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Abstract

Clinical question answering (QA) aims to auto-
matically answer questions from medical pro-
fessionals based on clinical texts. Studies
show that neural QA models trained on one
corpus may not generalize well to new clinical
texts from a different institute or a different pa-
tient group, where large-scale QA pairs are not
readily available for retraining. To address this
challenge, we propose a simple yet effective
framework, CliniQG4QA, which leverages
question generation (QG) to synthesize QA
pairs on new clinical contexts and boosts QA
models without requiring manual annotations.
In order to generate diverse types of ques-
tions that are essential for training QA models,
we further introduce a seq2seq-based question
phrase prediction (QPP) module that can be
used together with most existing QG models
to diversify their generation. Our comprehen-
sive experiment results show that the QA cor-
pus generated by our framework is helpful to
improve QA models on the new contexts (up
to 8% absolute gain in terms of Exact Match),
and that the QPP module plays a crucial role
in achieving the gain.1

1 Introduction

Clinical question answering (QA), which aims
to automatically answer natural language ques-
tions based on clinical texts in Electronic Medical
Records (EMR), has been identified as an impor-
tant task to assist clinical practitioners (Patrick and
Li, 2012; Raghavan et al., 2018; Pampari et al.,
2018; Fan, 2019; Rawat et al., 2020). Neural QA
models in recent years (Chen et al., 2017; Devlin
et al., 2019; Rawat et al., 2020) show promising re-
sults in this research. However, answering clinical
questions still remains challenging in real-world
scenarios, because well-trained QA systems may

∗The first two authors contributed equally.
1Our code is available at: https://github.com/

sunlab-osu/CliniQG4QA

not generalize well to new clinical contexts from a
different institute or a different patient group. For
example, as pointed out in (Yue et al., 2020), when
a clinical QA model that was trained on the emrQA
dataset (Pampari et al., 2018) is deployed to an-
swer questions based on MIMIC-III clinical texts
(Johnson et al., 2016), its performance drops dra-
matically by around 30% even on the questions
that are similar to those in training, simply because
clinical texts of the two datasets are different (e.g.,
different topics, note structures, writing styles).

One straightforward solution is to annotate QA
pairs on new contexts and retrain a QA model.
However, manually creating large-scale QA pairs
in clinical domain is extremely challenging due to
the requirement of tremendous expert effort, data
privacy concerns and other ethical issues.

In this work, we study the problem of construct-
ing clinical QA models on new contexts without
human-annotated QA pairs (which is referred to
as domain adaptation). We assume the availability
of a large set of QA pairs on source contexts, and
our goal is to better answer questions on new doc-
uments (target contexts2), where only unlabeled
documents are provided.

To this end, we introduce our framework,
CliniQG4QA, which leverages question gener-
ation (QG), a recent technique of automatically
generating questions from given contexts (Du et al.,
2017), to synthesize clinical QA pairs on target
contexts to facilitate the QA model training (Fig-
ure 1). The QG model is built up by reusing the QA
pairs on source contexts as training data. To apply
QG to target contexts, our framework also includes
an answer evidence extractor to extract meaningful
text spans, which are worthwhile to ask questions
about, from the clinical documents. Intrinsically,
our framework is backed by the observation that
questions in the clinical domain generally follow
similar patterns even across different contexts, and

2We use “new" and “target" contexts interchangeably.
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Figure 1: Illustration of our simple yet effective CliniQG4QA framework: A key component is our question
phrase prediction (QPP) module, which aims to generate diverse question phrases and can be “plugged-and-played"
with most existing QG models to diversify their generation.

clinical QG suffers less from the context shift com-
pared with clinical QA. This allows us to utilize
QG models trained on source clinical contexts to
boost QA models on different target contexts.

However, our preliminary studies find that many
existing QG models often fall short on generating
questions that are diverse enough to serve as useful
training data for clinical QA models. To tackle the
problem, we introduce a question phrase prediction
(QPP) module (Figure 1), which takes an answer
evidence as input and sequentially predicts poten-
tial question phrases (e.g., “What treatment”, “How
often”) that signify what types of questions humans
would likely ask about the answer evidence. By
directly forcing a QG model to produce specified
question phrases in the beginning of the question
generation process (both in training and inference),
QPP enables diverse questions to be generated.

We conduct extensive experiments to evalu-
ate CliniQG4QA, using emrQA (Pampari et al.,
2018) as the source contexts and MIMIC-III (John-
son et al., 2016) as the target ones. We instantiate
our framework with a variety of widely adopted
base QG models and base QA models.

By performing comprehensive analyses, we first
show that the proposed QPP module can substan-
tially improve both the generation relevance (up
to 8% absolute BLEU improvement) and diversity
(up to 5% absolute Distinct score gain) of base QG
models. It encourages the QG models to generate
much more diverse types of questions (e.g., “When”
and “Why” questions) to reflect the variations in
human-made questions.

More importantly, we systematically demon-
strate the strong capability of CliniQG4QA for
improving QA performance on new contexts by
evaluating it on a set of QA pairs that we ask hu-
man experts to annotate on MIMIC-III. When using
QA pairs automatically synthesized by our QPP-

enhanced QG models as the training corpus, we are
able to boost QA models’ performance by up to
8% in terms of Exact Match (EM), compared with
their counterparts directly trained on the emrQA
dataset. To further investigate why QG boosts QA,
we provide both quantitative and qualitative anal-
yses, indicating that QA models can benefit from
seeing more target contexts as well as more diverse
questions generated on them.

