# NOISE-RESISTANT BICLUSTER RECOGNITION

Huan Sun\*, Gengxin Miao\*, Xifeng Yan\*

\*Computer Science Department

#Electrical and Computer Engineering Department University of California, Santa Barbara







#### Problem

 Biclustering: simultaneously cluster rows and columns in a matrix.

|            |   |    |    | Gen | es |    |    |   |
|------------|---|----|----|-----|----|----|----|---|
| Conditions | 0 | 0  | 0  | 0   | 0  | 0  | 0  | 0 |
|            | 0 | 1  | 1  | 1   | 0  | 0  | 0  | 0 |
|            | 0 | -1 | -1 | -1  | 0  | 0  | 0  | 0 |
|            | 0 | 1  | 1  | 1   | 0  | 0  | 0  | 0 |
|            | 0 | 0  | 0  | -1  | 1  | 1  | -1 | 0 |
|            | 0 | 0  | 0  | 1   | -1 | -1 | 1  | 0 |
|            | 0 | 0  | 0  | -1  | 1  | 1  | -1 | 0 |
|            | 0 | 0  | 0  | 0   | 0  | 0  | 0  | 0 |

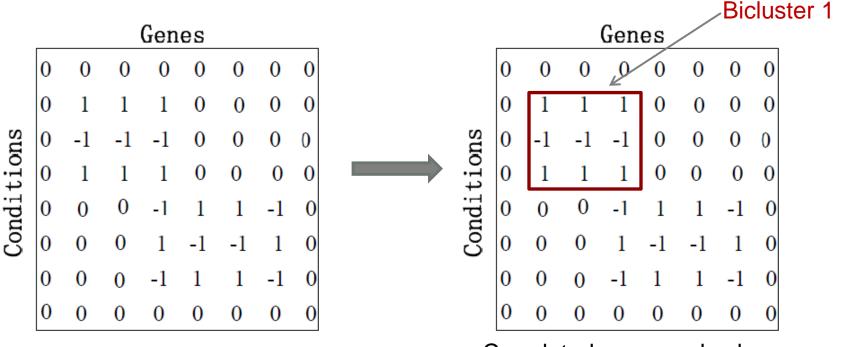
1: upregulating

0: unchanged

-1: downregulating

#### **Problem**

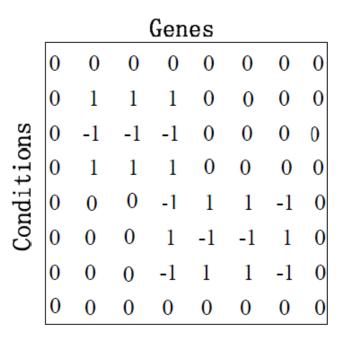
 Biclustering: simultaneously cluster rows and columns in a matrix.

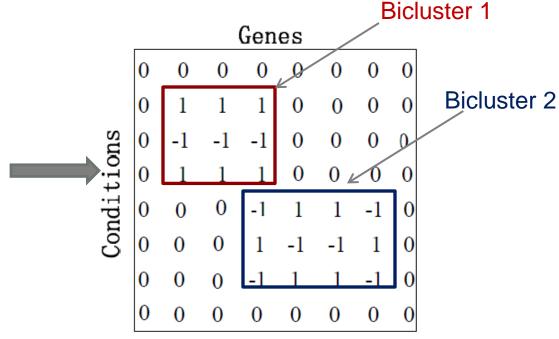


Correlated rows and columns

#### **Problem**

 Biclustering: simultaneously cluster rows and columns in a matrix.



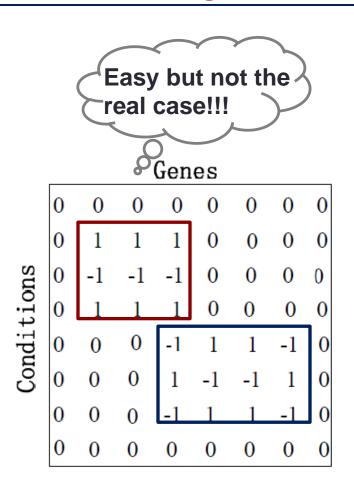


Different patterns in different biclusters

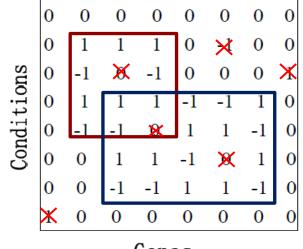
### Many existing algorithms

- Combinatorial algorithms: e.g., QUBIC, COALESCE etc.
- Probabilistic models: e.g., SAMBA, FABIA etc.
- Matrix factorization: e.g., SSVD, S4VD etc.

