On Unsupervised Feature Learning with Deep Neural Networks

Huan Sun

Dept. of Computer Science, UCSB

Warm Thanks To

- Committee
 - ◆ Prof. Xifeng Yan
 - ◆ Prof. Linda Petzold
 - ◆ Prof. Ambuj Singh

Outline

- Introduction
- A New Generation of Neural Networks
- Neural Networks & Biclustering
- Preliminary Results
- •Future Work

Outline

- Introduction
- A New Generation of Neural Networks
- Neural Networks & Biclustering
- Preliminary Results
- Future Work

Neural Networks

•What are neural networks?

•What can we do with neural networks?

Neural Networks

- •What are neural networks?
 - **♦** Computational model
 - Inspired by biological neural networks

Neural networks in a brain

- •What can we do with neural networks?
 - **♦** Regression analysis
 - ◆ Classification (including pattern recognition)
 - Data processing (e.g. clustering)

Aim of Neural Networks

Humans better at recognizing patterns than computers

Aim of Neural Networks

- Humans better at recognizing patterns than computers
- Can we train computers by mimicking the brain?

Artificial neural networks

- First Generation (1960s)
 - > Perceptron

Illustration:

Input: $\{(x, t),...\}$, where $x \in \Re^n$, $t \in \{+1, -1\}$

Output:

classification function f(x)=w'*x+b

such that $f(x)>0 \Rightarrow t=1$ and $f(x)<0 \Rightarrow t=-1$

- First Generation (1960s)
 - > Perceptron

Algorithm:

- □ Initialize: w, b
- \blacksquare For each sample x (data point)

Predict the label of instance x to be y = sign(f(x))

If y≠t, update the parameters by gradient descent

$$w \leftarrow w - \eta \left(\nabla_{w} E \right)$$
 and $b \leftarrow b - \eta \left(\nabla_{b} E \right)$

Else w and b does not change

■ Repeat until convergence

Note: E is the cost function to penalize the mistakes,

e.g.
$$E = \sum_{k} (t_k - f(x_k))^2$$

- First Generation (1960s)
 - > Perceptron

Example: Object (e.g. tiger) classification

$$\mathbf{x} = (x_1, x_2, x_3, ..., x_n), t = +1$$

 $> x_1$: existence of strips

 $> x_2$: similarity to a cat

> ...

□ Output f(x) such that f(x)>0 => tiger and f(x)<0 => not tiger

The input features are pre-obtained hand-crafted features from the original data, and not adaptable during training the model.

- First Generation (1960s)
 - > Perceptron
- Second Generation (1980s)
 - > Backpropagation

Problems with Backpropagation

- Require a large amount of labeled data in training
- Backpropagation in a deep network (with >=2 hidden layers)

Backpropagated errors (δ 's) to the first few layers will be minuscule , therefore updating tend to be ineffectual.

Problems with Backpropagation

- Require a large amount of labeled data in training
- Backpropagation in a deep network (with >=2 hidden layers)

Backpropagated errors (δ 's) to the first few layers will be minuscule , therefore updating tend to be ineffectual.

Stuck in training ...

- Limited power of a shallow neural network
- Less insights about the benefits of more layers
- Popularity of other tools, such as SVM
- => Less research works on neural networks

Breakthrough

- Reducing the Dimensionality of Data with Neural Networks (Hinton *et al.*, Science, 2006)
 - successfully train a neural network with 3 or more hidden layers
 - ◆ more effective than Principal Component Analysis (PCA) etc.
- A new generation: emergence of research works on deep neural networks

Outline

- Introduction
- A New Generation of Neural Networks
- Neural Networks & Biclustering
- Preliminary Results
- Future Work

• Training algorithms

Applications

- Training algorithms
 - ◆ Reducing the Dimensionality of Data with Neural Networks (Hinton *et al.*, Science, 2006)
 - ◆ Others
- Applications
 - ◆ Text
 - ◆ Vision
 - ◆ Audio

- Training algorithms
 - ◆ Reducing the Dimensionality of Data with Neural Networks (Hinton et al., Science, 2006)
 - Others
- Applications
 - ◆ Text
 - ◆ Vision
 - Audio

Problem description

Given a personal story, predict its sentiment distribution.

e.g. 5 sentiment classes are [Sorry, Hugs; You Rock (approvement); Teehee (amusement); I Understand; Wow, Just Wow (shock)]

Stories

Predicted (light blue) & true (red)

- 1. I wish I knew someone to talk to here.
- 2. I loved her but I screwed it up. Now she's moved on. I will never have her again. I don't know if I will ever stop thinking about her.
- 3. My paper is due in less than 24 hours and I'm still dancing around the room.

