
Illustrative Streamline Placement and Visualization

Liya Li∗

The Ohio State University

Hsien-Hsi Hsieh†

National Dong Hua University, Taiwan

Han-Wei Shen‡

The Ohio State University

ABSTRACT

Inspired by the abstracting, focusing and explanatory qualities of
diagram drawing in art, in this paper we propose a novel seeding
strategy to generate representative and illustrative streamlines in 2D
vector fields to enforce visual clarity and evidence. A particular fo-
cus of our algorithm is to depict the underlying flow patterns effec-
tively and succinctly with a minimum set of streamlines. To achieve
this goal, 2D distance fields are generated to encode the distances
from each grid point in the field to the nearby streamlines. A local
metric is derived to measure the dissimilarity between the vectors
from the original field and an approximate field computed from the
distance fields. A global metric is used to measure the dissimilarity
between streamlines based on the local errors to decide whether to
drop a new seed at a local point. This process is iterated to generate
streamlines until no more streamlines can be found that are dissim-
ilar to the existing ones. We present examples of images generated
from our algorithm and report results from qualitative analysis and
user studies.

1 INTRODUCTION

Effective visualization of vector fields plays an important role in
many scientific and engineering disciplines. To visualize 2D flow
fields, several techniques have been developed in the past. The bet-
ter known techniques include the geometry-based methods such as
streamline and particle tracing, and the texture-based methods such
as LIC [2], Spot Noise [15], and IBFV [16]. In general, texture-
based techniques display a dense representation of the flow fields
but the resulting visualization generally lacks visual focus to high-
light salient flow features. They are also more expensive to compute
and can suffer from aliasing problems. Comparatively speaking, vi-
sualization of streamlines is still a popular method because they are
faster to compute and can be rendered at any resolution at interac-
tive rates. The main challenge for the streamline-based methods,
however, is the placement of seeds. On the one hand, placing too
many streamlines can make the final images cluttered, and hence
the data become more difficult to understand. On the other hand,
placing too few streamlines can miss important flow features. An
ideal streamline seed placement algorithm should be able to gener-
ate visually pleasing and technically illustrative images. It should
also allow the user to focus on important local features in the flow
field.

Hand-drawn streamlines are frequently shown in scientific liter-
ature to provide concise and illustrative descriptions of the under-
lying physics. Fig. 1 shows such an example. The abstract infor-
mation provided by the streamlines in the image clearly shows the
primary features of the flow field. Even though the streamlines do
not cover everywhere in the field, we are able to create a mental
model to reconstruct the flow field when looking at this concise il-
lustration. That means, to depict a flow field, it is unnecessary to
draw streamlines at a very high density. Abstraction can effectively

∗e-mail: lil@cse.ohio-state.edu
†e-mail:hsi@game.csie.ndhu.edu.tw
‡e-mail:hwshen@cse.ohio-state.edu

prevent visual overload, and only emphasizes the essential while
deemphasizing the trivial or repetitive flow patterns. In the visual-
ization research literature, there have been some streamline seeding
algorithms proposed in the past [14, 6, 17, 10, 9]. Most of the meth-
ods, however, are based on evenly-spaced distribution criteria, i.e.,
streamlines are spaced evenly apart at a pre-set distance threshold
across the entire field. While those methods can reduce visual clut-
tering by terminating the advection of streamlines when they are
too close to each other, more streamlines than necessary are often
generated as a result. In addition, there is no visual focus provided
to the viewers to quickly identify the overall structure of the flow
field.

Figure 1: Hand-drawn streamlines for a flow field around a cylinder. Image
courtesy of Greg Turk [14].

Spatial coherence often exists in a flow field, meaning neigh-
boring regions have similar vector directions, and nearby stream-
lines resemble each other. To create a concise and illustrative vi-
sualization of streamlines, in this paper we present a seeding strat-
egy which utilizes spatial coherence of streamlines in 2D vector
fields. Our goal is to succinctly and effectively illustrate vector
fields, rather than uniformly laying out streamlines with equal dis-
tances between them, as in most of the existing methods. We allow
the density of streamlines in the final image to vary to reflect the
coherence of the underlying flow patterns and also to provide vi-
sual focus. In our algorithm, 2D distance fields representing the
distances from each grid point in the field to the nearby streamlines
are computed. From the distance fields, a local metric is derived
to measure the dissimilarity between the vectors from the original
field and an approximate field computed from the nearby stream-
lines. We also define a global metric to measure the dissimilarity
between streamlines. A greedy method is used to choose a point as
the next seed if both of its local and global dissimilarity satisfy our
requirements.

The remainder of the paper is organized as follows. We first
briefly review the related work. We then present our illustrative
streamline placement algorithm in detail. Finally, results from
quantitative analysis and user studies are discussed.

