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Neural Networks 

What are neural networks?  
 
 
 
 
 

 
 
What can we do with neural networks? 
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Neural Networks 

What are neural networks? 
 Computational model  
  Inspired by biological neural networks 
 
 

 
 
 
 

 
What can we do with neural networks? 

 Regression analysis 
 Classification (including pattern recognition) 
 Data processing (e.g. clustering) 

 
 

Neural networks in a 
brain 
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Aim of Neural Networks 

 Humans better at recognizing patterns  than computers 
 
 
   Some animal with stripes, 

big in size,  cat-like 
 
 
 

Tiger! 

5 



Aim of Neural Networks 

 Humans better at recognizing patterns  than computers 
 Can we train computers by mimicking the brain?  
 

 
 
 
 

Label: 
Tiger 

image 
vector 

Artificial neural networks 
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History of Neural Networks 
 First Generation (1960s) 

 Perceptron    
 
 
 
 

Illustration:  

Input: {(x, t),…}, where x ∈ ℜn, t ∈ {+1, –1} 
Output:  
 classification function f(x)=w’*x+b  
such that  f(x)>0 => t=1 and  f(x)<0 => t=-1 
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History of Neural Networks 
 First Generation (1960s) 

 Perceptron  
     Algorithm: 
 
 
 
 

 Initialize: w, b 
 For each sample x (data point) 

 Predict the label of instance x to be y = sign(f(x)) 
 If y≠t, update the parameters by gradient descent  

                                            and 
 Else w and b does not change 

 Repeat until convergence 
Note: E is the cost function to penalize the mistakes,   
         e.g.  

 

( )ww w Eη← − ∇ ( )bb b Eη← − ∇

( )2( )k k
k

E t f x= −∑
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History of Neural Networks 
 First Generation (1960s) 

 Perceptron  
 
Example: Object (e.g. tiger) classification 
 x = (x1, x2, x3, …, xn), t = +1  

 x1 : existence of strips 
 x2 : similarity to a cat 
 …     

 Output f(x) such that f(x)>0 => tiger and f(x)<0 => not tiger 
 
 
 
 The input features are pre-obtained hand-crafted features from the 

original data,  and not adaptable during training the model.   
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History of Neural Networks 
 First Generation (1960s) 

 Perceptron    
 Second Generation (1980s) 

 Backpropagation 
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Problems with Backpropagation 
 Require a large amount of labeled data in training  
 Backpropagation in a deep network (with >=2 hidden layers) 
 
 
 
 
 
 
 
 
 
 
    Backpropagated errors (δ’s) to the first few layers will be 
minuscule , therefore updating  tend to be ineffectual.  
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Problems with Backpropagation 
 Require a large amount of labeled data in training 
 Backpropagation in a deep network (with >=2 hidden layers) 
 
 
 
 
 
 
 
 
 
 
   Backpropagated errors (δ’s) to the first few layers will be 
minuscule , therefore updating  tend to be ineffectual.  
 
 
 
 

       How  to train deep networks? 
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Stuck in training … 

 Limited power of a shallow neural network 
 
 Less insights about the benefits of more layers 

 
 Popularity of other tools, such as SVM 
 
=> Less research works on neural networks 
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Breakthrough 

 Reducing the Dimensionality of Data with Neural Networks      
(Hinton et al., Science, 2006)  

 successfully train a neural network with 3 or more hidden 
layers 
 more effective than Principal Component Analysis (PCA) etc. 
 

 A new generation: emergence of research works on deep neural 
networks  
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Related Work of Deep Neural Networks 
 Training algorithms 
 
 
 
 
 
 Applications 
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Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Problem description 
    Given a personal story,  predict its sentiment distribution.  
     e.g.   5 sentiment classes are [Sorry, Hugs;  You Rock (approvement); 
Teehee (amusement);  I Understand;  Wow, Just Wow (shock)] 
 
 

1. I wish I knew someone to talk to here. 
 

2. I loved her but I screwed it up. Now she’s 
moved on. I will never have her again. I don’t 
know if I will ever stop thinking about her.   
 

3. My paper is due in less than 24 hours and I’m 
still dancing around the room.  

Stories  Predicted (light blue) & true (red) 
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Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
 
A deep neural network: Recursive Autoencoder 
 
 autoencoder 
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Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
A deep neural network: Recursive Autoencoder 
 
 

20 

 Map each word to ℜn ,  
e.g. n=3, by  

I 

walked 

into 

car 

a 

parked 
Random initialization; 
Or pre-processing with 
existing language models 
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Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
A deep neural network: Recursive Autoencoder 
 
 

autoencoder 

… 
Q: Which two words to combine? 
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Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
A deep neural network: Recursive Autoencoder 
 
 Q: Which two words to combine? 