2 Related Work

Clinical Question Answering aims to automat-
ically answer user questions based on different
sources (Cairns et al., 2011; Patrick and Li, 2012;
Roberts and Patra, 2017; Raghavan et al., 2018;
Soni et al., 2019). In this study, we focus on clini-
cal reading comprehension task, which aims to ex-
tract a text span (a sentence or multiple sentences)
as the answer from a patient clinical note given a
question (Yue et al., 2020). Though many neural
models (Seo et al., 2017; Chen et al., 2017; Devlin
et al., 2019; Rawat et al., 2020; Wen et al., 2020)
have achieved impressive results on this task, their
performance on new clinical contexts, whose data
distributions could be different from the ones that
these models were trained on, is still far from satis-
factory (Yue et al., 2020). Though one can improve
the performance by adding more QA pairs on new
contexts into training, however, manually creating
large-scale QA pairs in the clinical domain often
involves tremendous expert effort and data privacy
concerns.
Question Generation seeks to automatically gen-
erate questions given a sentence or paragraph. Ex-
isting QG models (Du et al., 2017; Zhou et al.,
2017; Sun et al., 2018; Zhao et al., 2018; Nema
et al., 2019; Tuan et al., 2020; Yang et al., 2017;
Du and Cardie, 2018; Alberti et al., 2019; Zhang
and Bansal, 2019) in the open domain usually adopt



a seq2seq (encoder-decoder) architecture. One of
the drawback of such models is that they can only
generate one question given one input and fail to
generate multiple diverse questions, which we find
is crucial to the QA task. Some recent work (Kang
et al., 2019; Cho et al., 2019; Liu et al., 2020) ex-
plore the diverse QG in the open domain, but they
cannot be directly applied to the clinical domain as
their models usually require a short answer (e.g., an
entity) as input but that information sometimes is
not available in the clinical QA dataset (e.g. emrQA
(Pampari et al., 2018)), rendering the difficulty of
directly deploying their model on the clinical QA.

In the clinical and medical domain, (Shen et al.,
2020) and (Soni and Roberts, 2019, 2020) apply
Variational Autoencoder (VAE) models to generate
or paraphrase medical or clinical questions. How-
ever, none of them explore leveraging QG to im-
prove QA performance on new contexts.
Domain Adaptation for Reading Comprehen-
sion. Our work is also related to domain adaptation,
a technique of generalizing machine learning mod-
els to unseen domains (Ben-David et al., 2010).
In the field of reading comprehension, most works
(Wiese et al., 2017; Chung et al., 2018; Hazen et al.,
2019; Cao et al., 2020) typically assume that ques-
tions on the target contexts are available, however,
manually creating questions in the clinical domain
is not trivial.

Our work is most related to (Golub et al., 2017;
Wang et al., 2019) in the open domain where only
unlabeled documents exist in the target domain.
Similar to ours, they leverage a QG model trained
on source contexts to generate questions for new
contexts. While the QG models used in both work
are shown helpful for QA, we empirically observe
that they tend to generate questions of the most
frequent types but fail to generate diverse questions
which can be more helpful for training QA models.
We address this issue by proposing a simple yet
effective question phrase prediction module, which
learns to predict a set of question phrases and can
be used together with any neural QG models to di-
versify their generation. Experiments demonstrate
that questions generated by our QPP-enhanced QG
models are more helpful to boost QA models.

3 Methods

3.1 Overview of Our Framework

We first give an overview of our CliniQG4QA
framework (Figure 1). CliniQG4QA improves

clinical QA on new contexts by automatically syn-
thesizing QA pairs for new clinical contexts. To
approach this, we first leverage an answer evidence
extractor to extract meaningful text spans from un-
labeled documents, based on which a QG model
can be applied to generate questions.

In order to encourage diverse questions, we re-
formulate the question generation process as two-
stage. In the first stage, we propose a question
phrase prediction module to predict a set of ques-
tion phrases, which represent the types of ques-
tions humans would ask, given an answer evidence.
In the second stage, following a specific question
phrase predicted by our QPP, a QG model is used
to complete the rest of the question.

Therefore, our framework CliniQG4QA is able
to produce questions of more diverse types. The
generated QA pairs by QG models are finally used
to train QA models on the new contexts.

3.2 Answer Evidence Extractor (AEE)
When human annotators create questions, they first
read a document and then select a text span to ask
questions about. To imitate this process, we im-
plement an answer evidence extractor to extract
possible text spans from a document. Following
(Pampari et al., 2018; Yue et al., 2020), we focus
on longer text spans (as answer evidences) instead
of short answers (e.g., a single named entity), since
longer text spans often contain richer information
compared with short ones, which are very impor-
tant in clinical QA.

More formally, given a document (context) p =
{p1, p2, ..., pm}, where pi is the i-th token of the
document and m is the total number of tokens, we
aim to extract potential evidence sequences. Since
the answer evidence is not always a single sentence
(sometimes could be multiple sentences), instead
of treating it as a sentence selection task, we for-
mulate it as a sequence labeling (or tagging) task.
We follow the BIO tagging (short for beginning,
inside, outside), a commonly used sequence label-
ing scheme (Ramshaw and Marcus, 1999), to label
answer evidences.