2 RELATED WORK

There exist several streamline seeding strategies for two dimen-
sional flow fields. The image guided streamline placement algo-
rithm proposed in [14] uses an energy function to measure the dif-
ference between a low-pass filtered streamline image and an image
of the desired visual density. An iterative process is used to re-
duce the energy through some pre-defined operations on the stream-
lines. Jobard and Lefer [6] explicitly control the distance between
adjacent streamlines to achieve the desired density. Each candi-
date seed is placed at a point away from an existing streamline at

some pre-specified distance, from which a new streamline is ad-
vected backward and forward until it comes too close to the existing
streamlines or leaves the 2D domain. Verma et al. [17] proposed a
seed placement strategy based on flow topology characterized by
critical points in the field. Different seeding templates for various
types of critical points are defined, and the shape and size of tem-
plates are determined by the influence region covered by the criti-
cal points. To have a sufficient coverage, additional seed points are
randomly distributed in empty regions using Poisson disk distribu-
tion. Mebarki et al. [10] proposed a two dimensional streamline
seeding algorithm by placing a new streamline at the farthest point
away from all existing streamlines. Delaunay triangulation is used
to tessellate regions between streamlines, and seeds are placed in
the center of the biggest voids. The purpose of their algorithm is to
generate long and evenly spaced streamlines. Intuitively, seeding a
streamline in the largest empty region indeed favors longer stream-
lines. However, as more streamlines are generated or a smaller
separating distance threshold is used, especially near the critical
regions, discontinuity of flow paths can still exist. Liu et al. [9]
proposed an advanced evenly-spaced streamline placement strategy
which prioritizes topological seeding and long streamlines to mini-
mize discontinuities. Adaptive distance control based on local flow
variance is used to address the cavity problem.

There are some other research related to our work. In the past
years, there are many techniques proposed to simplify vector fields.
Heckel et al. [5] proposed to generate a top-down segmentation of
the discrete field by splitting clusters of points. Beginning with a
single cluster including all points of the vector field, more clus-
ters are created under the guidance of some error metric defined
by the distance between the streamline integrated from the simpli-
fied vector field and one from the original vector field. Telea and
Wijk [11] presented a method to hierarchically bottom-up cluster
the input flow field. The algorithm repeatedly selects the two most
resembling neighboring clusters and merging them to form a larger
cluster until a single cluster covering the whole field is generated.
The metric to evaluate the similarity between vectors is based on the
direction and magnitude comparison, and the position comparison.
Du and Wang [3] proposed to use Centroidal Voronoi Tessellations
(CVTs) to simplify and visualize the vector fields. Chen et al. [?]
extracted the topology of a vector field using Morse Decomposi-
tion, which can be used to decide the locations of streamlines. In
terms of measuring the similarity between streamlines, Bordoloi
and Shen [1] presented an interactive global technique for dense
vector field visualization using levels of detail. The level of detail
is controlled based on the local complexity of the vector field. A
quadtree is constructed and used as a hierarchical data structure for
error measurement. The error associated with each node represents
the error when only one representative streamline is computed for
all the points within the entire region corresponding to the node.

Figure 2: Streamlines generated by our algorithm.

3 ALGORITHM OVERVIEW

The primary goal of our work is to generate streamlines succinctly
for 2D flow fields by emphasizing the essential and deemphasiz-

ing the trivial or repetitive flow patterns. Fig. 2 shows an example
of streamlines generated by our algorithm, where the selection of
streamlines is based on a similarity measure among streamlines in
the nearby region. The similarity is measured locally by the di-
rectional difference between the original vector at each grid point
and an approximate vector derived from the nearby streamlines, and
globally by the accumulation of the local dissimilarity at every in-
tegrated point along the streamline path. To approximate the vec-
tor field from the existing streamlines, 2D distance fields recording
the closest distances from each grid point in the field to the nearby
streamlines are first computed. Then the approximate vector direc-
tion is derived from the gradients of the distance fields. Our al-
gorithm greedily chooses the next candidate seed that has the least
degree of similarity according to our metrics. Detailed information
about our similarity measures and the seed selection algorithm is
provided in later sections.

Our algorithm has the following unique characteristics when
compared with the existing streamline seeding algorithms [14, 6,
17, 10, 9]:

First, the density of streamlines. Some of the existing techniques
favor uniformly spaced streamlines. However, in our algorithm,
the density of streamlines is allowed to vary in different regions.
The different streamline densities reflect different degrees of coher-
ence in the field, which allows the viewer to focus on more impor-
tant flow features. Regions with sparse streamlines imply the flows
are relatively coherent, while regions with dense streamlines mean
more seeds are needed to capture the essential flow features. This
characteristic of our algorithm matches with one of the general prin-
ciples of visual design by Tufte [13] - different regions should carry
different weights, depending on their importance. The information
can be conveyed in a layered manner by means of distinctions in
shape, color, density, or size.

Second, the representativeness of streamlines. The general
goal of streamline placement is to visualize the flow field without
missing important features, which can be characterized by critical
points. Since the flow directions around critical points can change
rapidly compared to those non-critical regions, our algorithm is able
to capture those regions and place more streamline seeds accord-
ingly.

Finally, the completeness of flow patterns. In the previous
streamline placement algorithms that have explicit inter-streamline
distance control, the advection of streamlines can be artificially ter-
minated. This may cause visual discontinuity of flow pattern, espe-
cially when it is near the vicinity of critical points. Our seeding al-
gorithm, however, only determines where to drop seeds and allows
the streamlines to be integrated as long as possible until they leave
the 2D domain, reach critical points, or generate a loop. Without
abruptly stopping the streamlines, the flow patterns shown in the
visualization are much more complete and hence easier to under-
stand.

In the following, we discuss our algorithm in detail.

3.1 Distance Field

A distance field [7] represents the distance from every point in the
domain to the closest point on any object. The distance can be un-
signed or signed, and the sign is used to denote that the point in
question is inside or outside of the object. With the distance field,
some geometric properties can be derived such as the surface nor-
mal [4]. The concept of distance fields has been used in various
applications such as morphology, visualization, modeling, anima-
tion, and collision detection.