Combine every two neighboring words with an autoencoder,   

X1 X2 

X1 ^ X2 ^ 

Reconstruction error:  
2

1 2 1 2 2
ˆ ˆ[ ; ] [ ; ]X X X X−

e. g. 

Select the word pair with the lowest reconstruction error, 
here it is “parked car”.  23 



Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
A deep neural network: Recursive Autoencoder 
 
 

autoencoder 

 The parent node for “parked car” is regarded as a new word. 
 Recursively learn a higher-level representation using an autoencoder  24 



Text (1): sentiment distribution prediction (Socher et al., EMNLP’11) 

 Model Illustration 
A deep neural network: Recursive Autoencoder 
 
 

 Instead of using a bag-of-words model, exploit hierarchical structure 
and use compositional semantics to understand sentiment 25 



Text (2): paraphrase detection (Socher et al., NIPS’11) 

 Problem description 
    Given two sentences,  predict whether they are paraphrase of each other 
      
     e.g.    
 1. The judge also refused to postpone the trial date of Sept. 29. 
 2.  Obus also denied a defense motion to postpone the September 
trial date.  
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Text (2): paraphrase detection(Socher et al., NIPS’11) 

 Model Illustration 
    Recursive autoencoder with dynamic pooling 
 
 

9*10 
5*5 

e.g. 
pooling 
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Vision: convolutional deep belief networks (Lee et al., NIPS’09) 

 Problem description 
 To learn a hierarchical model that 
represents multiple levels of visual 
world 
  Scalable to realistic images 
(~200*200) 

 
  Advantages 

 Appropriate for classification, 
recognition 
 Both specific and general-purpose 
than hand-crafted features 

 
 

 

Object parts 
(combination 
of edges) 

Edges  

Objects 
(combination 
of object parts)  

Pixels 
(images) 28 



Vision: convolutional deep belief networks (Lee et al., NIPS’09) 

 Model structure 
 
 

Convolutional Restricted Boltzman Machine (CRBM)  

 Each layer configuration:  

 Stack CRBM one by one to form the deep networks 
      

Fig. 1 General look 
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Vision: convolutional deep belief networks (Lee et al., NIPS’09) 

 Model structure 
 
 
 Each layer configuration:  

 Stack CRBM one by one to form the deep networks 
      

e. g. 

1 2 

… 
∈ ℜ1x4 ∈ ℜ1x4 

30 
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Related Work of Deep Neural Networks 
Training algorithms 

 Reducing the Dimensionality of Data with Neural Networks  
     (Hinton et al., Science, 2006)  
 
  Others  
 

Applications 
 Text 

 
 Vision 

 
 Audio 
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Three Ideas in [Hinton et al., Science, 2006] 
 To learn a model that generates the input data rather than 
classifying it: no need for a large amount of labeled data;  

 
 To learn one layer of representation at a time: decompose the 
overall learning task to multiple simpler tasks; 

 
 To use a separate fine-tuning stage : further improve the 
generative/discriminative abilities of the composite model. 
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Training Deep Neural Networks 
 Procedure (Hinton et al., Science, 2006) 

 Unsupervised layer-wise pre-training   
 

 Fine-tuning with backpropagation 
 

  Example 
 
 To train 
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Training Deep Neural Networks 
 Procedure(Hinton et al., Science, 2006) 

 Unsupervised layer-wise pre-training   
 Restricted Boltzmann Machine (RBM) 
 

 Fine-tuning with backpropagation 
 

  Example 
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Training Deep Neural Networks 
 Procedure (Hinton et al., Science, 2006) 

 Unsupervised layer-wise pre-training   
 Restricted Boltzmann Machine (RBM) 
 

 Fine-tuning with backpropagation 
 
 Example   
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Layer-Wise Pre-training 
 A learning module: restricted Boltzman machine (RBM) 

 
 
 
 
 
 
 
 

 only one layer of hidden units 
 no connections inside each layer 
 the hidden (visible) units are independent given the visible (hidden) 
units 

 
 

Hidden h 

Visible v 

Weights W 

36 



Layer-Wise Pre-training 
 A learning module: restricted Boltzman machine (RBM) 

 
 
 
 
 
 
