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Abstract—Seeding streamlines in 3D flow fields without considering their projections in screen space can produce visually cluttered

rendering results. Streamlines will overlap or intersect with each other in the output image, which makes it difficult for the user to

perceive the underlying flow structure. This paper presents a method to control the seeding and generation of streamlines in image

space to avoid visual cluttering and allow a more flexible exploration of flow fields. In our algorithm, 2D images with depth maps

generated by a variety of visualization techniques can be used as input from which seeds are placed and streamlines are generated.

The density and rendering styles of streamlines can be flexibly controlled based on various criteria to improve visual clarity. With our

image space approach, it is straightforward to implement the level of detail rendering, depth peeling, and stylized rendering of

streamlines to allow for more effective visualization of 3D flow fields.

Index Terms—Three-dimensional flow visualization, streamlines, streamline seeding, level of detail, depth peeling, stylized rendering.

Ç

1 INTRODUCTION

EFFECTIVE visualization of 3D vector fields plays an
important role in many scientific and engineering

disciplines such as climate modeling, computational fluid
dynamics, and automobile design. To visualize 3D vector
fields, many techniques have been developed in the past.
Existing techniques include geometry-based methods such
as streamline and particle animations, as well as more
advanced techniques that utilize graphics hardware to
generate realistic flow textures. Generally speaking, texture-
based methods such as Line Integral Convolution (LIC),
Spot Noise, or the more recent Image-Based Flow Visuali-
zation (IBFV) [23] techniques are mostly suitable for
visualizing 2D flows. When extending those techniques to
3D data, occlusion becomes a major problem. It is also a
challenge to apply the texture-based methods to unstruc-
tured grids, although the recent work by van Wijk [24] and
Laramee et al. [10] have provided clever solutions to
compute flow textures for arbitrary surfaces.

Compared to texture-based approaches, visualizing

streamlines is still more widely used because it is easier to

compute and render those lines interactively. The main

challenge for visualizing streamlines, however, is that the

scene can easily become cluttered when too many lines are

displayed simultaneously. In addition, it is more difficult to

add effective depth cues to points and lines; consequently,

understanding the spatial relationships among them can be

challenging. Previously, researchers have attempted to

develop effective seed placement algorithms for better

visualization of streamlines [7], [16], [21], [25]. However,

most of the algorithms were developed for 2D vector fields

and thus cannot be directly applied to visualizing 3D data.
In this paper, we present an image-based approach for

streamline generation and rendering. Our goal is to better

display 3D streamlines and reduce visual cluttering in the

output images. Visual cluttering occurs because streamlines

can arbitrarily intersect or overlap with each other after

being projected to the screen, which makes it difficult for

the user to perceive the underlying flow structures. In our

algorithm, instead of placing streamline seeds in 3D space,

we drop seeds on the 2D image plane and then unproject

the seeds back to 3D object space before streamline

integrations take place. The 3D positions of the seeds can

be uniquely determined by the selected image positions,

and their depth values can be obtained from an input depth

map. By carefully spacing out the streamlines in image

space as they are integrated, we can effectively reduce

visual cluttering and minimize depth ambiguity caused by

overlapping streamlines in the 2D image. We can also

achieve a variety of effects such as level of detail (LOD),

depth peeling, and stylized rendering to enhance the

perception of 3D flow lines. Another advantage of our

algorithm is that seed placement and streamline visualiza-

tion become more tightly coupled with other visualization

techniques. As the user is exploring other flow-related

variables, when interesting features on the screen are

spotted, the seeds can be directly placed on the image

without the need to have a separate process to find the

3D seed positions surrounding the features.

The remainder of the paper is organized as follows: First,

we briefly review the existing work on seed placement and

streamline rendering. Then, we introduce our image-based

seed placement and streamline generation algorithm.