In our algorithm, we use unsigned distance fields to record
the closest distance from every point in the field to the nearby
streamlines that have been computed. In practice, a mathemati-
cally smooth streamline is approximated by a series of polylines
integrated bidirectionally through numerical integrations. Given

a line segmentsi = {pi , pi+1}, where p ∈ R3, i ∈ N, a vector
vi = pi+1 − pi , we can compute the nearest pointpq on the line
segmentsi to an arbitrary pointq by:

pq = pi + tvi (1)

where

t = clamp(
(q− pi) ·vi

|vi |2
),

clamp(x) = min(max(x,0),1), (2)

The distanced(q,si) from the pointq to the line segmentsi is
computed by the Euclidean distance betweenq andpq. For a given
streamlineL, whereL = {∪si |si = {pi , pi+1}, i ∈ N, p∈ R3}, andsi
is a line segment of lineL, the unsigned distance function at a point
q with respect toL is:

d(q,L) = min{d(q,si)|si ∈ L} (3)

To speed up the computation of distance fields, we implement it
on GPU. We defer the discussion about the GPU implementation
to section 6. The distance fields are used to derive an approximate
vector field, which can be used to measure the dissimilarity between
streamlines in the local regions. In the next section, we describe our
algorithm in detail.

3.2 Computation of Local Dissimilarity

Because of spatial coherence in the field, neighboring points can
have advection paths with similar shapes, even though they may
not be exactly the same. Given a streamline, considering the closest
distance from every point in the field to this streamline, a distance
field can be computed. The iso-contours of this distance field will
locally resemble the streamline, i.e., the closer is the contour to the
streamline, the more similar their shapes will be. This is the basic
idea how we locally approximate streamlines in the empty regions
from existing ones, which forms the basis for us to measure the
coherence of the vector field in local regions.

With the the distance field, we compute a gradient field using the
central difference operator. For each vector of this gradient field,
after a 90 degree of rotation, we get an approximate vector that is
derived from the single streamline. Whether to rotate the gradient
clockwise or counter-clockwise is decided based on the flow di-
rection of the nearby streamline so that the resulting approximate
vector points to roughly the same direction as the streamline. To
measure the local coherence, we define a local dissimilarity metric
as the direction difference between the true vector at the point in
question and its approximate vector. For a pointp ∈ R3, the local
dissimilarityDl (p) at this point is written as the following:

Dl (p) = 1− (
v′(p) ·v(p)

|v′(p)||v(p)|
+1)/2 (4)

wherev′(p) is the approximate vector atp, andv(p) the original
vector. The value is in the range of 0.0 to 1.0; the larger the value
is, the more dissimilar between the true vector and the approximate
vector at that point. We note that this metric only denotes the local
dissimilarity between the vectors at the point, instead of the dis-
similarity between the streamline originated from this point and its
nearby streamline. Also, so far we only consider the case that there
exists only one streamline in the field. In the next section, we dis-
cuss how to consider multiple streamlines existing in the field and
modify our dissimilarity metric, which is a more general case as-
sumed in our algorithm. After that, we discuss how to select the
streamline seeds.

3.3 Influence from Multiple Streamlines
When there exist multiple streamlines in the field, we cannot use
the standard definition of distance field and simply compute one
smallest distance from each point to the streamlines, and evaluate
the dissimilarity metric as presented above. This is because the dis-
tance field computed with this method will generate a discrete seg-
mentation of the field. For example, the left image in Fig. 3 shows
the approximate vectors in orange given two existing streamlinesS1
andS2 in black. For the points in the lower triangular region under
the dotted line, they are classified to be the closest to streamlineS2,
while the points in the upper triangle are the closest to streamline
S1. If we use a single distance field computed from the two lines
to approximate the local vectors, the resulting vectors will be gen-
erated in a binary manner, as shown by those orange vectors. This
binary segmentation causes discontinuity in the approximate vector
field. Given two lines as shown in the example, for the empty space
in between, a more reasonable approximation of the vectors should
go through a smooth transition from one line to the other, as shown
on the right in Fig. 3.

Figure 3: Assume the flow field is linear and streamlines are straight lines.
The circle in the images denotes the region where a critical point is located.
Black lines represent the exact streamlines seeded around the critical point.
The orange lines represent the approximate vectors by considering the influ-
ence of only one closest streamline (left), and the blending influence of two
closest streamlines (right).

In our algorithm, we achieve a smooth transition of vector direc-
tions between streamlines by blending the influences from multiple
nearby streamlines. In the previous section, we discuss how to com-
pute the dissimilarity metric if there exists only one streamline. For
the more general case where multiple streamlines are present, for
each point we pick theM nearest streamlines, evaluate the dissimi-
larity function as in equation 4 for each streamline respectively, and
blend theM Dlk(p) together to compute the final dissimilarity value
at p as:

Dl (p) =
M

∑
k=1

(wkDlk(p)) (5)

wherewk is the weight of the influence from the streamlinek de-
cided by the distance between pointp and the streamlinek. Dlk(p)
is the dissimilarity value computed at pointp using the distance
field generated by streamlinek. Analogously, the approximate vec-
tor at p is the blending of the vectors generated from theM nearest
streamlines, and each vector is a 90 degree rotation of the gradient
computed from the corresponding streamline, as described above.
We note that different methods for assigning the weight can be used
in the equation depending on the requirement of the user. For all
the images presented in this paper, we consider the blending of two
nearest streamlines, that is,M equals to 2 in equation 5.