 
 Weights -> Energies -> Probabilities 

 Each possible joint configuration of the visible and hidden units has an 
“energy” :  determined by weights and biases 
 The energy determines the probability of choosing such configuration 

 
 Objective function: 
  
 

 
 

Hidden h 

Visible v 

Weights W 

max ( ) max ( , )
h

v v hΡ = Ρ∑37 



Layer-Wise Pre-training 
 Alternate Gibbs sampling to learn the weights of an RBM 

 
 
 
 
 
 
 
 

 
 

 

0>< jihv 1>< jihv

i 

j j 

i 

1. Start with a training vector on the 
visible units. 

2. Update all the hidden units in 
parallel 

3. Update all the visible units in 
parallel to get a “reconstruction”. 

4. Update all the hidden units again.  

)( 10 ><−><=∆ jijiij hvhvw ε

reconstruction data 

  where  < >   means the frequency with which neuron i and neuron j are on 
(with value 1) together; 
  approximation to the true gradient of the likelihood   

Contrastive Divergence 

( )vΡ38 



Training a Deep Neural network  
 First train a layer of features that receive input directly from 
the original data (pixels). 
 
 Then use the output of the previous layer as the input for the 
current layer, and train the current layer as an RBM 

 
 Fine-tune with backpropagation 

 Do not start backpropagation until we have sensible weights that 
already do well at the task 
 The label information (if any) is only used in the final fine-tuning 
stage (to slightly modify the features) 
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Example: Deep Autoencoders  

      1000  neurons 

500 neurons 

500 neurons  

250 neurons  

250 neurons  

30   

      1000  neurons 

28x28 

28x28 

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

 A nice way to do non-linear 
dimensionality reduction: 

 very difficult to optimize deep 
autoencoders directly using backpropagation. 
 

 We now have a much better way to 
optimize them: 

 First train a stack of 4 RBM’s 
 Then “unroll” them.   
 Finally fine-tune with backpropagation 

 
Encoding 

Decoding 

34 
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Example: Deep Autoencoders 

real              
data 

30-D     deep 
autoencoder 

30-D logistic 
PCA 

30-D     PCA 

 A comparison of methods for compressing digit images to 30 
dimensions. 
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Significance  

 Layer-wise pre-training initializes parameters in a good local 
optimum. (Erhan et al., JMLR’10) 

 
 Training deep neural networks both effectively and fast 
 
 Unsupervised learning: no need to have labels 
 
 Hierarchical structure: more similar to learning in brains 
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What can we do?  

 Apply neural networks outside text/vision/audio 
 
 Learn semantic features in text analysis to replace 
traditional language models 

 
 Automatic text annotation for image segments  

 
 Multiple object (unknown sizes) recognition in images 
 
 Model robustness against noise (such as incorrect 
grammars, not complete sentences, occlusion in images) 

 
 … 
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Our Work 

 Apply neural networks outside text/vision/audio 
 gene expression (microarray) analysis  

 
 Learn semantic features in text analysis to replace 
traditional language models 

 
 Automatic text annotation for image segments  

 
 Multiple object (unknown sizes) recognition in images 
 
 Model robustness against noise (such as incorrect 
grammars, not complete sentences, occlusion in images) 

 
… 44 



Application to Microarray Analysis 

Microarray analysis: 
Biclustering 

Combinatorial algorithms 
Generative approaches  

Matrix factorization 
…. 
…. 

 
 
 

Neural Networks: 
Feature learning 

Autoencoder 
Recursive autoencoder 

Convolutional autoencoder 
…. 
…. 
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Autoencoder (Hinton et al., Science, 2006) 

 Two-layer neural network  
 
  

Input:  
 
Output:  
recovered data  
weights  
activation value   
 
 
 
 
 

Optimization formulation:  

47 



Sparse Autoencoder (Lee et al., NIPS’08) 

 Two-layer neural network  
 
        : K*1 vector of a sigmoid output , 

i.e.  
 