Finally, we present a variety of ways to utilize our image-

based algorithm for better visualization of 3D streamlines.
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2 RELATED WORK

For 2D flow fields, several techniques are available for
generating seeds to reduce visual cluttering. The image-
guided streamline placement algorithm proposed in [21]
uses an energy function to measure the difference between
a low-pass-filtered version of the image and the desired
visual density. An iterative process is used to reduce the
energy through some predefined operations on the stream-
lines. This algorithm was extended to curvilinear grid
surfaces by Mao et al. [13]. The vectors on a 3D surface are
first mapped into the computational space of the curvilinear
grid. To address the distortion caused by the uneven grid
density, they proposed a new energy function to guide the
placement of streamlines in the computational space with
the desired local densities. For creating evenly spaced
streamlines, Jobard and Lefer [7] proposed controlling the
distance between two adjacent streamlines to achieve the
desired density. Both the seed selection and the termination
of integration are controlled by first measuring the distance
to the existing streamlines and then determining the desired
actions. Mebarki et al. [16] proposed a 2D streamline
seeding algorithm by placing a new streamline at the
farthest point away from all existing streamlines. Verma
et al. [25] used various templates around critical points to
reveal important flow features. A Poisson disk distribution
is used to randomly distribute additional seed points in
those noncritical regions. This work has been extended to
3D flow fields in [26].

Generating aesthetically pleasing streamlines in 3D flow
fields is much more difficult than in 2D fields because the
projection process from 3D object space to 2D image space
can cause overlaps and intersections, which does not
happen for 2D streamlines. Ye et al. [26] presented a
strategy for streamline seeding through analyzing the flow
topology. Critical points are used to identify the flow
regions with important features, and then different seeding
templates are used at the vicinity of critical points. Finally,
Poisson seeding is used to populate the final empty region.
Jobard and Lefer’s algorithm [7] was extended to 3D by
Mattausch et al. in [14]. Spatial perception of the 3D flow
was improved by using depth cueing and halos. They also
applied focus þ context methods, ROI-driven streamline
placing, and spotlights to solve the occlusion problem.
Table 1 compares the major differences between the two
related works and our approach.

There have been some techniques proposed for rendering
3D flow fields with a better perception of spatial information.
Lighting is one of the elements to improve spatial perception.
Stalling and Zockler [19] employed a realistic shading model
to interactively render a large number of properly illumi-
nated field lines using 2D textures. The algorithm is based
on a maximum lighting principle, which gives a good
approximation of specular reflection. To improve diffuse

reflection, Mallo et al. [12] proposed a view-dependent
lighting model based on averaged Phong/Blinn lighting of
infinitesimally thin cylindrical tubes. They used a simplified
expression of cylinder averaging. To emphasize depth
discontinuities, Interrante and Grosch [6] used a visibility-
impeding 3D volumetric halo function to highlight the
locations and strengths of depth discontinuities, whereas
Park et al. [17] proposed a dense geometric flow visualiza-
tion technique. Multidimensional transfer functions are
used to address the occlusion problem inherent to dense
volumetric visualization. Previous works such as line-art
drawing [5] can also be used to improve the quality of
streamline visualization.

3 OVERVIEW OF APPROACH AND CONTRIBUTIONS

The primary goal of our research is to control scene
cluttering when visualizing 3D streamlines. For 3D data,
addressing the issue of visual cluttering in 3D object space
is more challenging since, even if streamlines are well
organized in object space, they might still clutter together
after being projected to the screen. In this research, we are
inspired by how artists draw in real life, as shown in Fig. 1:
Strokes are drawn one by one onto the canvas; when some
region gets cluttered, fewer strokes are placed, and vice
versa. To apply this principle to the flow visualization
problem, we place the streamlines based on how they are
distributed across the image plane.

Fig. 2 shows the visualization pipeline of our image-
based streamline seeding and generation algorithm. The
inputs to our algorithm are a vector field and a 2D image
with a depth map. The 2D image and depth map can come
from the result of rendering vector-field-related properties
such as stream surfaces or can be the output of other
visualization techniques such as isosurfaces or slicing
planes of various scalar variables. Our algorithm will
generate streamlines by placing seeds on the image plane.
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TABLE 1
Comparison of the Three Approaches

Fig. 1. A drawing of flows by Leonardo da Vinci [2].



With the depth values of the selected pixels provided by the

depth map, those image space seeds can be unprojected

back to 3D object space. Streamlines are then integrated in

3D object space. Our algorithm ensures that streamlines will

not come too close to each other after they are projected to

the screen.
With our algorithm, it is possible to avoid scene

cluttering caused by streamlines having a very high depth

complexity. Although researchers have previously pro-

posed drawing haloed lines to resolve the ambiguity of

streamline depths [14], when a large number of line

segments generated from the haloing effect are displayed,

the relative depth relationship between the streamlines

becomes very difficult to comprehend. By controlling the

spacing of streamlines on the image plane, we are able to

prevent the visualization from being overly crowded.