3.4 Computation of Global Dissimilarity
As mentioned in the previous section, at each point, there is a lo-
cal dissimilarity measure that represents the direction difference be-
tween the true vector at that point and the approximate vector de-
rived from the nearby streamlines. However, the local dissimilarity
only captures the coherence about the local vectors instead of the
similarity between streamlines. In order to capture the coherence

between a streamline originated from a point and its nearby stream-
lines, we define a global dissimilarity measure by accumulating
the local dissimilarity at every integrated point along its streamline
path. Written in equation:

Dg(p) =
L

∑
n=1

(unDl (xn,yn)) (6)

whereDg(p) is the global dissimilarity at pointp, and(xn,yn) is
thenth integrated point along the streamline originated fromp. The
length of the streamline isL. Dl (xn,yn) is computed by interpolat-
ing the local dissimilar values at the four corner grid points. Based
on different metrics,un can be computed differently. In our algo-
rithm, we use averaged local dissimilarity values along the stream-
line path, i.e.,un is equal to 1/L.

3.5 Selection of Candidate Seeds
Before we discuss our algorithm, we first introduce two user-
specified threshold values,Tl andTg. Tl is the threshold for the min-
imum local dissimilarity, whileTg is the threshold for the minimum
global dissimilarity. To avoid drawing unnecessary streamlines, we
only choose seeds from grid points satisfying equation 7.

Dl (i, j) > Tl ;Dg(i, j) > Tg (7)

The initial input to our algorithm is a streamline seeded at a ran-
dom location in the field. For example, we can use the central point
of the domain as the initial seed to generate the streamline. With
the first streamline, the distance field is calculated and the dissimi-
larity value at each grid point is computed. The important step now
is how to choose the next seed. Here we present a greedy but more
efficient method for this purpose. Given the two threshold values,
our algorithm for choosing the next seed is described as follow:

1. Sort the grid points in the descending order of the local dis-
similar values computed from equation 5.

2. Dequeue the first point(i, j) in the sorted queue. IfDl (i, j) is
larger thanTl , integrate a streamline from this point bidirec-
tionally and compute the global dissimilarity valueDg(i, j) by
using equation 6. Otherwise, ifDl (i, j) is smaller thanTl , the
iteration terminates.

3. If Dg(i, j) is larger thanTg, this seed is accepted as the new
seed and the streamline being integrated is displayed. Other-
wise, go back to step (2).

When a new streamline is generated, we update the distance field
and re-compute the dissimilarity values at the grid points as men-
tioned in section 3.3. The above algorithm runs iteratively to place
more streamlines. The more streamlines we place, the smaller the
dissimilarity values will become at the grid points. The program
terminates when no seed can be found that satisfies equation 7. At
this point, we have enough streamlines to represent the underlying
flow field according to the user desired coherence thresholds.

To speed up the process of choosing the candidate seeds, during
the process mentioned above, whenDg(i, j) is smaller thanTg, we
mark this grid point, and also those grid points at the four corners
of the cells that are passed by the streamline originated from(i, j).
These points will be excluded from being considered any further in
the later iterations, because there already exist nearby streamlines
very similar to the streamlines that would have been computed from
them. Therefore, it is unnecessary to check those grid points again.
Generally speaking, for a dataset that has a sufficient resolution, the
flow within a cell is very likely to be coherent, so this heuristic will
not affect the quality of our visualization output much. That means,
in most cases, streamlines from those grid points will be similar to

the streamline that has already been rejected. This allows us to re-
duce the number of streamlines to compute and test substantially,
without visible quality difference being seen from all of our exper-
iments.

Fig. 4 shows an image of streamlines generated with an ocean-
field data using our algorithm. For rendering, since our algorithm
allows streamlines to be integrated as long as possible until they
leave the 2D domain, reach critical points, or generate a loop, the
local density of ink in some regions may be higher than other re-
gions. To even the distribution of ink, we render the streamlines in
the alpha blending mode, where the alpha value of each line seg-
ment is adjusted according to the density distribution of the pro-
jected streamline points in image space. Each sampling point on the
streamlines is first mapped to image space, and the corresponding
screen space point is treated as some energy source, which can be
defined by the Gaussian function. Then, an energy distribution map
based on all streamlines is generated. This energy map is mapped
to an opacity map to control the opacity of the streamline line seg-
ments as they are drawn. This can effectively reduce the intensity
of the lines if they are cluttered together.

Figure 4: Streamlines generated by our algorithm on the Oceanfield data.

4 TOPOLOGY-BASED ENHANCEMENT

Although without explicitly considering the flow topology, our al-
gorithm would naturally place more streamline seeds around the
critical points because of the lack of coherence there. Sometimes
it is desired to highlight the streamline patterns around the critical
points so that the viewer can clearly identify the type of the critical
points. To achieve this goal, we can adapt our algorithm by placing
an initial set of streamlines with some specific patterns around the
critical points, instead of randomly dropping the first seed. This is
similar to the idea of seed templates proposed by Verma et al. [17].
For each type of critical points, we use a minimal set of stream-
lines to distinguish them from each other. For a source or sink, we
place four seeds along the perimeter of a circle around the critical
point, where each of the seeds is the intersection point of the x-y
axes with the circle; for saddle, we place four seeds along the two
lines bisecting the eigen directions with two seeds on each line; for
spiral or center, we place one seed along a straight line emanating
from the critical point. Fig. 5 shows such an image of streamlines
generated with topology information being considered.

We note that streamline placement guided by topology informa-
tion alone is not always effective, which can happen when there is
no critical point, or there are too many critical points in the field.
When there are too many critical points, the final image may easily
get cluttered. On the other hand, if there is no critical point at all
in the field, then no rules can be applied to guide the placement of
streamlines. Our algorithm can consider both the vector coherence
and the flow topology.