### Challenges

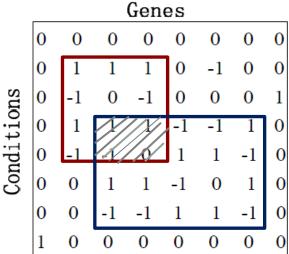


Noise



Genes

Overlap



Since neural networks have achieved great successes in data classification,

#### can neural networks do biclustering?

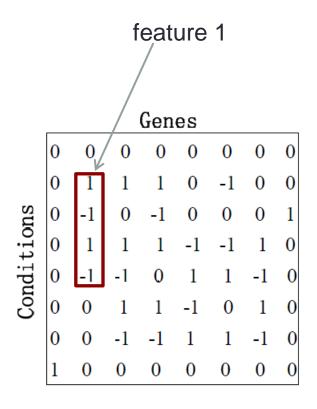
Since neural networks have achieved great successes in data classification.

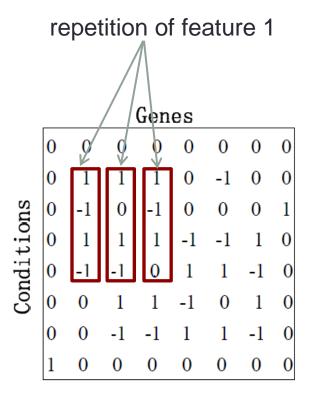
#### can neural networks do biclustering?

#### Yes!

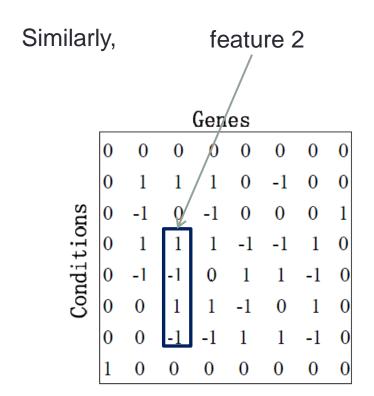
Not only that, it can significantly outperform all the existing methods.

