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Collaborative Networks 
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Information flows 

Enterprise ticket 

Eclipse bug record 
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Differences: Social Networks VS. Collaborative Networks 
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Social network 
- information diffusion 

Collaborative network 
- information routing 
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Core Problems 

 
• How do experts make routing decisions? 

 
• Who have made inefficient routing decisions? 

 
• How to optimize the routing performance 

through targeted training? 
 

• Can the completion time of a task be predicted 
so that one can act early for difficult tasks?  
 



Observation 1 
Tasks with similar content, but different routing sequences 
  
 e.g., two problem tickets in IBM IT service department      
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Task ID Task Content Routing Sequence 
492 Need password reset for kasperj on 

machine "pathfinder"".  Route to 
NUS_N_DCRCHAIX 

12 505  1914 
1915 1916 247 
 

494 Need password reset for jhallacy on 
machine ""pathfinder"".  Route to 
NUS_N_DCRCHAIX 

12  13  86 
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Observations on Routing Decision Making 

Routing decision is not deterministic, given a certain 
task.  
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Observation 2 
An expert might not directly send a task to a resolver.     

Observations on Routing Decision Making 

Is it because he does not understand the task very well, 
thus randomly routing it? Or 

 
he believes the other expert has a better chance to solve 
it, or a better chance to find the right expert to solve it?  

ei 

ej 

ek 



Observations on Routing Decision Making 

Observation 3 
An expert tends to transfer a task to some expert whose 

expertise is neither too close nor too far from his own. 
That is, not necessarily the final resolver! 
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Modeling Expert Decision Logic 

 A Two-Phase Assumption 
 

      When an expert  transfers a task, 
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Phase 1 Phase 2 

Candidate pool establishment Specific expert selection 

ei 

ei 



 Phase 1: The establishment of candidate pool C. 
 
      

Two Routing Strategies 

Task-Neutral Routing (TNR) Task-Specific Routing (TSR) 
 

C: All the neighbors (all the 
experts he has contacted) 

C:  experts in one ’s  
neighborhood, but estimated 
capable of solving the task 

Modeling Expert Decision Logic 
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Modeling Expert Decision Logic 

 Phase 1: How to decide C in Task-Specific Routing? 
 

-- Estimate expert knowledge and capability based on  
the tasks he has dealt with before.       

 
      -- Logistic model 
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Modeling Expert Decision Logic 

 Phase 2: Which expert in C to transfer the task to ? 
 Uniform Random  
 Volume-biased Random  

 Volume       : the number of tasks dispatched from       to  
 
 

 Expertise Difference  
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Modeling Expert Decision Logic 

 6 particular routing patterns 
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Task-Neutral 
Routing (TNR) 

Task-Specific 
Routing (TSR) 

Uniform Random (UR) 

Volume-biased Random (VR) 

Expertise Difference  (EX) 

TNRur

TNR vr

TNR ex

TSRur

TSR vr

TSR ex



Modeling Expert Decision Logic 

 Generative model 
      Assume: the routing decision of an expert is 

generated through a mixture of 6 routing patterns. 
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For each expert ei to transfer tasks, 
    -Draw the mixture weights of 6 routing patterns:  
       
       
      (reflecting ei ’s preferences over adopting different 
routing patterns) 
    -For each task t to be transferred by expert ei,   
         * Draw a pattern label:  
         * Draw an expert from the candidate pool to 
receive t. 

Decision generation process: 

~ Dirichlet( )iθ α

,Z ~ Mult( )i t iθ



Modeling Expert Decision Logic 

 Generative model 
            

 

Huan Sun 14 UC Santa Barbara 

Graphical representation 

The likelihood of observing all the 
task transfer relationships as: 

Parameters are optimized by 

through efficient variational EM 
algorithm. 



Experiments 

 Three Datasets 
Real-world problem ticket data collected from a problem ticketing 
system, in an IBM IT service department. 
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Datasets Description # of 
tasks 

# of 
experts 

% of tasks with 
CT 

=2 =3 >=4 
DB2 Database 

usage 
26,740 55 44.2 34.3 21.5 

WebSphere Enterprise 
software 

65,786 234 39.0 36.2 24.8 

AIX Operating 
system 

120,780 404 40.0 39.4 20.6 
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Experiments 

 Evaluation Measure 
 Completion Time (CT): Number of experts contacted before a 

task is resolved 
 Mean Absolute Error (MAE) 

 
 
 Results 
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Test Set

1MAE= | CT CT |
| Test Set | t t

t∈
−∑

DB2 

Models MAE 
TNR+TSR 0.08 
Miao et al.  0.68 

Support Vector Regression 0.80 
Bayesian regression 0.84 



Experiments 

 Resolution Efficiency of TNR vs. TSR 
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Experts favoring TNR  Weight on TNR patterns      Weight on TSR patterns. 

Experts favoring TSR Weight on TNR patterns      Weight on TSR patterns 

>

<



Application: Optimizing Collaborations  

 Which expert should be trained first to adopt TSR? 
How much efficiency improvement can we expect?  
 Random: random selection 
 Frequent transferor: select the expert who transfers the most 

tasks 
 Least efficient: select the least efficient expert 
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Methods Efficiency Improvement (%) 
Random 0.27 

Frequent Transferor 0.91 

Least Efficient 1.21 

Recommendation using our model 2.75 
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Conclusions 

Our model can address the following questions 
 
• How do experts make routing decisions? 

(partially) 
 

• Who have made inefficient routing decisions? 
 

• How to optimize the routing performance 
through targeted training? 
 

• Can the completion time of a task be predicted 
so that one can act early for difficult tasks?  
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Thank you! 
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