5 QUALITY ANALYSIS

As mentioned above, our algorithm generates representative
streamlines to illustrate the flow patterns of the underlying field.
Given appropriate threshold values, our algorithm selects stream-
lines based on the flow coherence via the dissimilarity measures

Figure 5: Streamlines generated when the flow topology is considered. There
are three saddle and two attracting focus critical points in this data.

defined above. The density of the selected streamlines can vary
based on the degree of coherence in the local regions. As in Fig. 4,
there are void regions between the displayed streamlines, which tell
us the streamlines in those void regions look similar to each other
and hence can be easily derived. Therefore, our algorithm does not
place many seeds in those regions. Since we only draw a small
subset of the streamlines in the whole vector field, it is necessary
to conduct quality analysis of our method. One method of analy-
sis, which can be performed quantitatively, is to compare the orig-
inal vector field with the approximate vector field derived from the
streamlines selected by our algorithm. Another method is to per-
form user studies to verify whether the users can correctly interpret
the field in the empty regions, and also whether our representation
is an effective method to depict the vector fields. In the following,
we first describe our approach for performing quantitative analysis
with some results, and then present findings from our user studies.

5.1 Quantitative Comparison

Our quantitative analysis consists of a data level comparison and
a streamline level comparison. For the data level comparison, we
first reconstruct a vector field from the streamlines generated by our
algorithm. Then we compare the local vectors between the recon-
structed field and the original field. For the streamline level compar-
ison, originated from each grid point, two streamlines are integrated
respectively in the original vector field and the reconstructed one,
and we compute the errors between these two streamlines. We note
that the errors are only used to study whether our algorithm misses
any regions that require more streamlines to be drawn. The errors
do notrepresent the errors in the visualization, since every stream-
line presented to the user is computed using the original vector field.
In the following, we first describe how we reconstruct a vector field
from the streamlines that are displayed. We then present our data
level and streamline level comparison results.

5.1.1 Reconstruction of Flow Field

The process to reconstruct the approximate flow field from selected
streamlines is very similar to the process presented in section 3.2
and 3.3 that we use to iteratively introduce streamline seeds. The
main difference is that now we are given a final set of streamlines to
generate the gradient fields. Given a streamline in the final stream-
line set, a distance field can be computed, from which we can com-
pute its derived gradients. In section 3.3, we discuss the com-
putation of the local dissimilarity by considering multiple nearby
streamlines. With the same idea, for each grid point, we first iden-
tify the nearestM streamlines, and use the distances to the stream-
lines to generateM gradients at that point. After rotating the gradi-
ents by 90 degrees to get the approximate vectors, the final recon-
structed vector at this grid point is computed from an interpolation
of the M vectors inversely proportional to the distances from the
point to the corresponding streamline. As mentioned above, in this
paper we consider the nearest two streamlines for each grid point,

that is,M = 2. For the grid points that are selected as the seeds or
there are streamlines passing through it, we use the original vectors
as the reconstructed vectors.

5.1.2 Data Level Comparison

Data level comparison is performed between the original vector
field and the reconstructed vector field at every grid point. Our goal
is to evaluate how well the streamlines displayed by our algorithm
can represent the original vectors at the empty regions, based on the
computational model we introduce above. One of the challenges to
perform data level comparison is to design appropriate metrics to
quantify the errors. Since our goal is to evaluate how much the true
vector direction at each grid point is aligned with the reconstructed
vector, we take the cosine of the angle between the original vector
and the reconstructed vector at each grid point as a measure of sim-
ilarity. Fig. 6 shows a result of our comparison using one vector
data set. In the image, dark pixels depict that the two vectors at the
grid points are almost the same, while brighter pixels mean more
errors. From the image, it can be seen that the streamlines we dis-
play are representative for the original vector field, because in most
of the empty regions, the approximate vectors from the streamlines
are well aligned with those in the original field. There are a few re-
gions with higher errors, which mostly fall into the following cases.
The first case is regions near the domain boundary. Our algorithm
explicitly excludes the grid points on the boundary from being se-
lected as candidate seeds. This is because sometimes the vectors
on boundaries are odd due to sampling issues, but the fieldlines in
downstream or upstream tend to be more normal and stable. The
second case of error is due to our implementation. When we select
the next candidate seed, if a grid point is too near to an existing
streamline, for example the distance to this streamline is within a
cell, we exclude this point from being a candidate seed. This is
really not a cause of concern because even if the streamline inte-
grated from this point eventually will be different from this existing
streamline, there will be some point elsewhere on this streamline
or near this streamline being picked up as the seed. The third case
might be a problem caused by the linear interpolation operator we
use to blend the influence from multiple nearby streamlines based
on the distance from the grid points to those streamlines.

(a) (b)

Figure 6: (a) Representative streamlines generated by our algorithm
(b) Gray scale image colored by one minus a normalized value of
the cosine of the angle between vectors from the original field and
the reconstructed field. Dark color means the two vectors are al-
most aligned with each other, while brighter color means more errors.
The maximal difference between the vector directions in this image
is about 26 degree, and the minimal difference is 0 degree.

