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Abstract—A vast amount of vital clinical data is available
within unstructured texts such as discharge summaries and
procedure notes in Electronic Medical Records (EMRs). Auto-
matically transforming such unstructured data into structured
units is crucial for effective data analysis in the field of clinical
informatics. Recognizing phrases that reveal important medical
information in a concise and thorough manner is a fundamental
step in this process. Existing systems that are built for open-
domain texts are designed to detect mostly non-medical phrases,
while tools designed specifically for extracting concepts from
clinical texts are not scalable to large corpora and often leave out
essential context surrounding those detected clinical concepts. We
address these issues by proposing a framework, CliniPhrase,
which adapts domain-specific deep neural network based lan-
guage models (such as Clinical BERT) to effectively and efficiently
extract high-quality phrases from clinical documents with a
limited amount of training data. Experimental results on the two
real-world clinical datasets: MIMIC-III and i2b2 show that our
method can outperform the current state-of-the-art techniques
by up to 18% in terms of F; measure while being very efficient
(up to 48 times faster).!

Index Terms—Clinical Phrase Mining, Clinical Text, Clinical
NLP, Language Models, BERT

I. INTRODUCTION

Electronic Medical Records (EMRs) contain a wealth of
information available as free text. Most of these texts are
detailed reports narrated by physicians and care providers,
which contain valuable patient information such as problems,
medications, vital signs, etc., and give a longitudinal picture of
a patient’s health. There has been a lot of work on extracting
such valuable information from clinical texts such as clinical
information extraction [1], [2], question answering [3] and
relation prediction [4]-[6]. When converting unstructured texts
to structured knowledge (e.g., detecting medical concepts,
entities, relations among entities), it is fundamental and among
the very first steps to extract high-quality and meaningful
phrases from unstructured texts. Therefore, in this paper, we
study the task of phrase mining on unstructured clinical
documents and propose a new effective and efficient method
for this task.

Phrase mining is the process of extracting high-quality
phrases from a given text corpus. It could help subsequent

'Our source code, pre-trained models and documentations are available
online at: https://github.com/kaushikmani/PhraseMiningLM

downstream tasks in the biomedical domain such as sum-
marizing biomedical documents [7], query searching across
multiple clinical documents in an EMR system [8], linking
phrases to knowledge bases like UMLS (Unified Medical
Language System) [9], [10], and predicting relations between
two phrases to discover new biomedical knowledge [11], [12].

To the best of our knowledge, there are very few existing
tools that are specifically designed for phrase mining in the
clinical domain. Baldwin et. al [13] extract several clinical
categories at the phrase level, attempting to provide the neces-
sary context while still keeping the extracted elements concise.
They employ a three-stage pipeline which extracts categorized
phrases of interest using clinical concepts as anchor points.
However, their method highly depends on the existence of
two concepts in a sentence to extract a span as well as the
coverage of knowledge bases.

The other relevant tools available are used for extracting
medical concepts from free-text datasets, such as MetaMap
[9], KIP [14], cTAKES [10], QuickUMLS [15], SciSpaCy
[16], etc. Clinical-domain methods primarily adopt dictionary
matching techniques to map a set of candidate terms extracted
from a text corpus to a pre-defined ontology and only keep
those terms that can be mapped as good concepts. Many
efforts have been made for better pre-processing of raw
terms and a more accurate mapping process. However, such
direct matching methods suffer from scalability issues when
processing large datasets. For example, MetaMap generates
hundreds of potential mappings for a candidate term which
requires a lot of computation. QuickUMLS tries to solve the
efficiency problem of MetaMap and cTAKES by employing
an approximate dictionary matching algorithm and is up to
135 times faster than both systems. SciSpaCy uses a NER
system based on the chunking model from Lample et. al [17]
to extract relevant clinical entities.

