(c1 + c2 + c3)2 − 4c2c3 − (c1 + c2 − c3)

2c3

<
(c1 + c2 + c3)− (c1 + c2 − c3)

2c3
= 1

When c3 < 0, we have c1c3 < 0 and c2c3 < 0. Note
that the denominator of s is negative in this case. The lower
bound derivation becomes

s >
(c1 + c2 − c3)− (c1 + c2 − c3)

2c3
= 0

Its upper bound is

s =

√
(c1 + c2 + c3)2 − 4c2c3 − (c1 + c2 − c3)

2c3

<
|c1 + c2 + c3| − (c1 + c2 − c3)

2c3

If c1 + c2 + c3 < 0, we have [−(c1 + c2 + c3) − (c1 + c2 −
c3)]/2c3 = (c1 + c2)/(−c3) < 1. When c1 + c2 + c3 ≥ 0, the
last fraction is equal to 1. Hence, s is upper bounded by 1.
This completes the proof.

By Proposition 1, we update µit = s. σ2
it is updated by

−(g′′(α∗it))
−1 as follows

σ2
it = −(g′′(α∗it))

−1 =
1

c1
s2 + c2

(1−s)2
(12)

For the other variational parameters, we take the gradi-
ent of L(q) with respect to them and set to zero to obtain the

coordinate ascent update rules. The update rules are listed
as follows

ãξi = aξ + Tau, b̃ξi = bξ +
∑
t

ãuit
b̃uit

(13)

ãuit = au +
∑
j,m

Rijm(φSijmt + φSijm(t+T ))

b̃uit =
ãξi

b̃ξi
+
∑
j,m

ãfj

b̃fj

ãθmt
b̃θmt

(1 + µit
ãvjt

b̃vjt
− µit)

(14)

ãvjt = av +
∑
i,m

Rijmφ
S
ijmt, b̃vjt = bv +

∑
i,m

µit
ãuit
b̃uit

ãfj

b̃fj

ãθmt
b̃θmt

(15)

ãfj = af +
∑
i,m

Rijm

b̃fj = bf +
∑
i,m,t

ãuit
b̃uit

ãθmt
b̃θmt

(1 + µit
ãvjt

b̃vjt
− µit)

(16)

ãθmt=aθ +
∑
i,j

Rijm(φSijmt+φ
S
ijm(t+T ))+

∑
n

Wmnφ
Z
mnt

b̃θmt = bθ +
∑
i,j

ãfj

b̃fj

ãuit
b̃uit

(1 + µit
ãvjt

b̃vjt
− µit) +

∑
n

ãβnt

b̃βnt
(17)

ãβnt = aβ +
∑
m

Wmnφ
Z
mnt, b̃βnt = bβ +

∑
m

ãθmt
b̃θmt

(18)

φSijmt∝



exp{Eq[logαit] + Ψ(ãuit)

− log b̃uit + Ψ(ãvjt)− log b̃vjt t ≤ T
+Ψ(ãθmt)− log b̃θmt}

exp{Eq[log(1− αit)] + Ψ(ãuit)

− log b̃uit + Ψ(ãyit)− log b̃yit T < t≤2T

+Ψ(ãθmt)− log b̃θmt}
(19)

φZmnt ∝ exp{Ψ(ãθmt)− log b̃θmt + Ψ(ãβnt)− log b̃βnt} (20)

where Ψ(·) denotes the Digamma function. These update
equations can also be derived by taking Eq[·] of the con-
ditional parameters of the corresponding latent variables’
complete conditionals [13], since the complete conditionals
are in exponential family and we let q(Ω) take the same
forms. Note in Eq. (19) we need to compute Eq[logαit]
and Eq[log(1−αit)]. These expectations are ill-defined since
logarithm is undefined for negative values. However, we
can still approximate them by Taylor expansion:

Eq[logαit] ≈ Eq[logµit +
1

µit
(αit − µit)−

1

2µ2
it

(αit − µit)2]

= logµit −
1

2µ2
it

σ2
it

Eq[log(1− αit)] ≈ log(1− µit)−
1

2(1− µit)2
σ2
it

These approximations are reasonable as long as the cor-
responding normal variational distribution is concentrated
near the mean, especially when the mean is near 0 or 1. We
find in experiments that for ambiguous cases (i.e., µit near
0.5), σ2

it is typically near 0.1; when µit is near 0 or 1, σ2
it is

on the order of 10−6, meaning that our confidence is high
due to the observed retweets. Hence, the approximations are



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, AUGUST 2017 8

acceptable in practice. The optimization algorithm simply
updates each variational parameter in turn until conver-
gence.

4.2 Computational Complexity
The space cost of IBPF is mainly due to R, W, and the
variational parameters of u, α, v, θ and β. R and W can be
efficiently stored in a sparse representation. The space cost
of the variational parameters is O(2T (2I+J)+T (M +N +
2)). As can be seen from the update equations, the other
parameters only rely on the accumulation of φS and φZ .
Hence, we do not need to store them. They can be computed
on the fly. There are some intermediate variables to store,
e.g. c1, c2 and c3 in Eq. (10). However, they have similar
space complexity as the main parameters. Since T is usually
not large, we can see the space cost of IBPF is efficient.

Regarding time complexity, the update costs of φS , φZ

and all the variational shape parameters depend linearly
on the number of nonzero elements in R and/or W. The
calculation for variational rate parameters is also efficient:
1) different tweets/words share the same T rate param-
eters; (2) the nested summations in the update equations
can be computed efficiently, e.g.

∑
i,m(ãuit/b̃

u
it)(ã

θ
mt/b̃

θ
mt) =

(
∑
i ã
u
it/b̃

u
it)(
∑
m ã

θ
mt/b̃

θ
mt). The cost for rate parameters is

O(xIIT + xJJT + xMMT + xNNT + xTT ) with proper
constant weights xI , xJ , xM , xN and xT . For α, we need
to obtain c1, c2 and c3 in Eq. (10) and then calculate µit
and σ2

it according to Eq. (11) and Eq. (12). It is easy to see
that the time cost of calculating c1 and c2 is similar to that
for Gamma shape parameters, i.e. linear in the number of
nonzero elements in R. The time cost for c3 is similar to
that for Gamma rate parameters. Hence, the time cost of
updating α only contributes to the constant weights of the
above complexity results. In experiment, we also implement
a GPU version of IBPF and report the running time test
results.

4.3 Inference and Model Usage
Once the model is learned, v, u, α characterize author
influence, user preference and user influence pattern, re-
spectively. We can use the obtained q(Ω) to approximate the
posterior and to infer the latent variables by taking expecta-
tions under q(Ω). For example, we can get Eq[vjt] = ãvjt/b̃

v
jt,

Eq[uit] = ãuit/b̃
u
it, Eq[θmt] = ãθmt/b̃

θ
mt and Eq[αit] = µit. The

inferred results can be used for further analysis or predictive
tasks. In particular, we could assess the retweet tendency of
any combination (i, j,m) as

R̃ijm = Eq[
∑
t

αituitvjtθmt +
∑
t

(1− αit)uitθmt] (21)

R̃ijm can be either used directly or incorporated into ex-
isting methods as a feature for retweet prediction or tweet
recommendation.

5 EXPERIMENTS

In this section, we empirically evaluate IBPF on two mi-
croblogging datasets collected from Sina Weibo1 and Twit-
ter2, respectively. In the first part, we show and analyze the

1. http://weibo.com
2. http://twitter.com

learning results of IBPF. Then we investigate applying the
learning results on retweet prediction/tweet recommenda-
tion.

TABLE 2
Statistics of the datasets.

