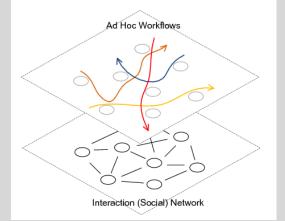


Analyzing Expert Behaviors in Collaborative Networks Huan Sun¹, Mudhakar Serivatsa², Shulong Tan¹, Yang Li¹, Lance Kaplan³, Shu Tao², and Xifeng Yan¹ ¹University of California, Santa Barbara ²IBM T. J. Watson, ³U.S. Army Research Lab

Introduction

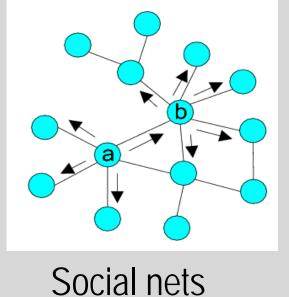
Collaborative Networks

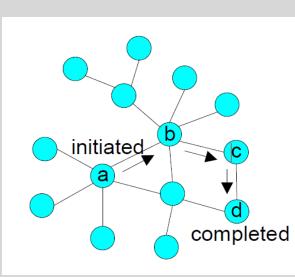
A special type of social networks, where members collaborate with each other to complete specific tasks.



ID	Day	Entry	
81	05-14	New Ticket: DB2 login fail	
81	05-14	Transfer to Group <u>SMRDX</u>	
81	05-14	Contacted Mary for recycling	
81	05-14	Transfer to Group <u>SSDSISAP</u>	
81	05-14	Status updated	
81	05-15	Transfer to Group <u>ASWWCUST</u>	
81	05-15	Web service checking	
81	05-18	Could not solve the problem.	
81	05-18	Transfer to Group <u>SSSAPHWOA</u>	
81	05-22	Resolved	

Differences from general social networks





Collaborative nets

Core Problems

- How do experts make routing decisions?
- Who have made inefficient routing decisions?
- How to optimize the routing performance
- through targeted training?

• Can the completion time of a task be predicted so that one can act early for difficult tasks?

Code Online

www.cs.ucsb.edu/~huansun/behavemodel.htm

Observations

Observation 1

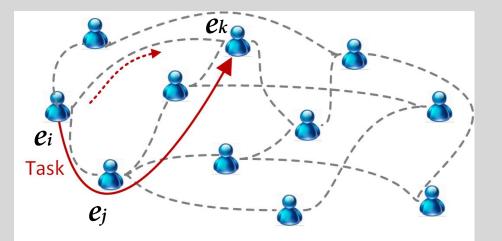
Tasks with similar content, but different routing sequences e.g., two problem tickets in IBM IT service department

Task ID	Task Content	Routing Sequence	
492	Need password reset for kasperj on machine "pathfinder"". Route to NUS_N_DCRCHAIX	12 →505 → 1914→ 1915 →1916 →247	
494	Need password reset for jhallacy on machine ""pathfinder"". Route to NUS_N_DCRCHAIX	12 → 13 → 86	

Routing decision is not deterministic, given a certain task.

Observation 2

An expert might not directly send a task to a resolver.



Is it because he does not understand the task very well, thus randomly routing it? Or he believes the other expert has a better chance to solve it, or a better chance to find the right expert to solve it?

Observation 3

An expert tends to transfer a task to some expert whose expertise is *neither* too close *nor* too far from his own. That is, not necessarily the final resolver!

Observations (Cont'd)

Observation 3

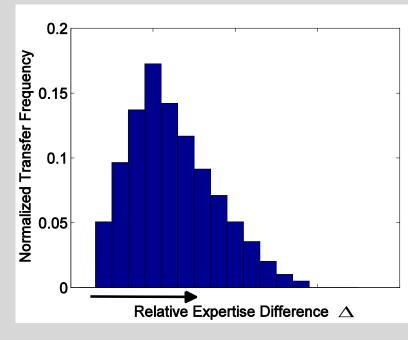


Figure plots the distribution of the relative expertise difference between a task sender and receiver in the training set.

