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Problem 
• Biclustering: simultaneously cluster rows and columns in a 

matrix.  
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Correlated  rows and columns 
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Problem 
• Biclustering: simultaneously cluster rows and columns in a 

matrix.  
 

 
  

Different patterns in different biclusters 

Bicluster 1 
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Many existing algorithms 
• Combinatorial algorithms: e.g., QUBIC, COALESCE etc. 

 
• Probabilistic models: e.g., SAMBA, FABIA etc.  

 
• Matrix factorization: e.g., SSVD, S4VD etc. 
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Challenges 
• Noise 

 
 
 
 

• Overlap   
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Easy but not the 
real case!!! 



 
 
 Since neural networks have achieved great successes in data classification, 

can neural networks do biclustering?  
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Yes! 
 Not only that, it can significantly outperform  

all the existing methods.  



Intuition 
 
 

 
 
 

 

feature 1 repetition of feature 1 

9 



Intuition 
 
 

 
 
 

 

feature 2 repetition of feature 2 Similarly, 
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Feature learning: Sparse Autoencoder (Li et al., NIPS’08) 
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Map Sparse Autoencoder (SAE) to biclustering: 
 

 
 
 
 

One hidden neuron corresponds to one feature 
 
W: the contribution of each row in activating 
hidden neurons 
⇒ membership of a row in hidden neurons 
 
A=[a1, a2,…, aK]T : activation of hidden 
neurons for a column  
⇒ membership of a column in hidden neurons 
 
Row and column members in the same hidden 
neuron compose a bicluster. 

Input Output 

Feature learning: Sparse Autoencoder (SAE) 
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Our Method: AutoDecoder (AD) 
Based on Sparse Autoencoder, we enhance: 
• Robustness against noise  
 

• Noise outside bicluster pattern: 
  

 

 
 

• Noise inside bicluster pattern:  
 

  
 

Intuition: 
 

Bicluster pattern 
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Our Method: AutoDecoder (AD) 
Based on Sparse Autoencoder, we enhance: 
• Robustness against noise  
 

• Noise outside bicluster pattern: 
  

 

 
 

• Noise inside bicluster pattern:  
 

  
 

Allow more false negative 
reconstruction errors 

Allow more false positive 
reconstruction errors 

Intuition: 
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“Decode” 



Our Method: AutoDecoder (AD) 
Based on sparse autoencoder, we enhance: 
• Robustness against overlap  
Intuition: 
 
 
 
 
 
.  

Condition i 

Condition j 

similar likely in the same bicluster 
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Our Method: AutoDecoder (AD) 
Based on sparse autoencoder, we enhance: 
• Robustness against overlap  
Intuition: 
 
 
 
 
 
.  

Condition i 
similar likely in the same bicluster 

Condition k 

Condition j 

Condition i is similar to conditions in different biclusters; then condition i 
should simultaneously belong to these biclusters as well  (overlap).  
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Our Method: AutoDecoder (AD) 
• Objective function 
SAE AD 

Robustness against noise 

Robustness against overlap 

Sparsity term as in SAE 

Overfitting regularizer as in SAE 
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Our Method: AutoDecoder (AD) 
• Solution 
  Backpropagation + L-BFGS optimization algorithm: 

Error terms: 

Gradients: 
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Experiments 
• Existing algorithms 

• QUBIC  [Li et al., Nucleic Acids Research, 2009] 
• Combinatorial algorithm  

 
• COALESCE [Huttenhower et al., Bioinformatics, 2009] 

• Combinatorial algorithm  
 

• FABIA [Hochreiter et al., Bioinformatics, 2010] 
• Probabilistic models 

 
• S4VD  [Sill et al., Bioinformatics, 2011] 

• Matrix factorization  
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Experiments 
• Evaluation measures 
  Commonly used measures in biclustering: Relevance and Recovery.  
  

• Relevance: How relevant the discovered biclusters are to the true ones 
 
 

• Recovery:  To what degree the true biclusters are recovered 
 
 

• F score: 
 
 

•  Gene set enrichment analysis on real data sets. 
 

 

 

2 Relevance Recovery
Relevance Recovery

F × ×
=

+
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Experiments 
• Real data sets 
  --Diffuse Large-B-Cell Lymphoma (DLBCL) 

• 3795 genes, 58 samples 

  --Lung Cancer 
• 12625 genes, 56 samples 

  --Breast Cancer  
• 1213 genes, 97 samples 

  --Multiple Tissue 
• 5565 genes, 102 samples 
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Experiments 
• F score on four real data sets 
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Methods DLBCL Lung  
Cancer 

Breast 
Cancer 

Multiple 
Tissue 

AD 0.50 0.92 0.43 0.82 
QUBIC 0.34 0.62 0.21 0.63 

COALESCE 0.38 0.36 0.41 0.47 
FABIA 0.27 0.85 0.57 0.77 
S4VD 0.28 0.72 0.49 0.10 

Relative 
Improvement 

>=31% >=8.2% \ >=6.5% 



Experiments 
• Biological significance evaluation 
    Data sets P-value of gene sets discovered by AD 

(the smaller, the better) 
Multiple Tissue   

DLBCL 

Lung Cancer 

10 46.3 10 5.3 10− −× ×

26 69.2 10 2.2 10− −× ×

The gene sets  discovered by AD are also biologically significant.  
 

20 51.2 10 6.9 10− −× ×
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Experiments 
• Synthetic data sets 

• Dataset synthesis procedure: 
   1. Set matrix size as 100*500, initially filled with 0’s; 
 
   2. Implant one bilcuster by: 

• Select the number of rows  r in this bicluster from [10,30]; 
• Select the number of columns c in this bicluster from [50, 100]; 
• Randomly choose r rows and c columns as the members of the bicluster; 
• Fill this bicluster with 1’s. 

 
   3. Totally implant K biclusters; 
 
   4. Inject noise to the matrix by flipping the 1’s inside a bicluster to 0 
with probability p and flipping the 0’s outside the biclusters to 1 or -1 
respectively with probability p/2.  
 
•  Vary K and p in our experiments (K controls the overlap while p 

denotes the noise degree).  
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Experiments 
• Noise-and-overlap resistance testing on synthetic data 

sets 

AD significantly outperforms other methods when there are more biclusters 
and heavier noise. 
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Conclusions 
• A novel model, AutoDecoder (AD), for biclustering 

• neural networks ----->feature learning-----> biclustering 
• more robust against noise and overlap in both real and synthetic 

data sets. 

 
• Project homepage: 

• http://grafia.cs.ucsb.edu/autodecoder/ 
• Source code and data sets 
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http://grafia.cs.ucsb.edu/autodecoder/


Thank You! 
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