5.1.3 Streamline Level Comparison

Besides comparing the original and the reconstructed vector fields
with the raw data, we can also compare these two fields in terms
of some global features, such as streamlines. To do this, from ev-
ery grid point, we simultaneously integrate streamlines forward and
backward in the original vector field and the reconstructed field, and
then compute the distance between those two streamlines at every

integration step based on some metrics, such as Euclidean distance,
or Manhattan distance. Fig. 7 shows a result of streamline com-
parison on the same vector fields as Fig. 6, where we compute the
average Euclidean distance between the two streamlines. Similar to
the cases discussed in section 5.1.2, some errors are detectable in
some local regions but they are quite small. In Fig. 7 (b), we show
the histogram of the distance errors, from which we can see that
most of the grid points from which the streamlines originated only
bear small errors.

(a) (b)

Figure 7: (a) Gray scale image colored by the distance errors (in
the unit of cells) between two streamlines integrated from each grid
point in the original vector field and the reconstructed one. Dark
color means low errors, while brighter color means higher errors (b)
Histogram of the streamline errors collected from all grid points in
the field. X axis is the error, while Y axis is the frequency of the
corresponding error value. The maximal difference is 23.1 and the
minimal is 0.0. The dimensions of the field is 100 by 100.

5.2 User Study

Abstract or illustrative presentations have been widely used and ac-
cepted in non-photorealistic rendering and artistic design to depict
information succinctly. User study is a way to quantify the effec-
tiveness of new methods, like in [8]. To evaluate the effectiveness of
using illustrative streamlines generated by our algorithm, we con-
ducted a user study which contained four questions categorized into
two tasks. The tasks and questions were related to visualization of
four different 2D vector fields. In the following, we describe our
study and discuss the results.

5.2.1 Participants

Subjects for the user study were 12 unpaid graduate students from
the Department of Computer Science and Engineering. Five of
them are majored or will be majored in Computer Graphics, and
others are in other research groups, such as Artificial Intelligence,
Networking, etc. Two of them know a little about the concept of
flow fields and streamlines, but none of them had studied fluid me-
chanics or related courses. There were four female students and
eight male students. They all have normal or corrected visions and
can see the images presented to them clearly. The study took about
30 mins for each subject, and before the test, the subjects were given
a tutorial introducing them to the application. We explained the pur-
pose of using streamlines to visualize flow fields, and different flow
features being depicted by different types of critical points. The
tests did not start until they could easily tell the flow features in the
training datasets without our help.

5.2.2 Tasks and Procedure

Our first task was to evaluate whether the users were able to ef-
fectively identify the underlying flow features, including flow paths
and critical points, from the visualization generated by our algo-
rithm. In particular, we wanted to verify whether our stream-
line representation was as effective as other existing algorithms, or
more, in terms of allowing the users to understand the vector fields.
This part was conducted on pieces of paper handed out to the sub-
jects and there were three questions involved.

To perform the test, we chose two existing 2D streamline place-
ment algorithms by Mebarki et al. [10] and Liu et al. [9], plus our
method, and generated images using four datasets. The subjects
were shown 15 groups of images, and each group included three im-
ages generated by the three algorithms respectively. For the images
within each group generated by the algorithms of Mebarki and Liu,
the streamline densities were similar, but between different groups,
the density of streamlines were different. To avoid possible bias
caused by a fixed ordering of images by the three algorithms, we
changed the order of three images randomly in each group. Fig. 8
shows three groups of images used in our user study. At the be-
ginning of this task, instructions were given to the subjects about
the questions in detail. They were required to fully understand the
questions before they started to give answers.

The first question in the test was to ask the subjects to rate the
three images in each group according to the easiness of depicting
the flow paths in the vector fields, where 1 was the best and 3 was
the worst. The second question was about critical points. If there
were critical points in the fields, subjects were asked to circle them
and rate how helpful the streamlines presented in the visualization
were to detect those critical points. The third questions was about
the overall effectiveness of visualization considering both the flow
paths and critical points.

In the study, we did not ask the subjects to classify the critical
points. If the subjects thought all three images were equally helpful,
then they could rate them equally.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Streamlines generated by Mebarki et al. ’s algorithm (left), Liu
et al. ’s algorithm (middle), and our algorithm (right).

Our second task was to evaluate how correctly the subjects were
able to interpret the flow directions with the images generated from
our algorithm in those empty regions without streamlines being
drawn. This task was run with a completely automated program
with four datasets. We pre-generated streamlines using our algo-
rithm on each data set, which were used as the input to the pro-
gram. When the program started with each data set, four random
seed points were generated in those void regions. For each point,
six circles with increasing radii were generated in a sequence. The
subjects were asked to mark where the streamlines would intersect
with the circles when they were advected from the seeds. That

means, given a seed point, a circle with the smallest radius was
first shown to the subject, who would then mark the streamline in-
tersection point on the circle. After that, another circle with a larger
radius was shown around the same point. This process repeated six
times for each seed point. For some seed points, if the subjects be-
lieved the advection would go out of boundary or terminate at some
point before it reached the circle, such as stagnant points, they could
identify the last point in the circle instead of on the circle. Fig. 9
shows a screen snapshot of the interface for this task with only one
circle drawn.

Our user study was not timed, so subjects had enough time to
give the answers. In summary, the questions involved in our study
were: (1) Rate images based on the easiness to follow the under-
lying flow paths. (2) Rate images based on the easiness to locate
the critical points by observing the streamlines. (3) Rate images
based on the the overall effectiveness of visualization considering
both the flow paths and critical points. (4) Predict where a particle
randomly picked up in the field will go in the subsequent steps.

Figure 9: Interface for predicting particle advection paths. Blue arrows on
red streamlines show the flow directions. The red point is the particle to be
advected from.