Firstly, we adopt the ClinicalBERT model
(Alsentzer et al., 2019) to encode the document:

U = ClinicalBERT{p1, ..., pm}. (1)

where U ∈ Rm×d, and d is size of the dimension.
Following the same paradigm of the BERT

model for the sequence labeling task (Devlin et al.,
2019), we use a linear layer on top of the hidden



states output by BERT followed by a softmax func-
tion to do the classification:

Pr(aj |pi) = softmax(U ·W + b), ∀pi ∈ p (2)

where aj is the predicted BIO tag.
After prediction, we develop some heuristic rules

(e.g., removing very short extracted evidences,
merging evidences that sit close to each other) to
further improve the quality of the extracted evi-
dences. All heuristic rules we used are listed in the
Appendix A.

3.3 Question Phrase Prediction (QPP)

Existing QG models are often biased to generate
limited types of questions. To address this prob-
lem, we introduce our question phrase prediction
module that can be used to diversify the generation
of existing QG models.

Formally, denote Vl = {s1, ..., sL} as the vocab-
ulary of all available question phrases of length l
in the training data and L = |Vl| as its size. Vl can
be obtained by collecting the first n-gram words in
the questions (more details are in Appendix B.1.2).
Given an answer evidence a, the goal of QPP is
to map a → y = (y1, ..., yL) ∈ {0, 1}L, where
yi = 1 indicates predicting si in Vl as a question
phrase for the evidence. Instead of treating it as a
common multi-label classification problem, we for-
mulate the task as a sequence prediction problem
and adopt a commonly used seq2seq model with an
attention mechanism (Luong et al., 2015) to predict
a sequence of question phrases s = (sj1 , ..., sj|s|)
(e.g., “What treatment” (sj1)→ “How often” (sj2)
→ “What dosage” (sj3), with |s| = 3).

During training, we assume that the set of ques-
tion phrases is arranged by following a pre-defined
order. Such orderings can be obtained with some
heuristic methods, e.g., using a descending order
based on question phrase frequency in the corpus.

Our QPP can dynamically decide the number of
appropriate question phrases for each answer evi-
dence in the inference stage while standard multi-
label classification methods need a static value as
threshold (e.g., Top-3). Moreover, the dynamic
property can increase credibility of diverse gener-
ation since the diversifying step is conducted in
a case-by-case analysis fashion instead of blindly
determining the sampling size (of question phrase
set) during inference, which is unfortunately com-
monly utilized in recent diverse QG works (Cho
et al., 2019; Liu et al., 2020).

Algorithm 1 CliniQG4QA training procedure
Input: labeled source data {(PS , AS , QS)}, unla-
beled target data {PT }
Output: Generated QA pairs {(A′T , Q′T )} on tar-
get contexts; An optimized QA model for answer-
ing questions on target contexts;
Pretraining Stage
1: Train Answer Evidence Extractor based on the

source data {(PS , AS)} using Eq. 3
2: Obtain question phrase data YS from QS and

train Question Phrase Prediction module on
the source data {(AS , YS)} using Eq. 4.

3: Train a QPP-enhanced QG model on the
source data {(AS , YS , QS)} using Eq. 5.

Training Stage
4: Use AEE to extract potential answer evidences
{A′T } on the target contexts {PS}

5: Use QPP to predict potential question phrases
set {Y ′T } on {A′T }

6: Use QPP-enhanced QG to generate diverse
questions {Q′T } based on {(A′T , Y ′T )}

7: Train a QA model on synthetic target data
{(PT , A

′
T , Q

′
T )}

3.4 Training
Algorithm 1 illustrates the pretraining and training
procedure of our CliniQG4QA.

During the pretraining stage, we first train the
answer evidence extractor (AEE), question phrase
prediction (QPP) module on the source contexts by
minimizing the negative log-likelihood loss:

LAEE = −
∑
i

logP (a|p;φ) (3)

where φ represents all the parameters of the answer
evidence extractor. For the supervision signals, we
identify all evidence evidences in the source data
as ground-truth chunks which are marked using the
BIO scheme.

Moving to Question Phrase Prediction (QPP)
module, given an answer evidences a, we aim to
predict a question phrase sequence y and minimize:

LQPP = −
∑
i

logP (y|a; θ) (4)

where θ denotes all the parameters of QPP.
Then we can train any QG model (e.g, NQG (Du

et al., 2017)) on source data by minimizing:

LQG = −
∑
i

logP (q|a,y; γ) (5)

where γ denotes all parameters of the QG model.



During the training stage, given the unlabeled
target clinical documents, we first extract potential
answer evidences, based on which QPP can be
“plugged" into the QG model to generate diverse
questions. Finally, a QA model can be trained on
the generated QA pairs of the target documents.

4 Experimental Setup

4.1 Datasets

Our experiments involve two datasets (Table 1):
• emrQA (Pampari et al., 2018) is a large-scale
clinical QA dataset, which was semi-automatically
generated based on medical expert-made question
templates and existing annotations on n2c2 chal-
lenge datasets (n2c2, 2006). The complete dataset
consists of 5 subsets, and we use the “Relation"
subset as it is the largest. Following the guidance
in (Yue et al., 2020), we randomly sample 5% data
as the actual training set since emrQA contains
many redundant QA pairs.
• MIMIC-III (Johnson et al., 2016) is a large
database covering patients who stayed in the Beth
Israel Deaconess Medical Center. We randomly
sample a set of discharge summaries (a type of clin-
ical texts) from MIMIC-III, which only contain raw
clinical texts and do not have any annotated QA
pairs. We notice that there are a small portion of
overlapped clinical texts between MIMIC-III and
emrQA. When sampling MIMIC-III clinical texts,
we ensure that all the sampled clinical texts do not
appear in the emrQA.