Another advantage of the image-based approach is that it

enhances the understanding of the correlation between the

underlying flow field and other scalar variables. When

analyzing a flow field, the user often needs to visualize

additional variables in order to understand the underlying

physical properties in detail. Dropping seeds in the regions

of interest defined by those scalar properties can assist in

creating a better mental model to comprehend the data.

Traditionally, visualization of streamlines and other scalar

properties are performed independently. Dropping stream-

line seeds in regions signified by other data attributes often

requires the implementation of the seed placement algo-

rithm to have knowledge about the specific features. In this

work, we intend to provide a simple and unified framework

by allowing the user to drop seeds directly when they see

interesting features in the images. This way, the process of

issuing queries to answer the user’s hypotheses both in

scalar and vector fields can be performed more coherently.
One key issue that needs to be addressed to realize our

idea is how to place seeds and generate streamlines so that

the visual complexity in the output 2D image is well

controlled. We are also interested in exploring a variety of

ways to utilize the image space approach to assist us in

creating better visualizations of streamlines. In Section 4, we

discuss our algorithm in detail.

4 IMAGE SPACE STREAMLINE PLACEMENT

To generate well-organized 3D streamlines, one issue that
must be addressed is how to control the spacing between
streamlines when they are projected onto the 2D image
plane. Previously, researchers have proposed several evenly
spaced 2D streamline placement algorithms [7], [16], [21].
Researchers have also extended the idea to 3D vector fields
by ensuring evenly spaced streamlines in 3D space [14].
However, such a straightforward extension of 2D stream-
line placement methods to 3D space does not always
produce the desired results since evenly spaced streamlines
in 3D space do not guarantee visual clarity after they are
projected to the screen.

The main idea of our algorithm is that in order to ensure
that streamlines will be well organized in the resulting
image, it is more effective to place seeds directly on the
image plane. Those screen space seed positions can be
unprojected back to unique 3D positions in object space by
taking into account their depth values. When a streamline is
integrated in object space, we make sure that it is not too
close to the existing streamlines in image space.

4.1 Evenly Spaced Streamlines in Image Space

To start our algorithm, a random seed is first selected on the
image plane and then mapped back to object space. Here,
we assume that a depth value is available for every pixel on
the screen. Details about different ways to generate the
depth map are discussed in the next section. From the initial
seed position, a streamline is integrated and placed into a
queue Q. We require that all streamlines keep a distance of
dsep away from each other on the image plane. To ensure
this, the following steps are repeated until Q is empty:

1. Dequeue the oldest streamline in Q as the current
streamline.

2. Select all possible seed points on the image plane at a
distance dsep away from the projection of the current
streamline. Considering each projected sample point
on the current streamline, there are two candidate
positions for the seeds—one on each side of the
streamline.

3. For each of the candidate seeds, a new streamline is
integrated as long as possible before it is within the
distance dsep from other streamlines on the screen.
Then, this new streamline is enqueued.

4. Go back to step 1.

The algorithm above is very similar to the algorithm
presented in [7], which works well for 2D flow fields.
However, for 3D vector fields, because a projection process
from object space to image space is involved, some issues
need to be addressed.

4.1.1 Perspective Projection

The algorithm in [7] approximates the distance between a
seed point to the nearby streamlines using the distances
from the seed point to the sample points of the streamlines,
which are the points computed at every step of streamline
integration. Those distances will be used to compare with
the desired distance threshold dsep to make sure that the
streamlines are not too close to each other. The assumption
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Fig. 2. Visualization pipeline of our image-based streamline generation

scheme.



to make this approximation acceptable is that the distance
between the sample points along a streamline must be
smaller than dsep. In our algorithm, the streamline distance
threshold dsep is defined in image space. Since the
integration step size is controlled in object space, after
being projected to the screen through perspective projec-
tion, the distance between the sample points along a
streamline might be shortened or lengthened, which may
violate the minimum dsep requirement. To address this
issue, for each integration step, the projected distance
between two consecutive points on the streamline is
computed in image space. If the distance is larger than
dsep, some intermediate sample points on the streamline are
generated by interpolation.