Model Illustration

A deep neural network: Recursive Autoencoder

autoencoder

Model Illustration

A deep neural network: Recursive Autoencoder

Recovered

Model IllustrationA deep neural network: Recursive Autoencoder

Q: Which two words to combine?

Model Illustration

23

A deep neural network: Recursive Autoencoder

Q: Which two words to combine?

Combine every two neighboring words with an autoencoder,

Recovered

Model IllustrationA deep neural network: Recursive Autoencoder

- > The parent node for "parked car" is regarded as a new word.
- > Recursively learn a higher-level representation using an autoencoder

Model Illustration
 A deep neural network: Recursive Autoencoder

 Instead of using a bag-of-words model, exploit hierarchical structure and use compositional semantics to understand sentiment

Text (2): paraphrase detection (Socher et al., NIPS'11)

Problem description

Given two sentences, predict whether they are paraphrase of each other

e.g.

- 1. The judge also refused to postpone the trial date of Sept. 29.
- 2. Obus also denied a defense motion to postpone the September trial date.

Model	Acc.	F1
All Paraphrase Baseline	66.5	79.9
Rus et al. (2008) [16]	70.6	80.5
Mihalcea et al. (2006) [17]	70.3	81.3
Islam and Inkpen (2007) [18]	72.6	81.3
Qiu et al. (2006) [19]	72.0	81.6
Fernando and Stevenson (2008) [20]	74.1	82.4
Wan et al. (2006) [21]	75.6	83.0
Das and Smith (2009) [15]	73.9	82.3
Das and Smith (2009) + 18 Features	76.1	82.7
Unfolding RAE + Dynamic Pooling	76.8	83.6

Text (2): paraphrase detection(Socher et al., NIPS'11)

Model Illustration
 Recursive autoencoder with dynamic pooling

Vision: convolutional deep belief networks (Lee et al., NIPS'09)

Problem description

- ◆ To learn a hierarchical model that represents multiple levels of visual world
- ◆ Scalable to realistic images (~200*200)

Advantages

- ◆ Appropriate for classification, recognition
- ◆ Both specific and general-purpose than hand-crafted features

Vision: convolutional deep belief networks (Lee et al., NIPS'09)

- Model structure
 - **◆** Each layer configuration:

Fig. 1 General look

Convolutional Restricted Boltzman Machine (CRBM)

◆ Stack CRBM one by one to form the deep networks

Vision: convolutional deep belief networks (Lee et al., NIPS'09)

Model structure

◆ Each layer configuration:

◆ Stack CRBM one by one to form the deep networks

- Training algorithms
 - ◆ Reducing the Dimensionality of Data with Neural Networks (Hinton et al., Science, 2006)
 - Others
- Applications
 - ◆ Text
 - ◆ Vision
 - ◆ Audio

Three Ideas in [Hinton et al., Science, 2006]

- To learn a model that generates the input data rather than classifying it: no need for a large amount of labeled data;
- To learn one layer of representation at a time: decompose the overall learning task to multiple simpler tasks;
- To use a separate fine-tuning stage: further improve the generative/discriminative abilities of the composite model.

Training Deep Neural Networks

- **Procedure** (Hinton et al., Science, 2006)
 - Unsupervised layer-wise pre-training
 - ◆ Fine-tuning with backpropagation

Example

Training Deep Neural Networks

- Procedure(Hinton et al., Science, 2006)
 - **◆** <u>Unsupervised layer-wise pre-training</u>
 - ✓ Restricted Boltzmann Machine (RBM)
 - ◆ Fine-tuning with backpropagation
- Example

Training Deep Neural Networks

- **Procedure** (Hinton et al., Science, 2006)
 - ◆ Unsupervised layer-wise pre-training
 - ✓ Restricted Boltzmann Machine (RBM)
 - **◆** Fine-tuning with backpropagation
- Example

Layer-Wise Pre-training

A learning module: restricted Boltzman machine (RBM)

- only one layer of hidden units
- ◆ no connections inside each layer
- ♦ the hidden (visible) units are independent given the visible (hidden) units

Layer-Wise Pre-training

A learning module: restricted Boltzman machine (RBM)

- Weights -> Energies -> Probabilities
 - ◆ Each possible joint configuration of the visible and hidden units has an "energy": determined by weights and biases
 - **◆** The energy determines the probability of choosing such configuration

$$P(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

Objective function:

$$\max P(v) = \max \sum_{h} P(v, h)$$

Layer-Wise Pre-training

Alternate Gibbs sampling to learn the weights of an RBM

- 1. Start with a training vector on the visible units.
- 2. Update all the hidden units in parallel
- 3. Update all the visible units in parallel to get a "reconstruction".
- 4. Update all the hidden units again.