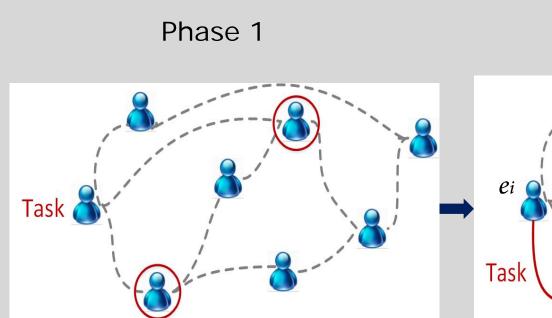
 $\Delta(e_i, e_j) = ||e_i - e_j|| / ||e_i||$

The log-normal density shows the general trend of an expert sending a task to another, given their expertise.

Modeling Expert Decision Logic

A Two-phase Assumption

When an expert transfers a task,



Candidate pool establishment

Specific expert selection

Phase 2

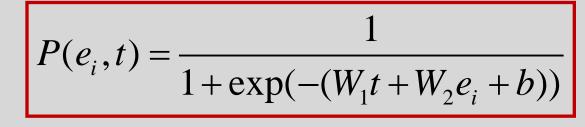
Phase 1: The establishment of candidate pool C.

Two Routing Strategies				
Task-Neutral Routing (TNR)	Task-Specific Routing (TSR)			
C: All the neighbors (all the experts he has contacted)	C: experts in one 's neighborhood, but estimated capable of solving the task			

How to decide *C* in TSR?

Logistic Model

Estimate expert knowledge and capability based on the tasks he has dealt with before.



Where e_i denotes the expert's expertise; *t* is the description of a task; W_1 , W_2 , b are model parameters. Train sets are formulated based on a set of historical tasks and their routing sequences.

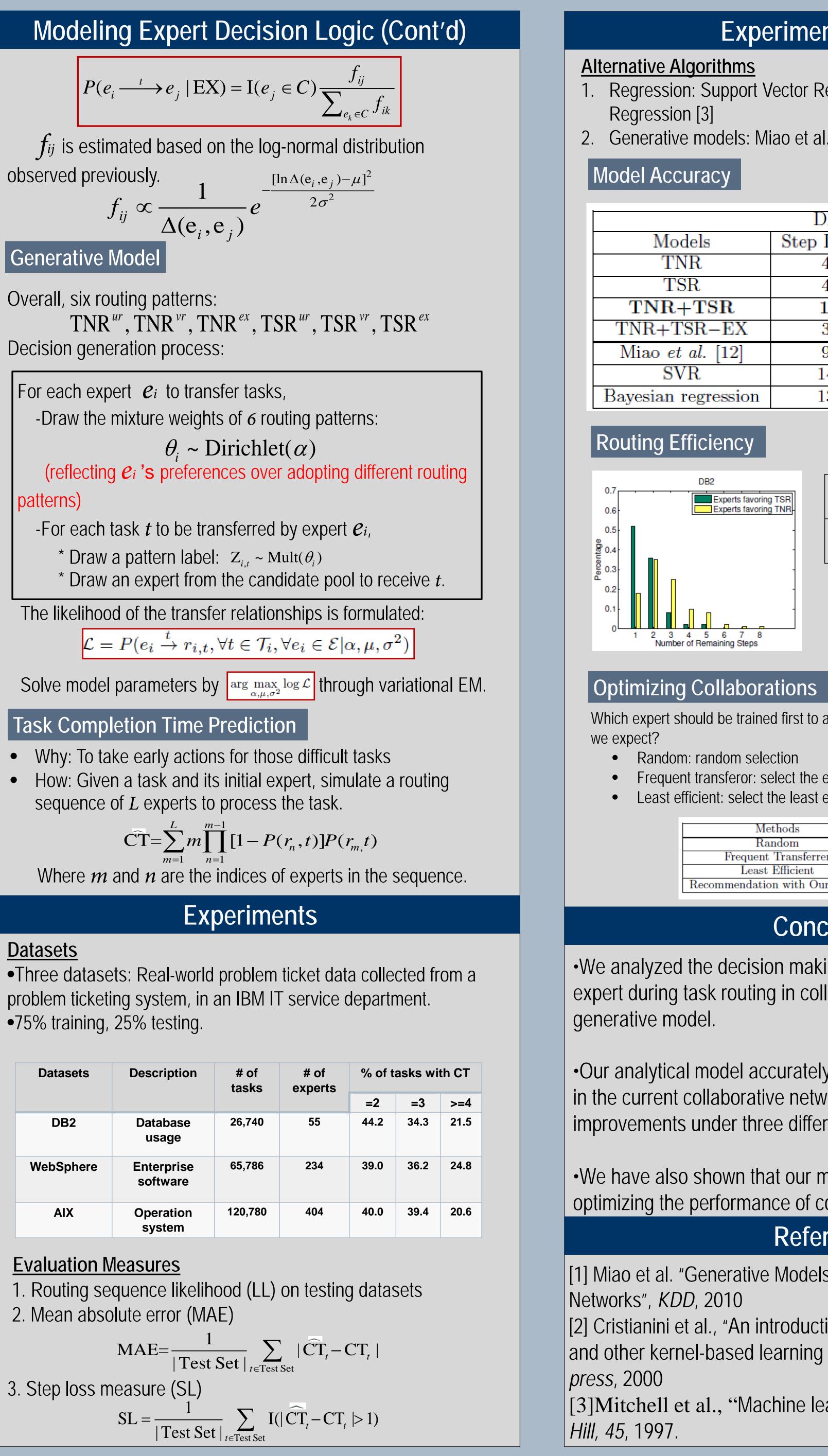
Phase 2: How to select an expert from C?