5.2.3 Results and Discussions

For the task about rating how easily the streamline images allow
the subjects to follow the flow paths, the study result is shown in
Table 1. From the result, we can see that most of the subjects pre-
fer images generated by our algorithm. When we analyzed the re-
sults from individual subjects in detail, we found that, for some im-
ages generated by our algorithm, if they are too abstract, some sub-
jects tended to rate the evenly-spaced based methods higher. Even
though the subjects could tell and follow the flow directions with
images from our algorithm, evenly spaced methods were better for
them to pinpoint the vectors at local points, because the streamlines
were uniformly placed and cover all the domain. We also found that
six subjects liked our images very much and always rated the high-
est, while one subject completely did not like all images generated
by our algorithm and rated all our images the lowest.

Algorithm Rank 1 Rank 2 Rank 3
Mebarki et al. ’s 5.4% 45.5% 51.0%

Liu et al. ’s 20.1% 46.9% 30.0%
Ours 74.5% 7.6% 19.0%

Table 1: The percentages of user rankings for each image based on
the easiness to follow the underlying flow paths.

Even though our algorithm does not explicitly place more
streamlines near critical points, it indeed captures most of the fea-
tures around the critical points. This is because vectors around
critical points are less coherent and our algorithm is designed to
place streamlines based on the streamline coherence. Additionally,
streamlines getting converged or diverged around critical points
contribute more ink in the neighborhood of them, which makes the
critical points much more noticeable. The second question in our

first task was to ask the subjects to rank how helpful the streamlines
in the images were for the subjects to detect critical points. The
study result, shown in Table 2, suggests that images generated from
our algorithm are more helpful for the subjects to detect the criti-
cal points. This result is in accordance with our expectation since
our algorithm allows the viewer to focus on more prominent flow
features. Our algorithm allows the streamlines to advect as far as
possible once they start. Around critical points, relatively speaking,
the streamlines become dense and converge around a small region
near each critical point. According to Tufte [12], more data ink
should be accumulated around the more important regions.

Algorithm Rank 1 Rank 2 Rank 3
Mebarki et al. ’s 3.3% 42.5% 60.0%

Liu et al. ’s 7.7% 52.7% 37.8%
Ours 89% 4.8% 2.2%

Table 2: The percentages of user rankings for each image based on the eas-
iness to locate the critical points by observing the streamlines.

The third question asked the users to rate the overall effective-
ness of visualization considering both the flow paths and directions
and it let the subjects to decide what they think are more important
to visualize a vector field and how to balance the possible conflict
between those two criteria. It is possible some images are good
at depicting flow paths, while others are good at depicting critical
points. The study result is shown in Table 3.

Algorithm Rank 1 Rank 2 Rank 3
Mebarki et al. ’s 3.5% 42.5% 57.0%

Liu et al. ’s 19.9% 52.7% 37.8%
Ours 76.6% 4.8% 5.2%

Table 3: The percentages of user rankings for each image based on the over-
all effectiveness of visualization considering the flow paths and critical points.

For the task about predicting the advection paths of particles,
error was measured as the Euclidean distance between the user-
selected point and the correct point from the integration using the
actual vector data, in the unit of cells. Mean errors are shown in
Fig. 10 with error bars depicting plus and minus of the standard de-
viation. We observe that as the radius of circle was increased, the
error became slightly larger. In other words, the closer to the start-
ing seed points, the easier for the subjects to pinpoint the particle
path, except when the flow becomes convergent in some regions. In
this case, even if the radius of the circle becomes larger, because the
space between streamlines becomes smaller, it is still easier for the
subjects to locate the advection path. Overall, from the test result
we can see that the errors were well bounded. In other words, the
subjects were able to predict the flow paths reasonably well given
the illustrative streamlines drawn by our algorithm. In general, the
error range is related to and constrained by the spacing between
streamlines, which depends on how similar the nearby streamlines
are.

6 PERFORMANCE

We have tested our algorithm on a PC with an Intel Core 2 2.66GHz
processor, 2 GB memory, and an nVIDIA Geforce 7950 GX2
graphics card with 512 MB of video memory. The streamlines
were numerically integrated using a constant step size Runge-Kutta
fourth order integrator. In an earlier section, we have presented
three comparative results generated by Mebarki et al. ’s, Liu et al. ’s,
and our algorithm in Fig. 8. Generally speaking, algorithms gen-
erating evenly-spaced streamlines are fast, and the performance is
relatively independent of the flow feature. Our algorithm generates

3.2 6.4 9.6 12.8 16 19.2
−1

0

1

2

3

4

2.6 5.2 7.8 10.4 13 15.6
−1

0

1

2

3

4

(a) (b)

2.8 5.6 8.4 11.2 14 16.8
−1

0

1

2

3

4

3.2 6.4 9.6 12.8 16 19.2
−1

0

1

2

3

4

(c) (d)

Figure 10: Mean errors for the advection task on the four different datasets. X
axis stands for radius of circles around the selected points, and Y axis depicts
the mean error plus or minus the standard deviation. Larger value along Y axis
means higher error. Y axis starts from -1 to make the graphs easier to visualize.
Dimensions of the datasets (a) 64x64 (b) 64x64 (c) 64x64 (d) 100x100.

streamlines by evaluating flow features locally and globally, how-
ever, from the timings listed in Table 5 for the four datasets (Ta-
ble 4), it can be seen that our algorithm can also run at interactive
speeds.