We consider the emrQA dataset as source and
the MIMIC-III dataset as target. Since there are
no annotated QA pairs on the MIMIC-III dataset,
we ask three clinical experts to create around 1,200
QA pairs as the test set, and will seek to release
them under MIMIC-III license.

Specifically, sampled MIMIC-III clinical texts
are given to the clinical experts, based on which,
they can ask any questions as long as an answer
can be extracted from the context.

To save annotation efforts, machine-generated
QA pairs by 9 QG models (i.e., all base QG models
and their variants; see Section 4.2) are provided as
references. However, they are highly encouraged
to create new questions based on the given clini-
cal text (which are marked as “human-generated").
But if they do find the machine-generated questions
make sense, sound natural and match the associ-
ated answer evidence, they can keep them (which
are marked as “human-verified"). After obtaining

Table 1: Statistics of the datasets. We synthesize a
machine-generated dev set and ask human experts to
annotate a test set for MIMIC-III.

(Question / Context) emrQA MIMIC-III
# Train 781,857 / 337 - / 337
# Dev 86,663 / 41 8,824 / 40
# Test 98,994 / 42 1,287 / 36
# Total 967,514 / 420 - / 413

for purpose of
QG & QA
(source)

QA
(target)

the annotated questions, we ask another clinical
expert to do a final pass of the questions in order
to further guarantee the quality of the test set. The
final test set consists of 1287 questions (of which
975 are “human-verified" and 312 are “human-
generated"). In the experiment, we show the QA
performance on both human-verified questions and
human-generated ones (see Table 3).

The dev set of MIMIC-III is constructed by sam-
pling generated questions from 9 QG models 3 and
is used to tune the hyper-parameters.

4.2 Base QG and QA models

We instantiate our CliniQG4QA framework using
three base QG models:
• NQG (Du et al., 2017) is the first seq2seq model
with a global attention mechanism (Luong et al.,
2015) for question generation.
• NQG++ (Zhou et al., 2017) is one of the most
commonly adopted QG baselines with a feature-
enriched encoder (e.g., lexical features) and a copy
mechanism (Gulcehre et al., 2016).
• BERT-SQG (Chan and Fan, 2019) uses a
pretrained BERT model (we use ClinicalBERT
(Alsentzer et al., 2019) to accommodate clinical
setting) as the encoder and formulates the decoding
as a “MASK" token prediction problem.

To investigate the effectiveness of our QPP mod-
ule, we consider the following variants of base QG
models: (1) Base Model: Inference with greedy
search; (2) Base Model + Beam Search: Inference
with Beam Search with the beam size at K and
keep Top K beams (a larger beam size hurts perfor-
mance in our preliminary experiments, so we setK
to 3); (3) Base Model + QPP: Inference with greedy
search for both QPP module and Base model. Since
our QPP module predicts a set of question phrases,
Base Model + QPP can generate diverse questions.

3Instead of uniformly sampling from 9 QG models,
we followed the sampling ratio of 1:3:6 (Base model,
Base+BeamSearch, Base+QPP) for each QG method, which
made the dev set cover as many diverse questions as possible.



Table 2: Automatic evaluation of the generated questions on emrQA dataset. For each base model, the best
performing variant is in bold. RG: ROUGE-L, MR: METEOR, Dist: Distinct, Ent: Entropy.

Models Relevance Diversity
BLEU3 BLEU4 MR RG Dist3 Dist4 Ent3 Ent4

NQG (Du et al., 2017) 91.45 90.11 60.70 94.62 0.233 0.282 4.473 4.738
+ BeamSearch 94.33 93.42 62.08 95.56 0.569 0.775 5.406 5.812
+ QPP (Ours) 96.82 96.33 64.38 97.49 3.177 5.289 7.100 7.777
NQG++ (Zhou et al., 2017) 97.11 96.65 71.57 97.86 0.229 0.275 4.419 4.648
+ BeamSearch 98.35 98.07 72.98 98.55 0.618 0.848 5.497 5.953
+ QPP (Ours) 99.15 99.03 74.01 99.11 3.183 5.293 7.111 7.798
BERT-SQG (Chan and Fan, 2019) 89.07 87.99 65.25 94.91 0.228 0.276 4.594 4.849
+ BeamSearch 95.45 94.84 66.39 96.22 0.510 0.713 5.522 6.015
+ QPP (Ours) 96.54 96.19 67.51 97.42 3.344 5.332 7.173 7.816

For QA, we instantiate CliniQG4QA with two
base models, DocReader (Chen et al., 2017) and
ClinicalBERT (Alsentzer et al., 2019). Note that
more complex QG/QA models and training strate-
gies can also be used in our framework. As this
work focuses on exploring how diverse questions
help QA on target contexts, we adopt fundamental
QG/QA models and training strategies, and leave
more advanced ones that are complementary to our
framework as future work.

4.3 Evaluation Metrics

For QG evaluation, we focus on evaluating both
relevance and diversity. Following previous works
(Du et al., 2017; Zhang et al., 2018), we use BLEU
(Papineni et al., 2002), ROUGE-L (Lin, 2004) as
well as METEOR (Lavie and Denkowski, 2009)
for relevance evaluation. Since the Beam Search
and our QPP module enable QG models to generate
multiple questions given a evidence, we report the
top-1 relevance among the generated questions fol-
lowing (Cho et al., 2019). For diversity, we report
Distinct (Li et al., 2016) as well as Entropy (Zhang
et al., 2018) scores. We calculate BLEU and the
diversity measures based on 3- and 4-grams.