However, as we will show in the experiments later, the
efficiency of QuickUMLS and SciSpaCy is still far from sat-
isfactory on large datasets. Moreover, all the aforementioned
concept-mining tools operate on concept level and are unable
to operate on phrase level, which may provide the necessary
contextual information for clinical interpretation. For instance,
phrases like ‘semsitive to levofloxacin’ and ‘thrombosis in
the right leg’ contain concepts such as ‘levofloxacin’ and
‘thrombosis’ respectively, but it is necessary to include the
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Fig. 1: Overview of our proposed method CliniPhrase. Given a set of clinical documents as input, frequent phrases are extracted from
the documents as phrase candidates, and features are extracted using a language model for all the phrases to measure the quality of a phrase
based on its relevance in the clinical context. These features are then fine-tuned with a classifier, which predicts quality phrases.

contextual information around the concept for the phrases to
be helpful to a physician. Besides, many user-generated quality
phrases are not available in existing ontologies or knowledge
bases, resulting in these methods having a low recall. For
example, phrases such as ‘verbally responsive’ and ‘vitals were
stable’ may not be captured by lexical variants of existing
concepts in a knowledge base like UMLS [18].

On the other hand, with the availability of large-scale text
corpora in the open domain (e.g., Wikipedia articles) as well
as the development of statistical machine learning methods,
data-driven approaches which employ statistics extracted from
a corpus to mine quality phrases, have gained popularity
in the phrase mining literature. These methods range from
frequency-based methods [19], [20] to more advanced statisti-
cal measures derived from a corpus [21], [22]. Most state-
of-the-art methods such as TopMine [23], SegPhrase [24],
and AutoPhrase [25], are also data-driven methods. TopMine
mines significant phrases as part of topical phrase extraction
considering frequency and concordance as phrase quality crite-
ria. SegPhrase integrates phrase quality estimation with phrasal
segmentation to rectify an initial set of statistical features
based on the local context. AutoPhrase further enhances the
performance of phrasal segmentation by incorporating the
shallow syntactic information in part-of-speech (POS) tags.
AutoPhrase does not require any human annotation but instead
uses public knowledge bases (e.g., Wikipedia) to train its
phrase quality estimator. Open-domain methods, however, do
not work well in the clinical domain, because they rely on
statistical measures based on open-domain corpora and tend
to extract phrases which are not related to the clinical domain
(e.g., ‘plane rides’ and ‘watching television’) or miss out
interesting clinical phrases (e.g., ‘walking pneumonia’ and
‘malignant melanoma’) that rarely appear in the open domain.

To overcome the efficiency and low-recall issues of clinical
concept extraction tools as well as the aforementioned issues
of open-domain phrase mining methods, we propose a new
method CliniPhrase to effectively and efficiently extract
quality phrases from clinical documents. Figure 1 gives an
overview of our framework. Given large-scale EMR clinical
texts, our framework first extracts candidate phrases based
on the assumption that quality phrases should occur with
sufficient frequency in a given document collection. We con-

Table I: Comparison of existing methods with CliniPhrase.
‘User-Generated Phrases’ are human written phrases in clinical
documents, many of which might not be present in existing ontologies
or knowledge bases. ‘Clinically-Specific Phrases’ refers to clinical
phrases that rarely appear in the open domain.

High recall for Clinically-
Methods Scalability | User-Generated . Y
Specific Phrases
Phrases
Medical Concept Mining X X v
Open-Domain Phrase Mining v v X
CliniPhrase (Ours) v v v

sider two properties: Downward Closure Property and Prefix
Property as constraints for efficient mining of frequent phrases.