4.1.2 Depth Comparison

The 3D streamlines can overlap or intersect with each other
after being projected to image space. In the 2D evenly
spaced streamline algorithm [7], a new sample point on the
streamline is invalid when it is within dsep from existing
streamlines or when it leaves the 2D domain defining the
flow field. In those cases, the streamline will be terminated.
In our algorithm, simply terminating a streamline if it is too
close to existing streamlines’ projections on the image plane
is not always desirable because a streamline closer to the
viewpoint should not be terminated by those far behind. To
deal with this issue, in our algortihm, when the newly
generated point of the current streamline is too close to an
existing streamline, we first check whether this point is
behind that existing streamline. If it is, the integration is
terminated. Otherwise, we check whether the streamline
segment connected to this new point intersects with the
existing streamline on the image plane. If they intersect and
the new segment is closer to the viewpoint, the intersected
segment of the old streamline becomes invalid and will be
removed, and the integration of the current streamline
continues. If they do not intersect, the integration of the
current streamline continues. In this way, we can ensure
that a correct depth relationship between the streamlines is
displayed.

4.2 Streamline Placement Strategies

Having described how to control the spacing between
streamlines, in this section, we discuss several strategies to
place streamlines on the image plane. Since we need to
unproject the seeds back to 3D object space to start
streamline integrations, depth values for the screen pixels,
that is, a depth map, will be needed. In our algorithm, this
depth map is generated as a result of rendering 3D objects
derived from the input data set, which defines the regions
of interest that the user desires. In the following, we present
several examples on how the user can explore the flow field.

4.2.1 Implicit Stream Surfaces

Visualizing implicit stream surfaces can be an effective way
to explore flow fields since it is known that streamlines are
always adhered to the surface and the local flow direction is
perpendicular to the normal of the surface. By visualizing
different stream surfaces, the user can get a better under-
standing of the flow field’s global structure. Showing only
the stream surfaces, however, is not sufficient since no

information about the flow directions on the surface is
displayed, as shown in the top images of Fig. 3. To create a
more effective visualization, we can first render a stream
surface and then use the depth map from the rendered
result as the input to our algorithm to create better
organized streamlines.

To generate stream surfaces, a volumetric stream
function needs to be computed. Previously, van Wijk
[22] proposed a method to generate implicit stream
functions by computing a backward streamline from
every grid point in the volume and recording its
intersection point at the domain boundary. If some scalar
values are assigned to the boundary, these values from the
boundary can be assigned back to the 3D grid points
according to the intersection points of their backward
streamlines to produce a 3D stream function. Isosurfaces
can then be generated from this 3D function to represent
the stream surfaces. He proposed “painting” certain
patterns on the boundary and seeing how the patterns
evolve as the flow goes from the boundary into the
domain.

We devise a new method to assign scalar values to the
boundary based on preselected streamlines. Our goal is to
more clearly visualize the flows in the regions spanned by
those streamlines. We first calculate the intersection of those
streamlines to the boundary. Then, we treat each intersec-
tion point on the boundary as a source of a potential
function that emits energy to its surrounding area on the
boundary. The energy distribution is set to be a Gaussian
function where the intensity is inversely proportional to the
distance to the source. For every grid point on the
boundary, we then sum up the energy contribution from
all sources and use the resulting scalar field on the
boundaries to create the 3D implicit stream function. With
such setup, we are able to generate stream surfaces
enclosing the input streamlines in layers using different
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Fig. 3. Streamlines generated on two different stream surfaces.



isovalues, and our image space method will place stream-
lines on each of the stream surfaces to depict the flow
directions. Fig. 3 shows two examples of the stream surfaces
with different isovalues and the streamlines generated
using our method. The data set was generated as part of a
simulation that models the core collapse of supernova.

4.2.2 Flow Topology-Based Templates

A great deal of insight about a flow field can often be
obtained by visualizing the topology of the field, which is
defined by the critical points and the tangent curves or
surfaces connecting them. With the topology information,
the behavior of flows and, to some extent, the structure of
the entire field can be then inferred. Different types of
critical points characterize different flow patterns in their
neighborhood. Given a critical point, we can compute the
eigenvalues and eigenvectors of its Jacobian matrix. The
eigenvalues can be used to classify the type of the critical
point, whereas the eigenvectors can be used to find its
invariant manifold. Previously, Globus et al. [3] proposed to
use 3D glyphs to visualize the flow patterns around critical
points. Ye et al. [26] proposed a template-based seeding
strategy for visualizing 3D flow fields. In short, the method
in [26] first identifies and classifies critical points in the
3D field. Then, seeds are placed on the predefined
templates around the critical points. Finally, Poisson
seeding is used to populate the empty region. The main
goal of this method is to reveal the flow patterns in the
vicinity of the critical points. To incorporate the idea into
our algorithm and to highlight the flow topology, what we
need is a depth map that signifies the critical points. We
choose to use solid objects to be our templates. Rendering
the templates can generate the input depth map for seed
placement.