For QA evaluation, we report exact match
(EM) (the percentage of predictions that match the
ground truth answers exactly) and F1 (the average
overlap between the predictions and ground truth
answers) as in (Rajpurkar et al., 2016).
Implementation details. We provide implementa-
tion details for reproducing in Appendix B.

5 Experimental Results

5.1 Can QPP Encourage Diverse Questions?

Automatic Evaluation. We first evaluate QG mod-
els on the emrQA dataset. As can be seen from
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Figure 2: Distributions over types of questions gener-
ated by NQG models and the ground truth.

Table 2, the three selected base models (NQG,
NQG++ and BERT-SQG) all achieve very promis-
ing relevance scores; however, they do not perform
well with diversity scores. The diversity of gen-
erated questions is boosted to some extent when
the Beam Search is used since it can offer flexi-
bility for QG models to explore more candidates
when decoding. In comparison, the QPP module in
our framework leads to the best results under both
relevance and diversity evaluation. Particularly, it
obtains 5% absolute improvement in terms of Dist4
for each base model.
A Closer Look at Generated Question Types.
To further demonstrate QPP module can help gener-
ate diverse questions, we show the distribution over
each type of questions generated by NQG-based
models and the ground truth in Figure 2.

We observe that the Kullback–Leibler (KL) di-
vergence between the distributions of generated
questions and the ground truth is the smallest after
enabling our QPP module. Even some of the least



Table 3: The QA performance on MIMIC-III test set. emrQA is also included as a baseline dataset to help illustrate
the generated diverse questions on MIMIC-III are useful to improve the QA model performance on new contexts.

QA Datasets

DocReader (Chen et al., 2017) ClinicalBERT (Alsentzer et al., 2019)
Human
Verified

Human
Generated

Overall
Test

Human
Verified

Human
Generated

Overall
Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
emrQA (Pampari 2018) 61.44 78.82 69.87 83.66 63.48 79.99 61.23 78.56 69.23 82.83 63.17 79.59
NQG (Du 2017) 64.71 79.36 66.99 79.67 65.26 79.43 59.49 76.68 67.3 82.59 61.38 78.11
+ BeamSearch 67.07 81.21 71.15 83.07 68.07 81.66 63.17 79.17 68.91 84.26 64.56 80.4
+ QPP (Ours) 68.82 82.89 74.68 85.18 70.09 83.44 63.79 79.56 69.23 84.33 65.11 80.72
NQG++ (Zhou 2017) 65.94 78.71 66.34 81.34 66.04 79.35 59.59 75.85 65.06 80.11 60.92 76.88
+ BeamSearch 68.10 80.09 72.11 84.56 69.07 81.17 64.61 80.30 68.26 83.70 65.50 81.12
+ QPP (Ours) 70.05 83.47 74.36 85.92 71.10 84.06 65.33 80.64 70.83 85.76 66.67 81.88
BERT-SQG (Chan 2019) 66.05 79.64 70.19 81.47 67.05 80.08 59.59 78.04 65.06 82.20 60.92 79.05
+ BeamSearch 68.71 81.98 73.71 84.44 69.93 82.58 61.94 79.02 67.31 82.54 63.25 79.88
+ QPP (Ours) 70.77 83.60 74.36 85.53 71.64 84.07 64.21 80.53 69.23 85.38 65.43 81.71

frequent types of questions (e.g., “How", “Why")
can be generated. Similar results are also observed
in NQG++ and BERT-SQG based models (in Ap-
pendix Table A5), which demonstrates QPP mod-
ule can help generate diverse questions.

5.2 Can Generated Questions Help QA on
New Contexts?

Automatic Evaluation. Table 3 summarizes the
performance of two widely used QA models,
DocReader (Chen et al., 2017) and ClinicalBERT
(Alsentzer et al., 2019), on the MIMIC-III testing
set. The QA models are trained based on different
corpora, including the emrQA dataset as well as
QA pairs generated by different models. For a fair
comparison, we keep the total number of generated
QA pairs roughly the same as emrQA. As can be
seen from the table, the QA models based on the
corpora that are generated using the three base QG
models can only achieve roughly the same or even
worse performance compared with the QA models
trained on the emrQA dataset. Though the Beam
Search strategy could boost the diversity to some
extent and lead the improvement of QA models,
our proposed QPP module can improve QA model
training. For example, training DocReader using
questions generated by NQG++ with our QPP mod-
ule outperforms that using the emrQA dataset by
around 8% under EM and 4% under F1 on the
overall test set. Moreover, the results on human-
generated portion are consistently better than that
on human-verified. It’s attributed to the fact that
human-created questions are more readable and
sensible while human-verified questions are a bit
of less natural though correctness is ensured.