To further select the most high-quality phrases, in particular,
we adapt very recent deep neural network based Language
Models (LM), such as BERT [26] and ELMo [27], which are
trained on biomedical texts or clinical texts, e.g., BIoBERT
[28], ClinicalBERT [29], and BioELMo [30] to extract linguis-
tic information and clinical patterns for a candidate phrase,
based on which we build a binary classifier to evaluate the
quality of the phrase. Experimental results demonstrate that
our framework substantially outperforms the state-of-the-art
open domain tools as well as those specifically designed for
clinical texts. More importantly, our framework is around
48 times more efficient than existing tools in the clinical
domain. In addition, we directly apply our model trained
on the MIMIC-III [31] dataset to a new corpus (which is
unseen in the training phase), i.e., the 2009 i2b2 medication
extraction challenge dataset [32] and it still achieves the best
performance among all methods, which shows that its greater
generalizability can save tremendous labeling effort on the
new dataset. We further go on to show the usage of phrases
extracted by our model using query suggestion as a case
study, in which we show similar phrases to a query phrase,
and physicians can use those similar phrases together with
the query phrase to retrieve more relevant clinical records.
To summarize, compared with existing methods (as shown in
Table I), our CliniPhrase has good scalability, achieves
high recall for user-generated phrases, and mostly focuses on
clinically-specific phrases.

II. TASK SETTING

Given a large collection of clinical documents, we aim
to extract quality phrases from those documents. The input



documents can be any textual word sequences with arbitrary
lengths such as discharge summaries and procedure notes.
In general, a phrase is defined as a sequence of contiguous
words appearing in the text, which work together to form a
meaningful unit. In the clinical domain, we additionally require
a quality phrase to be clinically-specific.

For instance, in the statement ‘The patient had no further
chest discomfort., ‘the patient’, ‘had no’, ‘no further chest
discomfort’, ‘chest discomfort’, etc. are all sequences of words,
however ‘chest discomfort’ and ‘no further chest discomfort’
are the most relevant and useful in the clinical context. We
also suggest using the ‘longest phrase heuristic’ in case of
overlapping phrases, since it is better to include as much
context as we can. For example, between ‘chest discomfort’
and ‘no further chest discomfort’, we suggest using ‘no further
chest discomfort’ as the phrase extracted from this sentence
when pursuing downstream tasks.

III. METHODS

In this section, we introduce our proposed CliniPhrase
framework (as shown in Figure 1), which consists of two major
components: Candidate Phrase Generation and High-quality
Phrase Selection. The former aims to generate frequent word
sequences as candidate phrases. We set a minimum frequency
and maximum sequence length threshold to filter a number
of candidate phrases. Then the High-quality Phrase Selection
module is responsible for keeping only high-quality ones using
pre-trained neural models. We will now introduce the two
modules in detail.

A. Candidate Phrase Generation

Given a document (word sequence) we first aim to extract
candidate phrases from the sequence. We claim that any length
of contiguous words appearing in the text could be considered
as candidate phrases.

To achieve this, we split the sentences in the documents into
words and expand contiguous words (i.e., n-gram) in sentences
to generate phrase candidates. However, such a generation
process is likely to include many low-quality phrases and it is
very inefficient if we consider a larger n.

We observe that a quality phrase often occurs with sufficient
frequency in a given document collection. Thus any phrase
that is not frequently occurring in the entire collection is less
likely to be important. So given a corpus, we can accelerate
the aforementioned process and improve the generated phrase
quality by introducing two constraints: a minimum frequency
threshold v and a maximum phrase length A\. We further
introduce the following two properties to help us efficiently
mining of frequent phrases.

* Downward Closure Property: If a phrase is not frequent,
then any of its super-phrases will not be frequent. Therefore,
those longer phrases will be filtered and never expanded.

* Prefix Property: If a phrase is frequent, any of its prefix
units should be frequent too. All frequent phrases are gener-
ated by expanding their prefixes.

In addition, phrases that end with stop words are not likely
to have a complete semantic meaning. For example, phrases
like ‘patient is’ and ‘heartbeat was’ might occur frequently but
are not meaningful phrases. Therefore, we filter these phrases
from the list of candidate phrases based on stop words from
NLTK [33].