Based on the eigenvalues and eigenvectors, we have
different templates for different types of critical points.
Fig. 4 illustrates the templates for the following types of
critical points. Note that we do not drop seeds directly on
the solid object template in object space; we drop seeds on
the image by rendering those templates at a given view. So,
we only need to decide the shape, orientation, size, and type
of the templates, rather than how many seeds to drop or
where to drop the seeds:

. Nodes. Critical points of this type are sources or sinks
of streamlines. The template we use is a solid sphere
that is centered at the position of the critical point.
The radius of the sphere is scaled by the eigenvalue’s
real part.

. Node Saddles. Two cones are used as the template for
this type, which point to the opposite direction of the
local eigenplane spanned by the eigenvectors. The
radius and height are scaled by the eigenvalue’s real
part.

. Spiral. Two cones are used as the template for this
type, which point to each other from the opposite
direction of the local eigenplane spanned by the
eigenvectors. The radius and height are scaled by the
eigenvalue’s real part.

. Spiral saddles. The template for this type is the same
as that of Node Saddles.

For a 3D flow field, it is possible that there is more than
one critical point. When multiple critical points are present,
each critical point has its corresponding template and they
are rendered together to the same image. The resulting
depth map will have separate regions representing different
templates from which seeds are dropped. Fig. 5 shows
streamlines integrated from the depth map generated by
rendering solid object templates. There are four critical
points in this synthetic flow field: three sinks and one
saddle.

4.2.3 Isosurfaces of Flow-Related Scalar Quantities

Many scalar variables are related to the properties of a flow
field. For instance, vorticity magnitude can often reveal the
degree of local rotations, whereas Laplacian can show the
second-order derivatives of the flows. As described in [20],
those scalar quantities are often important in understanding
flow fields even though they are not necessarily directly
related to the flow directions. When exploring a flow
field, one can first generate images from the isosurfaces
of those variables. As the users find some interesting
features from the isosurface, they can use our image
space method to drop seeds on the screen directly. This
allows one to enrich the image and highlight the
correlations between the scalar variable and the flow
directions. Fig. 6 shows an example of streamlines
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Fig. 4. Seeding templates for different types of critical points.

(a) Repelling or attracting node. (b) Attracting or repelling saddle and

spiral saddle. (c) Attracting or repelling spiral (critical point classification

image courtesy of Alex Pang).

Fig. 5. Streamlines generated from critical point templates. The three

sphere templates stand for sinks, whereas the two-cone template stands

for saddle.



generated from an isosurface of velocity magnitude using
our algorithm. The data set was from a simulated flow field
of thermal downflow plumes on the surface layer of solar.

4.2.4 Slicing Planes

One effective way to visualize volume data, particularly for
regions that are easily occluded, is to slice through the
volume and only visualize data on the slice plane. Although
slicing planes have been used frequently for visualizing
3D scalar fields, they are not used as often for vector field
visualization. One of the primary reasons is that visualizing
the vectors only on the plane does not reveal enough insight
about the global flow directions, whereas visualizing a large
number of streamlines starting from a slice plane can easily
clutter the scene. With our image space method, we can
enhance the visual clarity by first rendering selected slice
planes to the screen, colored with optional scalar or vector
attributes, and then dropping seeds on the planes to
compute the streamlines. With our spacing control mechan-
ism, we are able to control the depth complexity and show
only the outer layer of the streamlines that originated from
the slice. Fig. 7 shows an example of streamlines computed
from seeds dropped on a slicing plane. Note that the
streamlines are computed in 3D space rather than con-
strained on the slice.