All these results indicate that generating a di-
verse QA corpus is useful for the downstream QA
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# of documents
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F1

5 10 20 30 50
# of evidences / doc

EM
F1

1 3 6 9 12
# of ques / evidence
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F1

QA model's Performance on MIMIC-III Dev Set

Figure 3: Influence of the number of documents, num-
ber of evidences per document, number of QA pairs per
evidence on QA performance.

on the new context, and our simple QPP module
can help existing QG models achieve such a goal.
Why QG Boosts QA on New Contexts? To fur-
ther explore why QG can boost QA, we consider
three major factors when generating a QA corpus:
the number of documents, the number of answer
evidences per document, and the number of gen-
erated questions per answer evidence. When we
test one factor, we fix the other two. For exam-
ple, we fix the number of answer evidences and
questions at 20 and 6 when we test the influence
of the number of documents. We use NQG++ and
DocReader as our base QG and QA models to in-
stantiate our CliniQG4QA framework and report
the performance on the Dev set.

As can seen from Figure 3, the performance
steadily increases when we use more documents
and more answer evidences during QA corpus gen-
eration. This can demonstrate the first hypothesis:
The generated corpus enables a QA model to see
more new contexts during training, which can help
the QA model get a better understanding of similar
contexts during testing. The more contexts it sees,
the more benefits it could obtain. We can also see
that with the increase of the number of generated
questions per evidence, the performance generally
rises up. This indicates that multiple diverse ques-
tions are essential for boosting QA performance.



Context:	...	he	was	guaiac	negative	on	admission.	hematocrit
remained	stable	overnight.	5.	abd	pain:	suspect	secondary	to
chronic	pancreatitis.	amylase	unchanged	from	previous	levels.	...

-emrQA:	5.	abd	pain
-NQG	Generated:	5.	abd	pain:
-NQG+BeamSearch:	5.	abd	pain:
-NQG+QPP:	5.	abd	pain:	suspect	secondary	to	chronic	pancreatitis.

QA	Example	from	MIMIC-III

Question:	Why	did	the	patient	get	abd	pain?
Answer	by	QA	model	trained	on

-NQG:	Does	the	patient	have	any	pain?
-NQG+BeamSearch:	Does	the	patient	have	any	pain	history?	Does
the	patient	have	pain?	Does	the	patient	have	any	pain?
-NQG+QPP:	Why	did	the	patient	have	acetaminophen?	What
treatment	has	the	patient	had	for	his	pain?	How	was	pain	treated?
Does	the	patient	have	any	pain?	...

QG	Example	from	MIMIC-III
Context:	...	the	patient	was	taking	at	home	prior	to	admission	were
not	restarted.	25.	acetaminophen	325-650	mg	po/ng	q6h:prn	pain
26.	dabigatran	etexilate	150	mg	po	bid...
Questions	generated	by

Figure 4: QA and QG examples. The red parts in con-
texts are ground-truth answer evidences.

In summary, we think seeing many new contexts
and diverse questions are the two main reasons why
QA models are boosted.
Diverse Questions Really Matter for QA: Two
Real Cases. In Figure 4, we present a QA example
and a QG example from MIMIC-III.

In the QA example, this “why" question can
be correctly answered by the QA model (DocRe-
ader) trained on the “NQG+QPP" generated corpus
while the QA models trained on other generated
corpora fail. This is because the NQG model and
“NQG+BeamSearch" cannot generate any “why"
questions as shown in Figure 2. Thus QA models
trained on such corpora cannot answer questions
of less frequent types. Though the emrQA dataset
contains diverse questions (including “why" ques-
tions), its contexts might be different from MIMIC-
III in terms of topic, note structures, writing styles,
etc. So the model trained on emrQA struggles to
answer some questions.

In the QG example, the base model NQG can
only generate one question. Though utilizing the
Beam Search enables the model to explore multiple
candidates, the generated questions are quite simi-
lar and are less likely to help improve QA. Enabling
our QPP module helps generate diverse questions
including “Why", “What", “How", etc.

5.3 Ablation Study

Impact of Question Phrase Length. We show the
influence of Question Phrase Length on the QG in
Table 4. We set question phrase length at 2 since
it helps the model achieve the best performance

Table 4: Impact of question phrase length (l) on QG
model performance (on emrQA dev set).

Models
Relevance Diversity

BLEU4 MR Dist4 Ent4
NQG++ 97.36 72.52 0.313 4.779
+QPP (l=1) 99.08 72.67 2.228 7.092
+QPP (l=2) 99.10 74.51 5.554 7.801
+QPP (l=3) 99.10 73.58 5.157 8.026

Table 5: Choosing seq2seq-based QPP over alternative
multi-label classification methods. BR: Binary Rele-
vance; CC: Classifier Chain; HL: Hamming Loss.

Models HL P R F1
BR 0.0524 99.22 90.89 94.87
CC 0.0524 99.22 90.89 94.87
QPP 0.0346 97.28 96.20 96.74

overall, and allows the model to generate both rele-
vant and diverse questions as well as have a smaller
search space.
Alternative Approaches for QPP. There are many
model options for the QPP task, e.g., those for
multi-label classification. To justify our choice of a
seq2seq model, we compare it with two commonly-
adopted multi-label classification (MLC) methods
based on binary relevance (BR) and classifier chain
(CC) (Boutell et al., 2004; Read et al., 2011). BR
develops multiple binary classifiers independently
while CC builds a chain of classifiers and predicts
labels sequentially. We use multi-layer perceptron
as the specific model architecture for both BR and
CC. For each answer evidence, the input is the
representation from the same LSTM encoder as
our QPP module.

From Table 5, we can see: (1) The sequential
decoder in our current QPP module performs better
overall and especially in terms of Recall, which
is particularly important since we aim for generat-
ing diverse question types; (2) A simple seq2seq
model achieves great performance across all met-
rics, which renders developing more complex mod-
els for this task less necessary.