B. High-quality Phrase Selection

Even though we use some constraints in the candidate
phrase generation step, many meaningless or irrelevant phrase
units are bound to be included. Thus, we leverage pre-trained
language models to further filter low-quality phrases and keep
high-quality ones. We first introduce the pre-trained models
we use.

Pre-trained word representations have become a key com-
ponent in a number of neural language understanding models.
Methods like Word2Vec [34], Glove [35] enabled us to use
a vector to properly represent words in a way that captures
semantic as well as syntactic relationships.

However, the meaning of a word should be context-
dependent, i.e., their embeddings should also take context
into account. This necessitated the use of a language model
to obtain embeddings for individual words while taking the
entire sentence or paragraph into account. Language modeling
is a fundamental task in natural language processing which
estimates how likely a sequence of words is to appear in a text
corpus. Recently, language models have not only proven very
effective at automatically capturing a vast range of features
from the text but are also able to extract different features
from the same word depending on the word’s context (i.e.,
contextualized word representations).

Earlier neural network based language models used re-
current and long short-term memory (LSTM) [36] neural
networks. Both recurrent and LSTM networks receive inputs
from a sequence one element at a time and produce new hidden
states every time which depends on the input and the previous
hidden state, making them particularly well suited for sequen-
tial data modeling. They encode all previous information up
to time ¢ in the hidden state h;, thereby allowing us to use the
hidden states of the language model as features.

More recently, significant improvements have been made
in various NLP benchmarks, owing to more complex pre-
trained language models that can more effectively capture
contextualized information from text such as ELMo [27] and
BERT [26]. Embeddings from Language Models (ELMo) [27]
use a bidirectional LSTM trained with a language model
objective on a large text corpus. ELMo representations are
obtained by using a linear combination of the hidden states
in a deep language model, which improves the performance
of several downstream tasks over just using the top LSTM
layer. The main goal of a forward language model is to predict
the probability of the next word in a sequence given the
previous words in the sequence. Given a historical sequence
wyt = [wy, ..., w] and a fixed vocabulary V, we can get the



distribution over w1 by applying an affine transformation to
the hidden layer of RNN followed by a softmax.

eXp(Whypj + by)
Zj’ev exp(Whyp? + by)

(D

P(wiy1 = jlwi) =

In the above equation, W}, is a parameter to be learned, P
is the embedding at the output layer of LSTM for the token
7. The objective of the language model is to minimize the
negative log-likelihood loss (NLL) of the training sequence.

T
NLL = 7ZIOgP(wt|w1:t—1) @)

t=1

A backward language model is similar to a forward language
model, except it runs over the sequence in reverse, predicting
the previous token given the future context.

In order to address the long-range dependencies and par-
allelization issues present in RNN based architectures, the
Transformer model [37] uses an attention mechanism [38]
which allows the model to focus on relevant information
in the input sequence depending on which word is being
processed. Transformers use the Scaled Dot-Product Attention
[37], which is computed according to the following equation:

Attention(Q, K, V) = softmax(QK™ /\/di)V  (3)

where (@) is the matrix of queries packed together and K
and V are the matrices of keys and values packed together,
dj, represents the dimensionality of the queries and keys.
The Transformer uses the basic encoder-decoder architecture
composed of N blocks. The optimization problem is made
easier by using layer normalizations and residual connections.
Since attention cannot utilize the position of the inputs, the
transformer adds explicit position embeddings to the input
embeddings. We refer the readers to Vaswani et. al [37] for
more details on the Transformer.

BiDirectional Encoder Representations for Transformer
(BERT) [26] uses the Transformer architecture to train a
language model by taking both the previous and next tokens
into account when predicting output. BERT achieves this by
using a concept known as Masked Language Modeling. This
involves randomly replacing a set percentage of words with a
special [MASK] token and to require the model to predict the
masked token. BERT pre-trained on a large corpus can be fine-
tuned by using encoder hidden states as features and feeding
it to an arbitrary classifier, which can be used to predict the
final output.