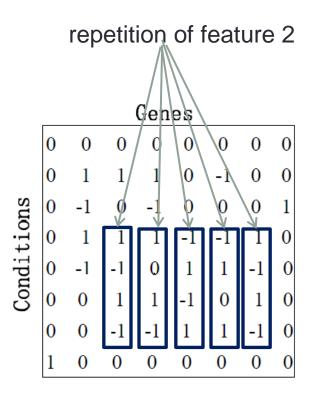
### Intuition



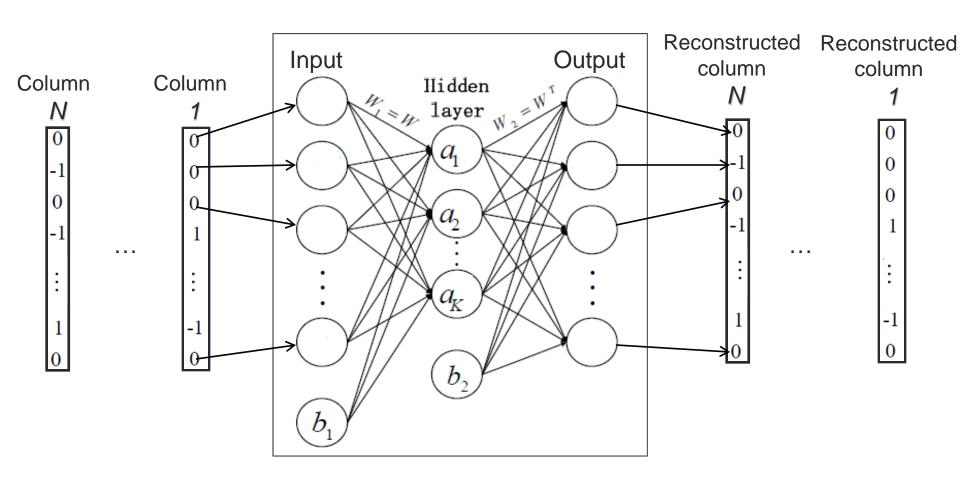


#### Intuition



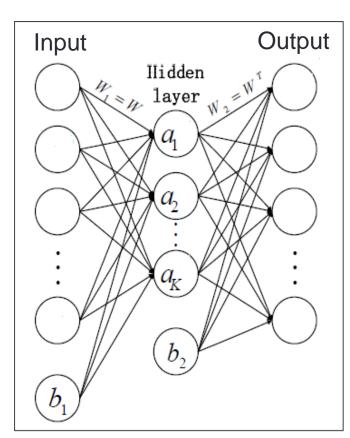


#### Feature learning: Sparse Autoencoder (Li et al., NIPS'08)



#### Feature learning: Sparse Autoencoder (SAE)

#### Map Sparse Autoencoder (SAE) to biclustering:



One hidden neuron corresponds to one feature

**W**: the contribution of each row in activating hidden neurons

⇒ membership of a row in hidden neurons

**A=[a₁, a₂,..., aκ]**<sup>T</sup>: activation of hidden neurons for a column

⇒ membership of a column in hidden neurons

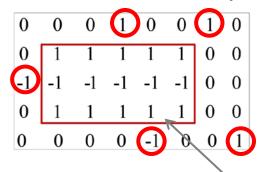
Row and column members in the same hidden neuron compose a bicluster.

Based on Sparse Autoencoder, we enhance:

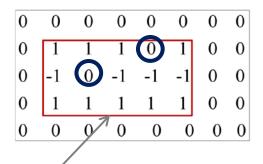
Robustness against noise

#### Intuition:

Noise outside bicluster pattern:



Noise inside bicluster pattern:



Bicluster pattern

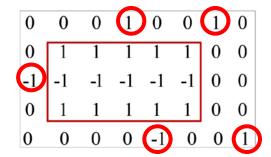
"Decode"

Based on Sparse Autoencoder, we enhance:

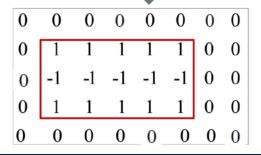
Robustness against noise

#### Intuition:

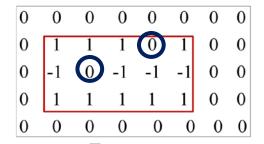
Noise outside bicluster pattern:



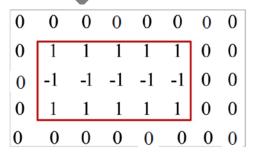
Allow more false negative reconstruction errors



Noise inside bicluster pattern:



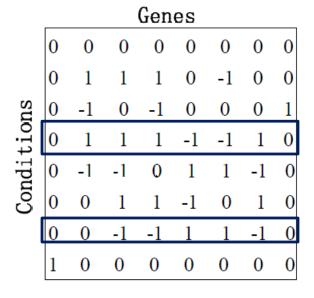
Allow more false positive reconstruction errors



Based on sparse autoencoder, we enhance:

Robustness against overlap

#### Intuition:



```
Condition i

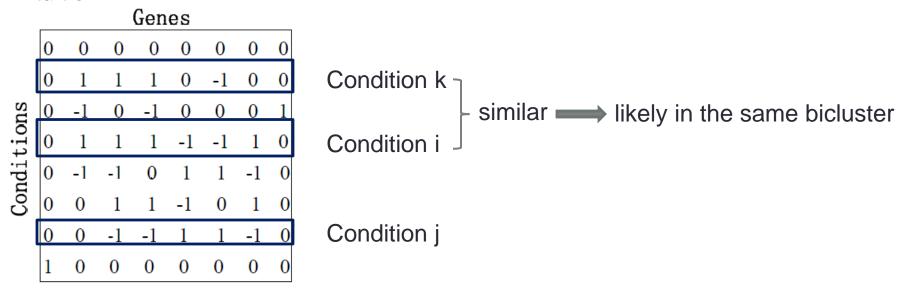
similar 
likely in the same bicluster

Condition j
```

Based on sparse autoencoder, we enhance:

Robustness against overlap

#### Intuition:



Condition i is similar to conditions in different biclusters; then condition i should simultaneously belong to these biclusters as well (**overlap**).