6 Conclusion

This paper proposes a simple yet effective frame-
work for improving clinical QA on new contexts.
It leverages a seq2seq-based question phrase pre-
diction (QPP) module to enable QG models to gen-
erate diverse questions. Our comprehensive experi-
ments and analyses allow for a better understanding
of why diverse question generation can help QA
on new clinical documents.
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A Post-Processing of Extracted Answer
Evidences

This section is dedicated to the discussion of heuris-
tic rules developed to improve the quality of the
extracted answer evidence.

We observe that when we directly apply the Clin-
icalBERT (Alsentzer et al., 2019) system described
in Section 3.2 (in the main content) on clinical
texts, the extracted answer evidences sometimes
are broken sentences due to the noisy nature and
uninformative language (e.g., acronyms) of clin-
ical texts. To make sure the extracted evidences
are meaningful, we designed a “merge-and-drop”
heuristic rule to further improve the extractor’s ac-
curacy. Specifically, for each extracted evidence
candidate, we first examine the length (number of
tokens) of the extracted evidence. If the length is
larger than the threshold η, we keep this evidence;
otherwise, we compute the distance, i.e., the num-
ber of tokens between the current candidate span
and the closest span. If the distance is smaller than
the threshold γ, we merge these two “close-sitting”
spans; otherwise, we drop this over-short evidence
span. In our experiments, we set η and γ to be 3
and 3, respectively, since they help the QA system
achieve the best performance on the dev set

The intuitions behind this heuristic rule are listed
as follows: 1) we should discard as few useful an-
swer evidence spans as possible, so we first resort
to merging before simply dropping a span; 2) Com-
monly, if two spans (and at least one is a short
span) are sitting close to each other, they should
have been recognized as a single answer evidence.
For example, the BIO label of a snippet “chief com-
plaint: altered mental status major” is predicted as
“B O B I I O”, whereas, a clinical expert will label it
as “B I I I I O”. However, if they sit far away, merg-
ing would introduce noisy information; 3) long
spans are always more informative and contain less
misleading information compared with short spans
(e.g., “the patient had left leg pain” v.s. “pain”).

B Implementation Details

We provide very detailed implementation details to
foster reproducibility.

QPP acc QG acc
NQG / 74.32
NQG++ / 74.54
BERT-SQG / 79.78
QPP-NQG 99.2 85.15
QPP-NQG++ 99.17 85.27
QPP-BERT-SQG 99.19 88.15

Table A1: QPP and QG performance on dev set in
terms of per-token accuracy. All numbers are percent-
ages.

CliniQG4QA QG QA overall
NQG&DocReader 6 17 24.5
NQG++&DocReader 7.5 20 29
BERT-SQG&DocReader 13 18 32.5
NQG&CliniBERT 6 3.5 11
NQG++&CliniBERT 7.5 4 13
BERT-SQG&CliniBERT 13.5 3.5 18.5

Table A2: The running time (hour) of QPP-augmented
QG, QA and overall CliniQG4QA based on our se-
lected QG & QA combinations

B.1 Prepossessing

B.1.1 Dataset Prepossessing
emrQA4 We prune the emrQA set by removing QA
pairs whose question is an indicator (e.g., “meds”)
so that all remaining QA pairs contain valid ques-
tions. We also leverage SciSpacy5, a package con-
taining spaCy models for processing clinical text,
to do tokenization in order for the trained QG mod-
els to have a better understanding over clinical
notes.
MIMIC-III6 Similarly, we also leverage SciSpacy
to do tokenization.

B.1.2 Question Phrases Identification
In order to utilize our Question Phrase Prediction
(QPP) module and make our QPP module generic
enough without loss of generality, we identify valid
n-gram Question Phrases in an automatic way.

To prepare an exhaustive list of valid n-gram
Question Phrases, we first collect all of the first
n words appearing in Ground Truth Questions in
emrQA, forming three (i.e., n=1, 2, 3) raw Question
Phrases set.

We observe that all uni-grams are valid ques-
tion phrases (e.g., “How”, “When”, “What”), so
we don’t do any pruning and keep the uni-gram
question phrases set as it is.

4https://github.com/panushri25/emrQA
5https://allenai.github.io/scispacy/
6https://mimic.physionet.org/gettingstarted/access/



Parameter Search Trials Best
Dropout [0.3,0.45,0.6,0.75,0.9] 0.75
LSTM Layers [1,2,3,4] 3
QP Length [1,2,3] 2

Table A3: Hyperparameter searches for Question
Phrase Prediction (QPP) Module

Parameter Search Trials Best
length (η) [1,3,5,10] 3
distance (γ) [1,3,5,10] 3

Table A4: Hyperparameter searches for “merge-and-
drop" method

As for n-gram (n ≥ 2) Question Phrases set, we
conduct fine-grained filtering. We only consider
n-grams with occurrence frequency greater than the
threshold ζ as valid n-gram Question Phrases. In
our experiment, we set ζ as 0.02%. Less frequent n-
gram words (i.e., frequency < 0.02%) will degrade
to unigram Question Phrases in accordance with
corresponding question types (e.g., “Has lasix”→
“Has”*) so as to maintain lossless. In the end, n-
gram (n ≥ 2) Question Phrases sets, without any
information loss, are consisting of both n-gram
Question Phrases and degraded unigram Question
Phrases.