We showcase the capability of multiple pre-trained language
models in phrase mining, from simple LSTM-based language
models such as ELMo to transformer-based language models
such as BERT. We input each candidate phrase to a language
model and use the average of the hidden state vector on each
word as its feature. In particular, we exhibit the advantage of
using biomedical versions of pre-trained language models such
as BioELMo and BioBERT (pre-trained on PubMed abstracts)
as well as ClinicalBERT (pre-trained on the clinical notes of

MIMIC-III dataset [31]), which capture domain-specific char-
acteristics of clinical texts. The training and implementation
details of different models are given in Section I'V-C.

We use the logistic regression based binary classifier for the
simple LSTM-based language model, which classifies a phrase
as good/bad based on the features extracted. For transformer-
based and ELMo-based language models, we fine-tune all pre-
trained parameters on the phrase mining task.

IV. EXPERIMENTS

In this section, we systematically evaluate different language
models on mining quality phrases from clinical documents and
compare their performance with other methods.

A. Datasets

To evaluate our framework, we use the discharge summaries
available in the MIMIC-III dataset [31]. It consists of 59652
discharge summaries comprising of de-identified health data
of 40000 critical care patients associated with Beth Israel
Deaconess Medical Center. The database is populated with
data from several sources including hospital electronic health
record databases and archives from critical care information
systems. We also consider the generalizability test (i.e., train
the model on one dataset and test it on another unseen
dataset, see Section V-D) and thus also use the 2009 i2b2
medication extraction challenge [32] dataset. The i2b2 dataset
is a collection of fully de-identified discharge summaries from
Partners Healthcare, and comprises of clinical notes of a
different set of patients.

We rely on human evaluators to label the quality of can-
didate phrases. More specifically, we randomly sample 2, 000
candidate phrases which are extracted in Section III-A. To
make a fair comparison, we ensure that the sampled phrases
are extracted by AutoPhrase [25] as well, since it is the state-
of-the-art phrase mining tool. These phrases are evaluated
by 3 expert reviewers independently. By the rule of majority
voting, phrases that receive at least two positive annotations
are considered as quality phrases, otherwise they are treated
as bad phrases. We use 1500 phrases for training, 200 for
validation and 300 phrases for testing. For the i2b2 dataset,
we label 200 randomly sampled phrases for generalizability
testing purposes. We find that out of these 200 phrases,
64 phrases are completely unseen in the MIMIC-III dataset,
further indicating the difference between these two datasets.

B. Compared Methods

We compare our models with different methods from both
the open domain and the clinical domain.
* AutoPhrase [25] is the state-of-the-art phrase mining tool
that combines statistical features such as frequency, inverse
document frequency and KL divergence along with POS-based
phrasal segmentation to filter phrases. It does not require hu-
man annotation and uses public knowledge bases for training
its classifier. We use the Medical Subject Headings (MeSH)
[39] as a quality knowledge base for AutoPhrase.



* SegPhrase [24] is similar to AutoPhrase and requires limited
training data. We provide 300 labeled phrases (the number
suggested by SegPhrase) to train the model.
* QuickUMLS [15] is an unsupervised, approximate dictio-
nary matching algorithm which extracts medical concepts in
UMLS metathesaurus from clinical texts. Soldaini et. al [15]
show that QuickUMLS achieves a similar performance as
MetaMap [9] and cTAKES [10], but is up to 135 times faster.
* SciSpaCy [16] is a library containing models for process-
ing biomedical and clinical text. We used the NER model
in SciSpaCy which is trained on mention spans from the
MedMentions dataset [40].