Contrastive Divergence

$$\Delta w_{ij} = \varepsilon \left(\langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1 \right)$$

- > where <> means the frequency with which neuron i and neuron j are on (with value 1) together;
- > approximation to the true gradient of the likelihood P(v)

Training a Deep Neural network

- First train a layer of features that receive input directly from the original data (pixels).
- Then use the output of the previous layer as the input for the current layer, and train the current layer as an RBM
- Fine-tune with backpropagation
 - ◆ Do not start backpropagation until we have sensible weights that already do well at the task
 - ◆ The label information (if any) is only used in the final fine-tuning stage (to slightly modify the features)

Example: Deep Autoencoders

- A nice way to do non-linear dimensionality reduction:
 - ◆ very difficult to optimize deep autoencoders directly using backpropagation.
- We now have a much better way to optimize them:
 - ◆ First train a stack of 4 RBM's
 - ◆ Then "unroll" them.
 - **♦** Finally fine-tune with backpropagation

Encoding

Decoding

Example: Deep Autoencoders

 A comparison of methods for compressing digit images to 30 dimensions.

Significance

• Layer-wise pre-training initializes parameters in a good local optimum. (Erhan et al., JMLR'10)

- Training deep neural networks both effectively and fast
- Unsupervised learning: no need to have labels
- Hierarchical structure: more similar to learning in brains

What can we do?

- Apply neural networks outside text/vision/audio
- Learn semantic features in text analysis to replace traditional language models
- Automatic text annotation for image segments
- Multiple object (unknown sizes) recognition in images
- Model robustness against noise (such as incorrect grammars, not complete sentences, occlusion in images)

● ...

Our Work

- Apply neural networks outside text/vision/audio
 - **♦** gene expression (microarray) analysis
- Learn semantic features in text analysis to replace traditional language models
- Automatic text annotation for image segments
- Multiple object (unknown sizes) recognition in images
- Model robustness against noise (such as incorrect grammars, not complete sentences, occlusion in images)

•...

Application to Microarray Analysis

Neural Networks:

Feature learning
Autoencoder
Recursive autoencoder
Convolutional autoencoder

....

• • • •

Microarray analysis:

Biclustering
Combinatorial algorithms
Generative approaches
Matrix factorization

. . .

. . . .

Outline

- Introduction
- A New Generation of Neural Networks
- Nerual Networks & Biclustering
- Preliminary Results
- Future Work

Autoencoder (Hinton et al., Science, 2006)

• Two-layer neural network

Input:
$$X = [x^{(1)}, \dots, x^{(i)}, \dots, x^{(N)}]$$

Output: recovered data \hat{X} weights W activation value $A = [a^{(1)}, \cdots, a^{(i)}, \cdots, a^{(N)}]$

Optimization formulation:

Sparse Autoencoder (Lee et al., NIPS'08)

Two-layer neural network

$$a^{(i)}$$
: K*1 vector of a sigmoid output , i.e. $a^{(i)} = sigmoid(W*x^{(i)} + b_1)$

Define the activation rate of hidden neuron k:

$$\hat{\rho}_k = \sum_{i=1}^N a_k^{(i)} / N$$

Optimization formulation:

$$argmin_{W,b_1,b_2} H = \frac{1}{2N} * \sum_{n=1}^{N} \sum_{m=1}^{M} (\hat{x}_m^{(n)} - x_m^{(n)})^2$$
 (i)
$$+ \beta_2 * KL(\rho \| \hat{\rho})$$
 (ii)
$$+ \frac{\lambda}{2} * \|W\|_F^2$$
 (iii)

Biclustering Review

• Simultaneously group genes and conditions in a microarray (Cheng and Church, ISMB'00)

- -1 down-regulated
- 0 unchanged
- 1 up-regulated

Biclustering Review

• Simultaneously group genes and conditions in a microarray (Cheng and Church, ISMB'00)