Dataset # users # authors # tweets # retweets
Weibo 1,164,556 446,014 215,037 16,566,756
Twitter 41,164 132,167 428,861 504,620

5.1 Datasets & Experimental Setup

Two publicly available microblogging datasets are used in
the expeirments.
Weibo3 The Weibo dataset is extracted from the dataset
used in [55]. Since [55] only concerned who retweeted a
tweet but not whom it was retweeted from, there is no
explicit author information in the dataset. However, the
author information could be inferred from the retweet list
field and social relationships. Hence, we process the dataset
to get 16,566,756 retweets with inferred author information.
Then we extract related users, authors and tweets to form
our Weibo dataset.
Twitter4 The Twitter dataset [54] contains 11,408,918
retweets, but the tweets are written in various languages
and there is no detailed information about authors (only
names). We filter the tweets to only keep those that are
written in English. The filtered dataset contains 504,620
retweets. We summarize the statistics of the two datasets
in Table 2.
Experimental setup We run IBPF on a server with i7-4930K
CPU, 64GB memory and GeForce GTX TITAN GPU. Follow-
ing [12], [13], we set all the Gamma prior hyperparameters
at 0.3. We set aα = bα = 2 for α to construct a balanced
unimodal Beta prior as aforementioned. The variational
parameters of θ and β are initialized by the results of
BTM [52] and kept fixed in the early stage of the learning
process. We also initialize the variational parameters of u
and v by aggregating the tweet BTM topic vectors of the
user’s/author’s involved retweets. The number of topics
T can be determined by nonparametric topic models [19],
which is out of scope of this work. For the sake of simplicity,
we set T = 50.

5.2 Analysis of Learning Results

We apply IBPF on the whole datasets to mine specific
influence patterns. To provide a general view of the influ-
ence patterns, we summarize the learned α for the users.
Specifically, for each topic t we count the numbers of users
with αit > 0.6 and αit < 0.4 respectively, and calculate their
proportion. The topics are sorted in descending order of
this proportion. Intuitively, proportion values significantly
higher than 1 means users tend to follow topical authori-
ties (high author influence), while proportion values much
lower than 1 indicates that users are more likely to follow
their own interests (high content influence). Note we do not

3. https://cn.aminer.org/#Weibo-Net-Tweet
4. https://cn.aminer.org/#Twitter-Dynamic-Net
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TABLE 3
Typical topics exhibiting author influence/content influence in Weibo (translated).

Topics for author influence Topics for content influence
Topic Top words Top influential authors Topic Top words Top influenced users
Politics China, we, people, society,

democracy, nation, cultural
revolution, corruption

1813080181, 1182389073,
1189591617

Healthy
bedtime

health, weak up, sleep,
body, midnight, self, night,
everyday, women

1462948420, 1903335275,
1840682035

Sale
campaigns

friend, fan, chance, draw,
campaign, follow, lottery,
free

2179589753, 2607667467,
1670645393

Self-
cultivation

generous, contempt, life,
suffer losses, voice, calm,
status, distress

1890679643, 1890617574,
2664508573

Music video, music, concert, high
definition, song, premiere,
album, handclap

1642591402, 1830442653,
1920061532

Fun video, wonderful, funny,
share, titter, cute, like, awe-
some

1795128591, 1850098094,
1678626237

consider 0.4 ≤ αit ≤ 0.6 since that case often means lack of
evidence due to data sparsity.

Typical topics with high/low proportion values are
shown in Tables 3 and 4, for Weibo and Twitter, respectively.
We also show top authors (users) names for each topic with
high values of Eq[vjt] (low values of Eq[αit])5. The results
are intuitive. High author influence is often connected with
debatable topics such as Politics and professional topics such
as Sale campaigns and Music, while high content influence
is often conveyed by topics such as Fun, Philosophy and
Charity. Users are more easily influenced by the content in
these topics. We find for daily life topics, content influence
also tends to dominate. This is because the retweet becomes
a social means in this context between normal users who
are friends. Normal users are hard to obtain high topical
influence. The Healthy bedtime topic is also intuitive since it
would not require much professional prestige. Regarding
topics with high author influence, the learned top influ-
encers are indeed influential accounts on the topics6. We also
investigate the behaviors of the top active users in influential
topics and find they retweet from different non-influential
authors on the corresponding topics.