There are three main steps in our algorithms: updating distance
fields (section 3.1), computing local dissimilarity (section 3.2), and
selecting seeds (section 3.5) including computing the global dissim-
ilarity values. Updating distance fields takes place whenever a new
streamline is generated. We implemented this on GPUs: for each
line segment of the newly generated streamline, a quadrilateral is
drawn to a window with the same size as the flow field. The frag-
ment shader computes the distance from each fragment to the line
segment. This distance is set to be the depth of the fragment. After
all line segments from a streamline are drawn, the depth test sup-
ported by the graphics hardware returns the smallest distance from
every pixel to the streamline in the depth buffer, which is then read
back to the main memory. On the CPU, the distances to the near-
estM streamlines for each pixel are recorded. The computation of
local dissimilarity is also performed on the CPU by blending the
influence of multiple nearby streamlines. From the timings, we can
see that when the size of the flow field increases, more time is spent
on the portion of our algorithm that runs on the CPU. Although we
have not done so, the computation of the dissimilarity metric for
each pixel potentially can be implemented on GPUs as well and
will be our future work. This could also reduce the overhead of
transferring data from CPU to GPU, and reading back from GPU to
CPU.

Dataset Dimension # of lines # of line segments
Fig. 8(c) 64x64 18 696
Fig. 6(a) 100x100 19 1204
Fig. 5 400x401 28 3697
Fig. 4 576x291 45 6129

Table 4: Information of four different datasets, and the number of streamlines
generated by our algorithm.

7 CONCLUSIONS

In this paper, we have presented a seeding strategy to generate
streamlines in an illustrative and representative manner for 2D flow
fields. Our algorithm fully utilizes the spatial coherence in the un-
derlying flow fields, such that the density of streamlines in the fi-
nal images can be varied to reflect the coherence of the underlying
flow patterns and provide visual focuses. Our method is based on

Total Updating Computing Finding
Timing Distance Field Local dissimilarity Seeds
0.078 0.031 0.00 0.047
0.156 0.079 0.031 0.046
2.562 0.799 1.355 0.172
4.453 1.08 1.639 1.375

Table 5: Timings (in seconds) measured for generating streamlines using our
algorithm. Each row corresponds to a data set listed in the same row of Table 4.

the measurement of dissimilarity between streamlines locally and
globally. Our approach is innovative in three regards: (1) the den-
sity of streamlines is closely related to the intrinsic flow features of
the vector fields, (2) our method does not explicitly rely on detect-
ing the existence of critical points, and (3) the abstract and illustra-
tive visualization generated by our algorithm can effectively reduce
visual cluttering. User studies were conducted to evaluate the effec-
tiveness of using illustrative streamlines generated by our algorithm
to depict the flow information. Results suggest that users can inter-
pret the flow directions and capture important flow features. In the
future, we plan to explore various strategies to measure the similar-
ity between streamlines and other flow features, to further speed up
our algorithm using GPUs, and to extend our algorithm for visual-
izing time-varying flow fields.

REFERENCES

[1] U. Bordoloi and H. Shen. Hardware accelerated interactive vector
field visualization: A level of detail approach.Computer Graphics
Forum (Proceedings of Eurographics 2002), 21(3):605–614, 2002.

[2] B. Cabral and C. Leedom. Imaging vector fields using line integral
convolution. InSIGGRAPH ’93, pages 263–270, 1993.

[3] Q. Du and X. Wang. Centroidal voronoi tessellation basedalgorithms
for vector fields visualization and segmentation. InIEEE Visualiza-
tion, pages 43–50, 2004.

[4] S. F. F. Gibson. Using distance maps for accurate surface representa-
tion in sampled volumes. InVVS ’98, pages 23–30, 1998.

[5] B. Heckel, G. Weber, B. Hamann, and K. I. Joy. Constructionof vector
field hierarchies. InIEEE Visualization, pages 19–26, 1999.

[6] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbi-
trary density. InVisualization in Scientific Computing, pages 43–56,
1997.

[7] M. Jones, J. Baerentzen, and M. Sramek. 3d distance fields:A survey
of techniques and applications.IEEE Transactions on Visualization
and Computer Graphics, 12(4):581–599, 2006.

[8] D. Laidlaw, R. Kirby, C. Jackson, J. Davidson, T. Miller,M. Silva,
W. Warren, and M. Tarr. Comparing 2d vector field visualization
methods: A user study.IEEE Transactions on Visualization and Com-
puter Graphics, 11(1):59–70, 2005.

[9] Z. Liu, R. Moorhead, and J. Groner. An advanced evenly-spaced
streamline placement algorithm.IEEE Transactions on Visualization
and Computer Graphics, 12(5):965–972, 2006.

[10] A. Mebarki, P. Alliez, and O. Devillers. Farthest pointseeding for
efficient placement of streamlines. InIEEE Visualization, pages 479–
486, 2005.

[11] A. Telea and J. Wijk. Simplified representation of vectorfields. In
IEEE Visualization, pages 35–42, 1999.

[12] E. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1986.

[13] E. Tufte.Envisioning Information. Graphics Press, 1990.
[14] G. Turk and D. Banks. Image-guided streamline placement. In Pro-

ceedings of SIGGRAPH ’96, pages 453–460, 1996.
[15] J. J. van Wijk. Spot noise texture synthesis for data visualization. In

SIGGRAPH ’91, pages 309–318, 1991.
[16] J. J. van Wijk. Image based flow visualization. InSIGGRAPH ’02,

pages 745–754, 2002.
[17] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding

strategy. InIEEE Visualization, pages 163–170, 2000.