Challenges:

- ◆ Positive and negative correlation
- ◆ Overlap in both genes and conditions
- ◆ Not necessarily full coverage
- ◆ Robustness against noise

Map Sparse Autoencoder to Biclustering

Sparse Autoencoder (SAE)

Input $\chi^{(i)}$ Output $\hat{\chi}^{(i)}$ Hidden layer

Biclustering

Map Sparse Autoencoder to Biclustering

One hidden neuron => one potential bicluster
W => membership of rows in biclusters
A => membership of columns in biclusters

Bicluster Embedding

For each hidden neuron k,

- Gene membership
 - 1. Pick N_k genes that have the largest N_k activation values into bicluster k, where $N_k = [N * \hat{\rho}_k]$;
 - 2. Among the selected N_k genes, remove those genes whose activation value is less than a threshold δ ($\delta \in (0,1)$).

- Condition membership
 - \gt Pick the m_{th} condition if $|W_{k,m}| > \xi$ $(\xi \in (0,1))$.

Problems of Autoencoder

- Aim at "lowest reconstruction errors" (recall $(\hat{x}_m^{(n)} x_m^{(n)})^2$)
- However, we hope to capture patterns in noisy gene expression data

Reconstruction error can be high.

Our Model: AutoDecoder (AD)

Optimization formulation

$$\begin{split} & \underset{W,b_{1},b_{2}}{argmin} \quad H = \frac{1}{2N} * \sum_{n=1}^{N} \sum_{m=1}^{M} \left[x_{m}^{(n)^{2}} * (\hat{x}_{m}^{(n)} - x_{m}^{(n)})^{2} \right. \\ & + \beta_{1} * (1 - x_{m}^{(n)^{2}}) * (\hat{x}_{m}^{(n)} - x_{m}^{(n)})^{2} \right] \quad (i) \\ & + \beta_{2} * KL(\rho \| \hat{\rho}) \quad (ii) \\ & + \frac{\lambda}{2} * \| W - tanh(\eta * W) \|_{F}^{2} \quad (iii) \end{split}$$

Sparse Autoencoder (SAE) & AutoDecoder (AD)

$$\begin{split} \mathsf{SAE} & \begin{array}{l} argmin \\ W, b_1, b_2 \end{array} \quad H = \frac{1}{2N} * \sum_{n=1}^{N} \sum_{m=1}^{M} (\hat{x}_m^{(n)} - x_m^{(n)})^2 & (i) \\ & + \beta * KL(\rho \| \hat{\rho}) \quad (ii) \\ & + \frac{\lambda}{2} * \| W \|_F^2 \quad (iii) \end{split}$$

$$\underset{W,b_1,b_2}{argmin} \quad H = \frac{1}{2N} * \sum_{n=1}^{N} \sum_{m=1}^{M} \left[x_m^{(n)^2} * (\hat{x}_m^{(n)} - x_m^{(n)})^2 \right]$$

$$\mathsf{AD} = \begin{bmatrix} W, b_1, b_2 & 2IV & \overline{n=1} \ \overline{m=1} \\ + \beta_1 * (1 - x_m^{(n)^2}) * (\hat{x}_m^{(n)} - x_m^{(n)})^2 \end{bmatrix} \quad (i) \\ + \beta_2 * KL(\rho \| \hat{\rho}) \quad (ii) \\ + \frac{\lambda}{2} * \|W - tanh(\eta * W)\|_F^2 \quad (iii) \end{bmatrix}$$

Improvement of AD over SAE:

- (1) Term (*i*): non-uniform weighting
- (2) Term(*iii*): weight polarization

Non-uniform Weighting (Term (i))

$$x_m^{(n)^2} * (\hat{x}_m^{(n)} - x_m^{(n)})^2 + \beta_1 * (1 - x_m^{(n)^2}) * (\hat{x}_m^{(n)} - x_m^{(n)})^2$$

- $\beta_1 > 1$ allows more false negative reconstruction errors.
- Tend to exclude non-zeros from final patterns than to include zeros inside the patterns.
- Resistance against Type A noise:

- $\beta_1 < 1$ allows more false positive reconstruction errors.
- Tend to include zeros inside final patterns than to exclude non-zeros from the patterns.
- Resistance against Type B noise:

0	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0
0	-1	0	-1	0 -1 1	-1	0	0
0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0

Non-uniform Weighting (Term (i))