Define the activation rate of hidden 
neuron k: 
 
 
 
Optimization formulation:   
 
 
   
 

( )ia

( )

1

ˆ /
N

i
k k

i
a Nρ

=

=∑

( ) ( )
1( * )i ia sigmoid W x b= +
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Biclustering Review 
 Simultaneously group genes and conditions in a microarray 
(Cheng and Church, ISMB’00) 

 
 
 

-1     down-regulated 
  0     unchanged 
  1     up-regulated 
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Biclustering Review 
 Simultaneously group genes and conditions in a microarray 
(Cheng and Church, ISMB’00) 
 
 Challenges: 

 Positive and negative correlation 
 Overlap in both genes and conditions 
 Not necessarily full coverage 
 Robustness against noise 
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Map Sparse Autoencoder to Biclustering 

Sparse Autoencoder (SAE) Biclustering 

kA
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Map Sparse Autoencoder to Biclustering 

kA

One hidden neuron => one potential bicluster 
W => membership of rows in biclusters  
A  => membership of columns in biclusters 
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Bicluster Embedding  

 
 Gene membership 

1. Pick Nk genes that have the largest Nk activation values into bicluster k, 
where                           ; 
2.  Among the selected Nk genes, remove those genes whose activation 
value is less than a threshold                               . 
 
 

 Condition membership 
 Pick the mth  condition if                                             . 

For each hidden neuron k, 

53 

ˆ[ * ]k kN N ρ=

,| | ( (0,1))k mW ξ ξ> ∈

( (0,1) )δ δ ∈



Problems of Autoencoder 
 Aim at “lowest reconstruction errors”   
( recall                         ) 
 However, we hope to capture patterns in noisy gene 
expression data 

 
 

 
 
 
 
 

Original data Patterns captured (desired) 

Reconstruction error can be high.  
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Our Model: AutoDecoder (AD) 

Optimization formulation 

55 



Sparse Autoencoder  (SAE) & AutoDecoder (AD) 

SAE 

 AD 

Improvement of AD 
over SAE:  
(1) Term (i):  
        non- uniform 

weighting 
 
(2) Term(iii):  
        weight 

polarization   

56 



Non-uniform Weighting (Term (i)) 

•             allows more false 
negative reconstruction errors. 

• Tend to exclude non-zeros from 
final patterns than to include 
zeros inside the patterns. 

• Resistance against Type A noise: 
 

 
 

•            allows more false 
positive reconstruction errors.  

• Tend to include zeros inside 
final patterns than to exclude 
non-zeros from the patterns. 

• Resistance against Type B noise: 

1 1β <
1 1β >

57 



Non-uniform Weighting (Term (i)) 

           : Resistance to Type A 
noise 

           : Resistance to Type B 
noise 

1 1β > 1 1β <
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      can be any positive number s.t. the roots of                  
appear at {-1, 0, 1} approximately.  

  The threshold selection: more  flexible  in (0,1)       

Weight Polarization (Term (iii)) 

E.g.  pick   
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      can be any positive number s.t. the roots of                  
appear at {-1, 0, 1} approximately.  

  The threshold selection: more  flexible  in (0,1)       

Weight Polarization (Term (iii)) 

One row of W learnt by                 (left) and                                       (right)    60 

 



Bicluster Patterns  

 
(I-V) Readily captured by AD 
with an appropriate activation 
function in a hidden layer.  
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Model Evaluation 
 Datasets (#g * #c) 
     Breast cancer (1213*97), multiple tissue (5565*102), DLBCL (3795*58), 

and lung cancer (12625*56). 
 
 Metric 

 Relevance and recovery on condition sets 
 P-value analysis on gene sets 
 

 Comparison 
 S4VD     (matrix factorization approach, Bioinformatics’11) 
 FABIA    (probabilistic approach, Bioinformatics’10) 
 QUBIC   (combinatorial approach, NAR’09) 
 

 Environment 
         3.4GHZ, 16GB, Intel PC running Windows 7. 
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Experimental Results 
1. Condition cluster evaluation by average relevance and recovery 
 
 
 
 
 
  

2. Gene cluster evaluation by gene enrichment analysis 
       AD can generally discover biclusters with P-value less than           , much often less 

than             . 
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Experimental Results 
Original lung cancer data Biclusters discovered 

Conclusion:   
 
1. AutoDecoder guarantees the biological significance of the gene sets while 

improving the performance on condition sets.  
 

2. AutoDecoder outperforms all the leading approaches that have been 
developed in the past 10 years. 
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Parameter Sensitivity 
 Condition Membership Threshold  

66 



Parameter Sensitivity 
 Noise Resistant Parameter      and activation rate                   1β [ , ]lower upperρ ρ
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Future Work 

 Apply neural networks outside text/vision/audio 
 e.g. customers group mining 
 
 Learn semantic features in text analysis to replace 
traditional language models 

 
 Automatic text annotation for image segments  

 
 Multiple object (unknown sizes) recognition in images 
 
 Model robustness against noise (such as incorrect 
grammars, incomplete sentences, occlusion in images) 

 
… 69 
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Thank You ! 
 

Questions, please? 
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