We then try different pre-trained models to extract features
to instantiate our CliniPhrase framework.
* Word2Vec model [34] is trained using the CBOW method
on the MIMIC-III dataset and phrase embeddings are obtained
as the average of word embeddings.
* Sent2Vec [41] is trained in a similar manner on the MIMIC-
III dataset to obtain the embedding of phrases, where the
phrase embedding is defined as the average of word embed-
dings and the word n-gram embeddings in a phrase.
* ELMo [27] is a deep contextualized word representation
learned from functions of internal states of a deep bidirectional
language model which is pre-trained on the 1 Billion Word
Benchmark, approximately 800M tokens of news crawl data
from WMT 2011.
* BioELMo [30] is a biomedical version of embeddings from
language model (ELMo), pre-trained on PubMed abstract.
« BERT [26] is a base BERT model which learns word
representations from a deep bidirectional transformer encoder
and is pre-trained on Wikipedia and the book corpus for a very
long time.
* BioBERT [28] is a pre-trained BERT model that is initialized
with weights from BERT trained on the general domain
corpora (Wikipedia and book corpus) and then pre-trained on
PubMed abstracts and PMC full-text articles.
* ClinicalBERT [29] includes multiple BERT models which
are: (1) first initialized with weights from either BERT trained
on general domain corpora (Wikipedia and book corpus) or
BioBERT, and (2) then pre-trained on discharge summaries of
MIMIC-III dataset or all clinical notes of MIMIC-III dataset.

Note that SegPhrase, QuickUMLS, and SciSpaCy do not
extract all phrases in our testing set and we assume that these
tools treat them as bad phrases. As for ClinicalBERT, even
if it was pre-trained on MIMIC-III, the whole pre-training
process was in an unsupervised manner (i.e., MASK Language
Modeling and Next Sentence Prediction, see [29] for more
details). Therefore, there are no information leaking issues
between pre-training and phrase mining.

C. Implementation details

Our framework is implemented in Pytorch 1.0 [42] and the
models are trained with 1 NVIDIA Tesla P100 GPU which
is provided by Ohio Supercomputer Center [43]. We set the
default value of minimum frequency threshold v as 10 and
maximum phrase length A as 6, which are the parameters

required for frequent phrase mining. We preprocess the dataset
by removing the de-identified text patterns in them, and
then tokenize the text into sentences and words, and convert
the words to lowercase. For transformer and ELMo based
language models, we initialize the pre-trained models and
fine-tune them with a simple linear classifier according to the
phrase mining task and then use the model to filter the phrases.
We split the labeled data into training and validation sets with
a split ratio of 0.8. The classifier is trained for 100 epochs
with an initial learning rate of 0.005. We decrease the learning
rate by half if the validation loss does not decrease for more
than 10 epochs and use early stopping on validation loss. For
the simple LSTM-based language model, we use the PubMed
Phrases dataset [44] to pre-train the language model. Then
a logistic regression based classifier is trained with similar
hyperparameters as mentioned above. We set the threshold
score at 0.5 for the classifier to obtain quality phrases. All
the experiments are performed on 10 different random states
and we show the averaged results to prevent bias towards any
particular initialization or train/test set.

D. Evaluation metrics

To evaluate the performance of different methods on the
annotated data, we use accuracy, precision, recall and F1 score
as our experiment metrics:

Accuracy = TP+ TN
TP+TN+FP+ FN
Precision = _Trr
TP+ FP
Recall = _rr
TP+ FN
Bl — 2 * precision * recall

precision + recall

Here TP (True Positive) is the number of outcomes where
the model correctly predicts the positive class. TN (True Neg-
ative) is the number of outcomes where the model correctly
predicts the negative class. FP (False Positive) is the number
of outcomes where the model incorrectly predicts the positive
class. FN (False Negative) is the number of outcomes where
the model incorrectly predicts the negative class.

V. RESULTS
A. Overall Performance

The overall results on the MIMIC-III dataset are shown in
Table II. We can see that the language models substantially
outperform all the compared methods in all evaluation metrics.
BERT language models perform better than simple LSTM-
based language models and ELMo-based language models.
Clinical BERT initialized with BioBERT weights and pre-
trained on discharge summaries of MIMIC III notes and then
fine-tuned to the phrase mining task performs the best among
all models, however, the performance of other BERT based
models are comparable.