 $\beta_1 > 1$: Resistance to Type A noise

 $oldsymbol{eta_1} < 1$: Resistance to Type B noise

Weight Polarization (Term (iii))

$$\frac{\lambda}{2} * \|W - tanh(\eta * W)\|_F^2$$

- η can be any positive number *s.t.* the roots of $W tanh(\eta * W) = 0$ appear at $\{-1, 0, 1\}$ approximately.
- The threshold selection: more flexible in (0,1)

E.g. pick $\,\eta=6\,$

Weight Polarization (Term (iii))

$$\frac{\lambda}{2} * \|W - tanh(\eta * W)\|_F^2$$

- η can be any positive number *s.t.* the roots of $W tanh(\eta * W) = 0$ appear at $\{-1, 0, 1\}$ approximately.
- The threshold selection: more flexible in (0,1)

One row of W learnt by $\frac{\lambda}{2}*\|W\|_F$ (left) and $\frac{\lambda}{2}*\|W-tanh(6*W)\|_F$ (right)

Bicluster Patterns

Outline

- Introduction
- A New Generation of Neural Networks
- Neural Networks & Biclustering
- Preliminary Results
- Future Work

Model Evaluation

• Datasets (#g * #c)

Breast cancer (1213*97), multiple tissue (5565*102), DLBCL (3795*58), and lung cancer (12625*56).

• Metric

- ◆ Relevance and recovery on condition sets
- ◆ P-value analysis on gene sets

Comparison

- ◆ S4VD (matrix factorization approach, Bioinformatics'11)
- ◆ FABIA (probabilistic approach, Bioinformatics'10)
- ◆ QUBIC (combinatorial approach, NAR'09)

Environment

3.4GHZ, 16GB, Intel PC running Windows 7.

Experimental Results

1. Condition cluster evaluation by average relevance and recovery

2. Gene cluster evaluation by gene enrichment analysis AD can generally discover biclusters with P-value less than 10^{-4} , much often less than $10^{-10}\,$.

Experimental Results

Conclusion:

- 1. AutoDecoder guarantees the biological significance of the gene sets while improving the performance on condition sets.
- 2. AutoDecoder outperforms all the leading approaches that have been developed in the past 10 years.

Parameter Sensitivity

Condition Membership Threshold

Parameter Sensitivity

ullet Noise Resistant Parameter $eta_{\!\scriptscriptstyle 1}$ and activation rate $[
ho_{\!\scriptscriptstyle lower},
ho_{\!\scriptscriptstyle upper}]$

Outline

- Introduction
- A New Generation of Neural Networks
- Neural Networks & Biclustering
- Preliminary Results
- •Future Work

Future Work

- Apply neural networks outside text/vision/audio
 e.g. customers group mining
- Learn semantic features in text analysis to replace traditional language models
- Automatic text annotation for image segments
- Multiple object (unknown sizes) recognition in images
- Model robustness against noise (such as incorrect grammars, incomplete sentences, occlusion in images)

•...

References

- [1] Hinton *et al.* Reducing the Dimensionality of Data with Neural Networks, Science, 2006;
- [2] Bengio et al. Greedy Layer-Wise Training of Deep Networks, NIPS'07;
- [3] Lee et al. Sparse Deep Belief Net Model for Visual Area V2, NIPS'08;
- [4] Lee *et al*. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, ICML'09;
- [5] Socher *et al.* Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions, EMNLP'11;
- [6] Erhan et al. Why Does Unsupervised Pre-training Help Deep Learning? JMLR'10;
- [7] Cheng et al. Biclustering of Gene Expression Data, ISMB'00;
- [8] Mohamed *et al.* Acoustic Modeling Using Deep Belief Networks, IEEE Trans on Audio, Speech and Language Processing , 2012;

References

- [9] Coates *et al*. An Analysis of Single-Layer Networks in Unsupervised Feature Learning, AISTATS'11;
- [10] Socher *et al.* Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, NIPS'11;
- [11] Goodfellow et al. Measuring Invariances in Deep Networks, NIPS'09;
- [12] Socher *et al.* Parsing Natural Scenes and Natural Language with Recursive Neural Networks, ICML'11;
- [13] Ranzato *et al.* On Deep Generative Models with Applications to Recognition, CVPR'11;
- [14] Masci *et al.* Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction, ICANN'11;
- [15] Raina et al. Self-taught Learning: Transfer Learning from Unlabeled Data, ICML'07;

Thank You!

Questions, please?