Objective function

SAE

$$\underset{W,b_{1},b_{2}}{\operatorname{arg\,min}} \mathcal{H} \\
= \underbrace{\frac{1}{2N} \sum_{i=1}^{N} \sum_{m=1}^{M} (\hat{x}_{m}^{(i)} - x_{m}^{(i)})^{2}}_{(I)}$$

$$+\beta \sum_{k=1}^{K} \text{KL}(\rho_k || \hat{\rho}_k) + \lambda ||W||_1$$

(III)

**AD** 

$$\underset{W,b_1,b_2}{\operatorname{arg\,min}} \mathcal{H} 
= \frac{1}{2N} \sum_{i=1}^{N} \sum_{m=1}^{M} [I_{m,i} + \alpha (1 - I_{m,i})] (\hat{x}_m^{(i)} - x_m^{(i)})^2$$

(I) Robustness against noise

$$+\beta \sum_{k=1}^{K} \mathrm{KL}(\rho_k \| \hat{\rho}_k)$$

(II) Sparsity term as in SAE

$$+ \frac{\gamma}{2} \sum_{k=1}^{K} \sum_{i \neq j} S_{i,j} (|W_{k,i}| - |W_{k,j}|)^2$$

(III) Robustness against overlap

$$+\underbrace{\lambda \|W\|_1}$$

(IV) Overfitting regularizer as in SAE

Solution

Backpropagation + L-BFGS optimization algorithm:

Error terms: 
$$\delta_{m,n}^{(2)} = [I_{m,n} + \alpha(1 - I_{m,n})](\hat{x}_m^{(n)} - x_m^{(n)})$$

$$\delta_{k,n}^{(1)} = [\sum_{m=1}^M W_{k,m} \delta_{m,n}^{(2)} + \beta(-\frac{\rho_k}{\hat{\rho}_k} + \frac{1 - \rho_k}{1 - \hat{\rho}_k})] a_k^{(n)} (1 - a_k^{(n)})$$

$$\frac{\partial \mathcal{H}}{\partial b_{1k}} = \frac{1}{N} \sum_{k=1}^N \delta_{k,n}^{(1)}$$

Gradients: 
$$\frac{\partial \mathcal{H}}{\partial b_{1k}} = \frac{1}{N} \sum_{n=1}^{N} \delta_{k,n}^{(1)}$$
 
$$\frac{\partial \mathcal{H}}{\partial b_{2m}} = \frac{1}{N} \sum_{n=1}^{N} \delta_{m,n}^{(2)}$$
 
$$\frac{\partial \mathcal{H}}{\partial W_{k,m}} = \frac{1}{N} \sum_{n=1}^{N} (\delta_{k,n}^{(1)} x_m^{(n)} + \delta_{m,n}^{(2)} a_k^{(n)})$$
 
$$+ (\gamma L_{m,(:)} W_{k,(:)}^T + \lambda) \operatorname{sgn}(W_{k,m})$$

- Existing algorithms
  - QUBIC [Li et al., Nucleic Acids Research, 2009]
    - Combinatorial algorithm
  - COALESCE [Huttenhower et al., Bioinformatics, 2009]
    - Combinatorial algorithm
  - FABIA [Hochreiter et al., Bioinformatics, 2010]
    - Probabilistic models
  - **S4VD** [Sill et al., Bioinformatics, 2011]
    - Matrix factorization

#### Evaluation measures

Commonly used measures in biclustering: Relevance and Recovery.

Relevance: How relevant the discovered biclusters are to the true ones

Recovery: To what degree the true biclusters are recovered

• F score: 
$$F = \frac{2 \times \text{Relevance} \times \text{Recovery}}{\text{Relevance} + \text{Recovery}}$$

Gene set enrichment analysis on real data sets.