B.2 Models Implementation

Base QA & QG Models We re-implement the
three base QG models using Pytorch and have en-
sured that they achieve comparable performance
as originally reported. The best QG model is se-
lected using the per-token accuracy of both the QPP
module (if applicable) and QG on dev set, and dev
results are listed in Table A1.

For QA models, we used their open-sourced im-
plementation.7 The best QA model is selected us-
ing EM and F1 on dev set, and dev results are also
included in Table 3 (in the main content). Hyper-
parameters of QG models are set to be the same as
in the original paper and hyperparameters of QA
models are set according to the guidance of (Yue
et al., 2020).
Question Phrase Prediction (QPP) Module.
Word embeddings are initialized by Glove 300d
vectors8. We adopt a feature-rich Encoder9 to effec-
tively encode Clinical lexical information. We set
the LSTM hidden unit size to 600 and set the num-

7DocReader: https://github.com/facebookresearch/DrQA.
ClinicalBERT: https://github.com/EmilyAlsentzer/clinicalBERT.

8http://nlp.stanford.edu/data/glove.840B.300d.zip
9Lexical features are extracted by (Neumann et al., 2019)

ber of layers of LSTMs to 3 in both encoder and
decoder. Optimization is performed using stochas-
tic gradient descent (SGD) for 20 epochs, with an
initial learning rate of 1.0. After each epoch, we
evaluate the per-label accuracy on the dev set. If
the accuracy does not improve, we halve the learn-
ing rate. The mini-batch size is set at 128. Dropout
with probability 0.75 is applied between vertical
LSTM layers. The gradient is clipped when its
norm exceeds 5. Besides, we set the length of a
question phrase l to 2, which gives the best per-
formance on validation. The total number of pa-
rameters is around 17M under our best-performing
setting.

Answer Evidence Extractor. We fine-tune a Clin-
icalBERT model in Named Entity Recognition
(NER) fashion using BIO tagging scheme10. When
conducting fine-tuning on our QG train set, we set
max length, batch size, number of epochs, and ran-
dom seed to be 510, 16, 20 and 6, respectively. We
adopt the official NER evaluation script11 to do the
evaluation on QG dev set, and obtained 80.17 F1
score. We then deployed this system to extract raw
answer evidence spans. After raw extraction, we
utilized our own heuristic rules (i.e., “merge-and-
drop”) to further polish the raw spans as described
in Appendix A.

Multi-Label Classification (MLC) Comparison.
We implement Binary Relevance (BR) and Clas-
sifier Chain (CC) by means of Scikit-Multilearn
(Piotr Szymański, 2017), an open-source library
for the MLC task.

Computational Resources. All experiments are
conducted using one single GeForce GTX 2080
Ti 12 GB GPU (with significant CPU resources).
We train the QPP module and QG model together
though they can be trained separately. The overall
running time of our CliniQG4QA system depends
on the particular QG and QA models adopted. For
our selected QG and QA models, the approximated
overall running time of CliniQG4QA is listed in
Table A2. However, training a QPP module sepa-
rately is fast, which only takes less than 1 hour with
the current setting. Meanwhile, the running time of
our Answer Evidence Extractor roughly takes 1.5
hours on average.

10https://github.com/huggingface/transformers/tree/master/
examples/token-classification

11http://deeplearning.net/tutorial/code/conlleval.pl



Table A5: Distributions of the generated questions of different models and the ground truth in the emrQA dataset.
QPP: Question Phrase Prediction; KL: Kullback–Leibler divergence. All numbers are percentages.

Models What When Has Was Why How Is Did Can Any Does KL
(Gen||GT)

NQG 0.00 0.00 3.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.05 84.2
+BeamSearch 29.94 0.00 5.54 0.00 0.00 0.00 1.38 0.00 0.00 0.00 63.14 45.2
+QPP (Ours) 8.39 0.01 25.37 4.44 0.91 0.87 9.09 0.27 4.03 12.72 33.89 11.0
NQG++ 0.09 0.00 3.53 0.00 0.00 0.10 0.00 0.00 0.00 0.00 96.28 84.3
+BeamSearch 44.04 0.00 0.09 0.00 0.00 0.22 2.01 0.00 0.00 0.00 53.64 66.4
+QPP (Ours) 8.09 0.01 25.54 4.42 0.75 0.81 9.16 0.23 4.05 12.80 34.13 11.2
BERT-SQG 0.72 0.00 6.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.96 74.5
+BeamSearch 29.31 0.00 0.03 0.00 0.00 0.00 25.05 0.00 0.00 0.00 45.62 47.4
+QPP (Ours) 8.01 0.01 25.56 4.44 0.82 0.80 9.17 0.25 4.05 12.74 34.16 11.2
GT 13.80 0.01 26.73 1.94 0.63 1.16 13.24 0.14 1.31 4.11 36.93 -

B.3 Hyperparameter Search
In order to have a best-performing Question Phrase
Prediction (QPP) module, we manually tuned the
hyperparameters listed in Table A3. The hyperpa-
rameters are tuned on QG dev set using Relevance
and Diversity Metrics listed in Section 4.3 (in the
main content).
In order to have a best-performing post-processing
method (i.e., “merge-and-drop”) in Answer Evi-
dence Extraction module, we manually tuned the
hyperparameters listed in Table A4. The hyperpa-
rameters are tuned on the QA dev set using Exact
Match (EM) and F1.

C Distributions of Generated Questions
of Different QG Models

The detailed distributions of the generated ques-
tions of different models and the ground truth in
emrQA dataset are listed in table A5.