Table II: Comparison of different methods on the MIMIC-III dataset

Method Type | Method | Accuracy | Precision | Recall | F1
Open AutoPhrase 62.92 63.06 63.04 | 62.90
Baselines Domain SegPhrase 61.64 62.10 61.88 | 61.50
Clinical QuickUMLS 55.36 68.77 56.65 47.50
Domain SciSpaCy 62.08 64.41 62.79 61.17
Word word2vec 57.94 59.24 57.14 54.94
Embedding | sent2vec 72.42 72.47 72.32 | 72.28
Simple LSTM 71.14 71.24 71.00 70.95
ELMo 73.92 75.42 74.04 73.53
BioELMo 78.12 79.19 77.61 77.63
Ours Pre-trained BERT 81.37 79.99 80.00 79.99
Language BioBERT 78.60 78.84 78.73 78.59
Model Clinical BERT-(BERT+All MIMIC) 80.00 81.24 80.31 79.89
Clinical BERT-(BERT+MIMIC Discharge) 81.00 80.99 81.02 80.99
Clinical BERT-(BioBERT+All MIMIC) 81.00 80.98 80.99 80.98
Clinical BERT-(BioBERT+MIMIC Discharge) 82.00 82.11 82.09 81.99
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B. Effect of Training Set Size

We also study the impact of the size of the training
data on our framework. The performance of the Clinical-
BERT (BioBERT + MIMIC III Discharge Summaries) on the
MIMIC-III testing dataset under different amount of labeled
data are shown in Figure 2. From these results, we observe that
the performance of the model becomes better as the number
of training samples increases, and is already satisfactory when
there are around 1200 training samples.

C. Efficiency v.s. Effectiveness

We apply each trained method to discharge summaries in
MIMIC-III and compare their efficiency and effectiveness. Fig
3 summarizes the results, where we do not consider the pre-
training time for the language models, since they can be pre-
trained offline and are ready to be reused on a new dataset.

As shown in Fig 3, our method using the language model
(ClinicalBERT) is much faster than methods in the clini-
cal domain. For instance, our method is around 48 times
faster than SciSpaCy. AutoPhrase, on the other hand, uses
multi-threading techniques and various optimized methods,
which makes their framework considerably faster. Besides,
the bubble size represents the number of phrases that are

1 2 3 4 5 6 7 8 9
Time efficiency: log(min)

Fig. 3: Efficiency v.s. Effectiveness of different methods. The size of
bubbles represents the number of phrases extracted by each method.

Generalization performance on the i2b2 dataset

T

Accuracy Precision Recall F1
B AutoPhrase BioELMo I BioBERT
LSTM BERT ClinicalBERT

Fig. 4: Generalizability performance of various methods, which are
trained on MIMIC-III dataset but evaluated on i2b2 dataset.

extracted from the MIMIC-III documents. Our model can ex-
tract roughly the same number of phrases as SegPhrase, larger
than QuickUMLS, and less than Scispacy and AutoPhrase.
However, when considering the phrase quality (effectiveness),
our framework archives much better performance. Thus, our
CliniPhrase can extract a considerable amount of phrases
and achieve very good accuracy while being efficient.
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Table III: Given a query phrase, we find the top results of similar
phrases extracted by different models.

Query Phrase | Method Suggested Similar Phrases

abnormal uterine bleeding, variceal bleeding,
bleeding diathesis, abnormal enhancement,
abnormal rhythms

bleeding diveriticulus, fulgeration bleeding,
gi/rp bleeding, gastrointestal bleeding,
dental/gum bleeding

excessive bleeding, unusual bleeding,
bleeding disorders, increased bleeding,

persistent bleeding

AutoPhrase
“abnormal
bleeding”

SciSpaCy

CliniPhrase

D. Generalizability of the Fine-tuned Language Model

In this section, we conduct an experiment to show the
generalizability of different methods to a new dataset without
additional human-annotated data. We perform our experiment
by using the MIMIC-III dataset to train those methods and
then applying them to the 2009 i2b2 medication extraction
challenge dataset.