- Uniform Random (UR)
- Volume-biased (load-based) Random (VR)

 $P(e_i \xrightarrow{t} e_j | \text{VR}) = \text{I}(e_j \in C) \frac{v_{ij}}{\sum_{j \in C} v_{ik}}$

 \mathcal{V}_{ij} : the number of tasks transferred from \mathcal{C}_i to \mathcal{C}_j • Expertise Difference (EX)

 f_{ij} : the general trend of expert e_i sending a task to e_j , given their expertise.



Experiments (Cont'd)

Regression: Support Vector Regression (SVR) [2], Bayesian

2. Generative models: Miao et al. [1]

			,			
DB2						
Models	Step Loss (%)	MAE	$LL(\times 10^4)$			
TNR	4.11	0.30	-0.28			
TSR	4.56	0.29	-0.25			
TNR+TSR	1.77	0.08	-0.07			
NR+TSR-EX	3.05	0.14	-0.10			
Miao <i>et al.</i> [12]	9.89	0.68	-0.61			
SVR	14.78	0.80	N/A			
yesian regression	13.77	0.84	N/A			

Weight on TNR patterns > Weight Experts on TSR patterns favoring TNR Weight on TNR patterns < Weight Experts on TSR patterns favoring

Efficiency evaluation

Check the number of remaining experts needed to resolve a task, after an expert favoring TNR or TSR routes it.

Which expert should be trained first to adopt TSR? How much efficiency gain can

- Frequent transferor: select the expert who transfers the most tasks
- Least efficient: select the least efficient expert

Methods	Efficiency Improvement (%)	
Random	0.27	
Frequent Transferrer	0.91	
Least Efficient	1.21	
Recommendation with Our Model	2.75	

Conclusion

•We analyzed the decision making and cognitive process of an expert during task routing in collaborative networks, through a

•Our analytical model accurately predicts a task's completion time in the current collaborative network, with more than **75%** improvements under three different quality measures.

•We have also shown that our model provides guidance on optimizing the performance of collaborative networks.

References

[1] Miao et al. "Generative Models for Ticket Resolution in Expert

[2] Cristianini et al., "An introduction to support vector machines and other kernel-based learning methods ", Cambridge university

[3] Mitchell et al., "Machine learning", Burr Ridge, IL: McGraw