- Real data sets
  - --Diffuse Large-B-Cell Lymphoma (DLBCL)
    - 3795 genes, 58 samples
  - --Lung Cancer
    - 12625 genes, 56 samples
  - --Breast Cancer
    - 1213 genes, 97 samples
  - --Multiple Tissue
    - 5565 genes, 102 samples

• F score on four real data sets

| Methods                 | DLBCL | Lung<br>Cancer | Breast<br>Cancer | Multiple<br>Tissue |
|-------------------------|-------|----------------|------------------|--------------------|
| AD                      | 0.50  | 0.92           | 0.43             | 0.82               |
| QUBIC                   | 0.34  | 0.62           | 0.21             | 0.63               |
| COALESCE                | 0.38  | 0.36           | 0.41             | 0.47               |
| FABIA                   | 0.27  | 0.85           | 0.57             | 0.77               |
| S4VD                    | 0.28  | 0.72           | 0.49             | 0.10               |
| Relative<br>Improvement | >=31% | >=8.2%         | \                | >=6.5%             |

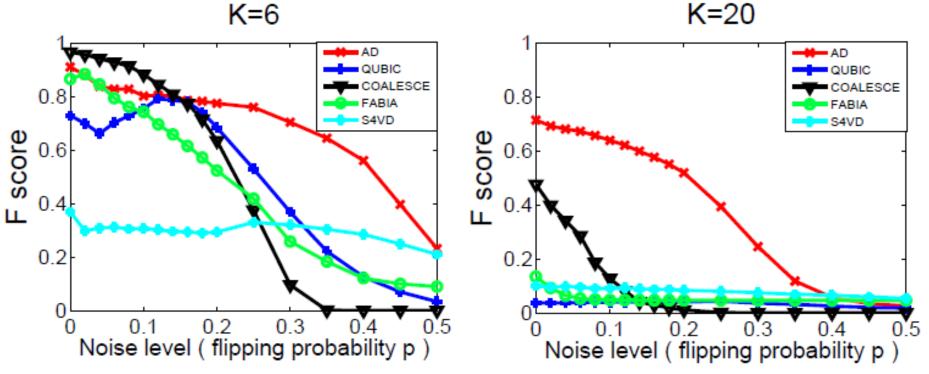
Biological significance evaluation

| Data sets       | P-value of gene sets discovered by AD (the smaller, the better) |
|-----------------|-----------------------------------------------------------------|
| Multiple Tissue | $1.2 \times 10^{-20} \sim 6.9 \times 10^{-5}$                   |
| DLBCL           | $6.3 \times 10^{-10} \sim 5.3 \times 10^{-4}$                   |
| Lung Cancer     | $9.2 \times 10^{-26} \sim 2.2 \times 10^{-6}$                   |

The gene sets discovered by AD are also biologically significant.

- Synthetic data sets
  - Dataset synthesis procedure:
    - 1. Set matrix size as 100\*500, initially filled with 0's;
    - 2. Implant one bilcuster by:
      - Select the number of rows r in this bicluster from [10,30];
      - Select the number of columns **c** in this bicluster from [50, 100];
      - Randomly choose *r* rows and *c* columns as the members of the bicluster;
      - Fill this bicluster with 1's.
    - 3. Totally implant **K** biclusters;
  - 4. Inject noise to the matrix by flipping the 1's inside a bicluster to 0 with probability  $\mathbf{p}$  and flipping the 0's outside the biclusters to 1 or -1 respectively with probability  $\mathbf{p}/2$ .
  - Vary K and p in our experiments (K controls the overlap while p denotes the noise degree).

 Noise-and-overlap resistance testing on synthetic data sets



AD significantly outperforms other methods when there are more biclusters and heavier noise.

#### Conclusions

- A novel model, AutoDecoder (AD), for biclustering
  - neural networks ----> feature learning----> biclustering
  - more robust against noise and overlap in both real and synthetic data sets.
- Project homepage:
  - http://grafia.cs.ucsb.edu/autodecoder/
  - Source code and data sets

## Thank You!