4.2.5 External Objects

Another application of our image space method is in
dropping seeds on the surface of a user-selected object. This
external object can be thought of as a 3D rake [4], from
which streamline seeds are emitted. Although, previously,
people have proposed using 3D widgets as seed placement
tools, the seeds were explicitly placed on the 3D surface of
the widget. This requires an explicit discretization of the
rake surface to determine the 3D seed positions. In our
image space method, we only need to have a 2D rendered
image and depth map of the object. The seed density is
determined in image space and thus can be easily adapted
to the resolution of images. Fig. 8 shows streamlines

computed from seeds on the surface of a cylinder. Note
that, in this image, we enhance the depth cue by mapping
the computed streamlines with a texture that enhances the
outlines. Details about the rendering are described in
Section 4.3.6.

4.3 Additional Runtime Control

In this section, we describe several additional controls and
effects that can be achieved using our algorithm.

4.3.1 Level of Detal Rendering

In computer graphics, LOD is commonly used to save
unnecessary rendering time for objects whose details are
too small to be seen on the screen. Rendering low-resolution
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Fig. 6. (a) An isosurface of velocity magnitude colored by using the

velocity (u,v,w) as (r,g,b). (b) Streamlines generated from the isosurface

with our image space method.

Fig. 7. (a) A slicing plane colored by using the velocity (u,v,w) as (r,g,b).

(b) Streamlines generated from the slicing plane with our image space

method.

Fig. 8. (a) The cylinder as an external object. (b) Streamlines generated
from a cylinder.



data can also reduce rendering artifacts if the screen
resolution is not high enough to sample the high-frequency
detail. One such example is the texture mip-mapping
algorithm supported by OpenGL. When visualizing stream-
lines, to improve the clarity of visualization, Jobard and
Lefer [8] proposed to compute a sequence of streamlines
with different densities, whereas Mebarki et al. [16]
proposed elongating all previously generated streamlines
before placing new streamlines when the density is
increased. We can adopt the idea of LOD by adjusting the
number of streamlines displayed on the screen according to
the projection size of the domain on the screen. To achieve
this effect, a constant streamline spacing defined in screen
space between streamlines is used. As the user zooms out of
the scene, because the screen projection area of the domain
becomes smaller, fewer streamlines will be generated as a
result of attempting to keep the constant distance between
streamlines. On the other hand, as the user zooms into the
scene, since a larger projection area of the domain is now
displayed, more streamlines will be generated and dis-
played. Fig. 9 shows an example of LOD streamlines
generated at different zoom scales.

4.3.2 Temporal Coherence

When the user zooms in and out of, or rotates, the scene, the
projection of the surface will be changed. If we rerun our
algorithm to generate a completely new set of streamlines
whenever such changes occur, some unwanted flickering
and other annoyances may happen. To avoid this, we need
to maintain temporal coherence for the streamlines gener-
ated between consecutive frames. When the user zooms
into the surface, the projection area becomes larger. The
streamlines from the previous projection need to be
retained and placed into the queue as the initial set of
streamlines (see Section 4.1). These streamlines are first
elongated before new ones are generated. Some sample

points along the streamlines may go out of the view
frustum and thus become invalid. When the user zooms
out, we first verify the sample points along the streamlines
from the previous frame and invalidate those points that are
too close to other streamlines under the new projection.
After this, new streamlines will be added to fill the holes, if
any. For rotations, it involves the elongation, validation,
and insertion of new lines similar to the zoom operations.

4.3.3 Layered Display of Streamlines

To improve the clarity of visualization, sometimes it is
necessary to reduce the rendered streamlines to a few depth
layers. One technique related to controlling the depth of
rendered scenes is depth peeling [1] for polygonal models.
However, depth peeling for lines is not well defined since
lines themselves cannot form effective occluders because
the spaces between lines are not occupied. Our image space
method lends itself well to effective depth control and
peeling. This is because seeds are placed on top of the depth
map on the image plane. We can “peel” into the 3D flows by
slowly increasing or decreasing a �z from the original depth
map to drop the initial seeds and generate streamlines.
Fig. 10 shows examples where we compute streamlines
using different offsets from a depth map generated by a
sphere. We can also control the display of streamlines by
constraining them to integrate within a þ=� �z away from
the input depth map. This will effectively control the depth
complexity of the rendered scene. This is essentially to create
clipping planes to remove streamlines outside the allowed
depth range. In our case, the clipping planes have shapes
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Fig. 9. LOD streamlines generated at three different scales. It can be

seen that as the field is projected to a larger area, more streamlines that

can better reveal the flow features are generated.