The results of the different models are in Figure 4. We only

include AutoPhrase as the baseline in this experiment as it
archives the best performance in Table II. We indicate that
our method substantially outperforms AutoPhrase and shows
better generalizability. Our method can be directly applied
to a different clinical corpus without additional training data,
thereby indicating the advantage of using language models for
phrase mining in the clinical domain.
Experiment Summary. We observe that language models sub-
stantially outperform all the compared methods by extracting
higher-quality phrases and are around 48 times faster than
SciSpaCy. We also show that our trained model can be readily
applied to a new clinical text dataset, clearly indicating its
advantage over other methods.

VI. CASE STUDY

To further demonstrate the usefulness of our method in the
real-world scenario, we conduct case studies showing the most
similar phrases extracted phrases given a query phrase. In the
real case, physicians could use the most similar suggested
phrases to find more relevant information in a huge database
of clinical records, such as finding patients with similar
symptoms, their treatments, etc. We take a phrase as an input
and use cosine similarity measure based on ClinicalBERT
contextualized embeddings to find similar high-quality phrases
that were extracted from the MIMIC III clinical notes.

In Fig 5, we show the top 20 similar phrases in word clouds
given the query phrase “brainstem stroke”, “cortical destruc-
tion” and “abnormal bleeding” respectively. It can be seen
that most of the suggested phrases are semantically-correct,
logically-coherent, and clinically-specific. More importantly,
they are also very relevant to the query phrase, which can be
used to help other clinical tasks (e.g., clinical record retrieval).

We also show the top 5 similar phrases extracted by
the other two baselines given the query phrase “abnormal
bleeding” in Table III. Since AutoPhrase does not produce
any embeddings, so we use simple TF-IDF [45] of phrases to
calculate the cosine similarity. SciSpaCy uses word embed-
dings trained from PubMed abstracts [46] to perform NER,
so we use the average of word embeddings to calculate their
phrase embeddings.

We observe that results obtained from both AutoPhrase and
SciSpaCy tend to concentrate on individual words and find
similar suggestions to the words rather than the entire phrase.
For example, the query ‘abnormal bleeding’, when used with
AutoPhrase, tends to produce phrases that are more associated
with the word ‘abnormal’ such as abnormal enhancement,
abnormal uterine bleeding and abnormal rhythms. SciSpaCy
tends to concentrate on the word ‘bleeding’, producing phrases
such as fulgeration bleeding, dental/gum bleeding, etc. On the
other hand, ClinicalBERT produces phrases such as excessive
bleeding, unusual bleeding, increased bleeding, which are
all similar to the complete phrase ‘abnormal bleeding’. This
clearly indicates the advantage of using language models and
contextualized embedding. Besides, it also shows the quality
as well as usage of the phrases extracted by our method.

VII. CONCLUSION

This paper introduces an effective and efficient method to
extract quality phrases from clinical documents. We employ
pre-trained deep neural network based language models and
fine-tune them to extract quality phrases from the given clin-
ical documents with limited human annotations. We conduct
extensive experiments and show that our framework performs
substantially better than state-of-the-art techniques including
those in the clinical space. Our framework is also scalable to
large corpora, and is around 48 times faster than SciSpaCy,
a popular tool for extracting clinical entities. We show that
our trained model can be readily applied to a new clinical



text dataset, thereby reducing the need for expensive human
labeling. We also demonstrate potential usages of the extracted
phrases, e.g., using them to suggest similar phrases to a
query phrase and hence helping physicians retrieve relevant
information from documents. In the future work, we will
develop an online tool based on our method to make it more
convenient to extract clincial phrases.
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