5.3 Retweet Prediction/Tweet Recommendation
As aforementioned in Section 2.2, retweet prediction and
tweet recommendation are closely related. The general goal
is to predict user preference on tweets by retweeting behav-
iors. Unlike research for general recommendation which is
focused on algorithms [16], [17], [44], [45], state-of-the-art
methods in this sub-field [11], [20], [36], [56] have proposed
various features for the two tasks. Here we treat the score
computed in Eq. (21) as a new feature and investigate
whether it can further improve the performance of the two
tasks.
Experimental settings & Baselines Since there is no author
information in Twitter dataset, we only use Weibo dataset in
this experiment. We adopt an evaluation methodology sim-
ilar to that of [20]. Firstly, we filter users with retweets less
than 15. This results in 108,707 target users. For each target
user, we sort his incoming tweets from followees in ascend-
ing order of time and for each positive instance sample 4
negative instances that are nearest to it by time. The intuition

5. Since user names are in Chinese, for Weibo we show user IDs and
one can find them by typing “weibo.com/ID” in browers.

6. The last two accounts for the topic Politics in Weibo were removed.
They are Zhiqiang Ren and Chengpeng Li who can be found on
Wikipedia

is that non-retweets surrounding retweets are more likely to
be real negative instances (i.e. viewed but not retweeted).
Unlike [56], we do not construct a balanced dataset since
that would make the recommendation task easier. The fil-
tered incoming tweet list is split into 5 segments with equal
size. We train the model on one segment and test it on
the next. The averaged performance is reported. In order
to fairly compare the effectiveness of different features, we
employ factorization machines (FM) [37] as the common
model and feed different sets of features into it. We employ
features from stat-of-the-art works as baselines: (1) F-CoFM
[20]: this is the set of features used by the CoFM method
for tweet recommendation, including features from content,
meta data, relationships etc.; (2) F-FFM [11]: features used
by the feature-aware factorization model (FFM) including
node and edge features for each <user, author, tweet>; (3)
F-Diff: diffusion based features proposed in [36]; (4) InfLoc:
the influence locality feature proposed in [55], [56]. For
retweet prediction, we use precision, recall, F1 and accuracy
as the evaluation metrics [55]. Normalized Discount Cumu-
lative Gain (NDCG) and Mean Average Precision (MAP) are
used to measure recommendation performance. We define
Precision as the number of correctly recommended tweets
(i.e. those which are retweeted by the user) divided by
the number of all recommended tweets. Average Precision
(AP) is the average of precision scores after each correctly
recommended tweet:

AP =

∑
i Precision@i× corri

No. of correctly recommended tweets
(22)

where Precision@i is the precision at ranking position i and
corri = 1 if the tweet at position i is correctly recommended,
otherwise corri = 0. MAP is the mean of average precision
scores over all target users. NDCG at position k is defined
as

NDCG@k = Zk

k∑
i=1

(2ri − 1)/ log2(i+ 1) (23)

where ri is the relevance rating of tweet at rank i. In our
case, ri is 1 if the corresponding tweet is retweeted by
the user and 0 otherwise. Zn is chosen so that the perfect
ranking has a NDCG value of 1.

The results are shown in Tables 5 and 6, for prediction
and recommendation respectively. Here “All” means we
combine all baseline features and IBPF and “All baselines”
is a combination of all the 4 baselines. We can see although
IBPF alone cannot beat baselines with a lot of features,
when it is integrated with features from all the baselines,
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TABLE 4
Typical topics exhibiting author influence/content influence in Twitter.