Fig. 10. Streamlines computed using different offsets from a depth map
generated by a sphere: (a) from the original depth map, (b) by increasing
a value from the original depth map, (c) by further increasing a value
from the original depth map, and (d) by decreasing a value from the
original depth map.



conforming to the initial depth map, which can be more
flexible compared to the traditional planar clipping planes.
Fig. 11 shows an example of opening up a portion of the
streamlines in the middle section by not allowing streamlines
to go beyond a small �z from the input depth map.

4.3.4 Generate Streamlines from Multiple Views

Even though we have focused on how to control the
placement of streamlines in image space from a single
camera view so far, sometimes, it can be beneficial to
combine the streamlines generated from multiple views and
display them all together. For each individual view, we still
enforce our spacing constraints, that is, not to allow
streamlines to come too close to each other. However,
when combining the streamlines from multiple views, there
is no constraint enforced. The motivation behind this is that,
even though the projection of streamlines from different
views may intersect and overlap with each other in image
space, as long as the depth complexity in each view and the
number of combined views are well controlled, the
combined streamlines can enhance the 3D depth perception
of the scene. In our algorithm, the selection of different
views is done by the user: Given a 3D object displayed on
the screen, a stream surface, for example, the user can rotate
the surface, identify a good view, and place streamlines
based on the current view using our image space algorithm.
Then, the user can rotate the scene again to reveal the region
that was invisible in the previous view and place more
streamlines. When the user feels that the scene is getting too
cluttered, the accumulation of streamlines can be stopped.
Fig. 12 illustrates this process by showing images from four
different views and the combined results. Another strategy
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Fig. 11. An example of peeling away one layer of streamlines by not

allowing them to integrate beyond a fixed distance from the input depth

map.

Fig. 12. (a) Rendering images of stream surface from different viewpoints. (b) Streamlines generated at the corresponding viewpoint. (c) Combined

images of streamlines rendered from four different views.



for combining the streamlines is to keep the current camera
view, but to move the probing objects to different locations.
For example, the user can use a cylinder to probe the flow
field and place streamlines from the projection of the
cylinder surface. The user can keep the current camera
view, change the location of the cylinder, and gradually
populate the scene until the image reveals enough about the
flow field without making the scene overly crowded. Fig. 13
shows an example of combining the streamlines generated
from three different cylinder probe locations.

4.3.5 Importance-Driven Streamline Placement

To distinguish regions of different importance, different
spacing thresholds can be used to place the streamlines. For
instance, more streamlines can be placed in regions with
higher velocity magnitudes, whereas fewer streamlines are
placed in other regions. To achieve this effect, our algorithm
takes an importance map as an input, which can be generated
by evaluating any function of the flow field such as velocity or
vorticity magnitude. At every step of the streamline integra-
tion, we project the point to the screen and then retrieve the
importance value at the screen point. After mapping the
importance value to a streamline distance, we can decide
whether to continue or terminate the integration of the
current streamline. We can use different transfer functions to
map the importance value to different streamline distance
thresholds. For instance, in our implementation, we use the
functions of bias and gain proposed in [18] by Perlin and
Hoffert to create nonlinear mapping effects. Fig. 14 shows an
example of using the velocity magnitude as the importance
value to determine the streamline density on a slice plane,
where more streamlines are placed in regions with higher
velocity magnitudes.

4.3.6 Stylish Drawing

One advantage of our image-based streamline placement
algorithm is that streamlines are well spaced out with user
control on the screen. With the spacing controlled, it
becomes much easier to draw patches of desired widths
along the streamlines on the screen to enhance the
visualization of streamlines, since we can easily avoid the
stream patches overlapping with each other. To compute
the stream patches, we use the screen projection of the

streamline as the skeleton. Then, we extend the width of the
stream patches along the direction that is perpendicular to
the streamline’s local tangent direction on the screen. The
width of the stream patches is controlled by the local
spacing of the streamlines, which is defined by our image-
based algorithm. With the stream patches, we can map a
variety of textures to enhance depth cues and simulate
different rendering styles. We can also vary the width and
transparency of the stream patches based on local flow
properties. Fig. 15 shows three examples of our stylish
drawing of streamlines using different textures.

5 DATA SETS AND PERFORMANCE

We have tested our algorithm on a PC with an Intel Pentium
M 2-GHz processor, 2 Gbytes of memory, and an nVIDIA
6800 graphics card with 256 Mbytes of video memory. Two
synthetic data sets (Figs. 5 and 10) and two 3D flow
simulation data sets (Plume and TSI) were used to test our
algorithm and generate the images shown throughout the
paper. The Plume data set (Figs. 6, 7, 8, 9, 11, 13, 14, and 15) is a
3D turbulent flow field with dimensions of 126� 126� 512.
The original data set is a time-varying 3D flow field, which
models turbulence in a solar simulation performed by
National Center for Atmospheric Research scientists. The

LI AND SHEN: IMAGE-BASED STREAMLINE GENERATION AND RENDERING 9

Fig. 13. Streamlines generated from three different cylinder locations (left three images) are combined together and rendered to the image on the

right.

Fig. 14. Streamline densities are controlled by velocity magnitude on a

slice. (a) Larger velocity magnitudes are displayed in brighter colors. (b)

Streamlines generated from the slice.



TSI data set (Figs. 3 and 12) is a 3D flow field with
dimensions of 200� 200� 200. It was used to model the
core collapse of supernova and generated by collaboration
among Oak Ridge National Lab and eight universities. We
tested our algorithm using a few time steps of these two
data sets.

When running our algorithm, the user can control the
streamline density by specifying different separating dis-
tances in screen space. The coverage of the visualized
objects in the input depth map affects the generation of
streamlines. The larger the area, the more streamlines are
generated compared with those generated from a smaller
area if the separating distance remains the same. In our
tests, we zoomed into the scene to allow the geometries
producing the depth map to cover the screen as much as
possible. We used a constant step size Runge-Kutta fourth-
order integrator to compute the streamlines.

We show the performance of our algorithm using the
Plume data set. The main steps of our algorithm include
transformations of streamline points between object and
image space, streamline integration, seed point selection,
and validation of streamline points. In our program, since
longer streamlines were generally preferred, we discarded
those streamlines that were too short. In our experiments,
the threshold value for the minimum streamline length was
20, and the fixed integration step size was 1.0, both in
voxels. This means that, for a streamline to be accepted, it
should have at least 20 integration points. The larger this
threshold value, the higher the possibility for a streamline
generated from our distance control algorithm to be
discarded becomes; thus, the percentage of total computa-
tion time wasted on generating those short streamlines
becomes higher, too. Fig. 16 shows the percentages of time
spent on each of the main steps in our algorithm. In the
figure, it can be seen that the streamline integration process
is the most time-consuming part. Fig. 17 shows the number

of streamlines and line segments generated with different

distance thresholds. Fig. 18 shows the timings for generat-

ing streamlines with different separating distances, which

directly influence the number of streamlines that were

computed. Throughout the paper, all images of streamlines

are rendered with stylish drawings; the average time to

render one line segment is about 0.00259 millisecond.

6 CONCLUSIONS AND FUTURE WORK

We present an image-based approach for streamline

generation and rendering. Our main goal is to reduce

scene cluttering and allow the user to flexibly place

streamline seeds on the screen when they identify hot

spots from the visualization of other scalar or flow-related

variables. The rendering output from a variety of

visualization techniques such as isosurfaces or slicing

planes can be used as the input to our program to assist

seed selections. As streamlines are integrated in object

space, our algorithm monitors and controls their distances
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Fig. 15. Streamlines generated and rendered with three different styles by our image-based algorithm.

Fig. 16. The percentage of total time each main step used.

Fig. 17. The pink curve (the left axis as scale) shows the number of
streamlines, whereas the blue one (the right axis as scale) shows the
number of line segments generated.

Fig. 18. The time (in seconds) to generate streamlines from an
isosurface for different separating distance (pixels) using the Plume
data set.



to the existing streamlines that have already been dis-

played. In addition to reducing visual cluttering, our

algorithm can be used to achieve a variety of effects such

as LOD rendering, depth layering, and stylish drawing of

streamlines.
In the future, we will focus on designing different image-

based strategies to detect domain-specific flow features. We

will also improve the rendering of streamlines generated by

our algorithm with additional depth cues. Finally, we will

apply our algorithm to generate various nonphotorealistic

rendering effects to have a better illustration of 3D vector

fields.
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