Topics for author influence Topics for content influence
Topic Top words Top influential authors Topic Top words Top influenced users
Political
news

pass, state, nation, bill,
group, rule, public, major

CBSRadioNews, cnnbrk,
BreakingNews

Life phi-
losophy

heart, open, eye, close, side,
speak, touch, soul

citizenparker, cashbandi-
coot , PutrisdEffendi

TV shows show, live, watch, video,
perform, season, catch, air

GMA, TheEllenShow, to-
dayshow

Daily life omg, sleep, bed, kick, ha,
hahaha, jump, ring

anai699, CuzImAl-
waysON, billuko

Music play, song, listen, hear,
sound, sing, amaz, danc

chrisbrown, ladygaga,
gagadaily

Charity money, pay, save, problem,
million, spend, extra, bank

shesFEARLESS13,
Cathyliscious, kelly-
williams4

TABLE 5
Performance comparison for retweet prediction.

Features Precision Recall F1 Accuracy
F-CoFM 0.790 0.607 0.685 0.888
F-FFM 0.724 0.587 0.648 0.825
F-Diff 0.542 0.422 0.475 0.800
InfLoc 0.604 0.558 0.580 0.749
IBPF 0.872 0.252 0.391 0.851

All baselines 0.804 0.676 0.734 0.901
All 0.888 0.708 0.788 0.923

TABLE 6
Performance comparison for tweet recommendation.

Features NDCG@1 NDCG@3 NDCG@5 MAP
F-CoFM 0.904 0.844 0.724 0.586
F-FFM 0.641 0.531 0.459 0.409
F-Diff 0.746 0.643 0.591 0.517
InfLoc 0.472 0.441 0.405 0.374
IBPF 0.786 0.708 0.695 0.482

All baselines 0.911 0.862 0.742 0.596
All 0.975 0.933 0.927 0.631

the performance can be boosted significantly. This indicates
that IBPF can provide additional new knowledge for the
two tasks based on existing knowledge in the state-of-
art features. The reason could be that no baseline feature
exploits the ternary relations of users, authors and tweets
(only pairwise relations are considered). Note the InfLoc
feature does not achieve good performance since we re-
moved retweets for which we cannot infer their authors
(Section 5.1). A more complete structural diffusion view is
required by InfLoc.

5.4 Time Complexity

Here we investigate the time costs of the algorithms in terms
of one iteration of parameter updating. As mentioned in Sec-
tion 4.2, we implement both CPU version and GPU version
of IBPF where the GPU version uses GPU to concurrently
compute φS , φZ and update variational parameters. We
vary the number of nonzero elements in R and W and
fix all the other quantities in a simulation dataset based on
the Weibo dataset. The results are shown in Figure 2. The
axes are in log-scale for clarity. We can see that the time
cost of the CPU version grows linearly with the number
of sparse relations, which conforms with the analysis in
Section 4.2, while the GPU version is very efficient, e.g. 19.8s
for processing 50M retweets plus 50M tweet-word relations.

No. of sparse relations (R+W)
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Fig. 2. Time costs as the number of sparse relations in R and W vary.

6 CONCLUSIONS & FUTURE WORK

We propose a new influence mining method for mi-
croblogging data, named Influence Beta-Poisson Factoriza-
tion (IBPF). IBPF can automatically discern author influence
and content influence in an optimal sense from retweet
evidences. We develop efficient variational optimization
algorithms for IBPF. The effectiveness and efficiency of IBPF
are tested on two large-scale public microblogging datasets.

There are several possible extensions that can be made
to IBPF. First, we will investigate how to adapt IBPF to
the online setting, to cope with the evolution nature of
microblogging data. This could be addressed by developing
stochastic variational inference [19] algorithms for IBPF. We
will also try to integrate nonparametric topic modeling into
IBPF seamlessly to capture the number of topical factors
automatically.
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