
CSE 681
Ray Tracing and Shadows

2

Why Shadows?
 Makes 3D Graphics more believable
 Provides additional cues for the shapes and

relative positions of objects in 3D

3

What is shadow?

 Shadow: comparative
darkness given by
shelter from direct light;
patch of shade
projected by a body
intercepting light

4

Terminology

(area) light source

receiver
shadow

occluder

umbra

penumbra • umbra – fully shadowed region
• penumbra – partially shadowed region

5

“Hard” and “Soft” Shadows
 Depends on the type of light sources

 Point or Directional (“Hard Shadows”, umbra)

 Area (“Soft Shadows”, umbra, penumbra),
more difficult problem

point directional area

6

Shadows in Ray Tracing

 Cast ray to light
(shadow rays)

 Surface point in
shadow if the shadow
rays hits an occluder
object.

 How do we add
shadows in ray tracing?

Quick Review: Phong Illumination

Ambient
Diffuse (view independent)

Specular N

ray

L

R
V

Phong Illumination
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 for each light source

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

Shadows
• A ray-object intersection point is in shadow if

an object occludes it from a light source

• Shoot a ray from the point
 to each light source and detect
 occluders

Shadows
• Is the light ray blocked from reaching the ray-

object intersection point

occluders

Shading a Point In Shadow
• Assume Phong illumination …

• Ambient?
– Unaffected by a shadow

• Diffuse?
– Turn off

• Specular?
– Turn off

Pseudocode:

for each light source

inShadow = FALSE;
ray = intersection point p to light

source;
for each object
 inShadow = intersect (ray);
 if inShadow is TRUE
 break out of loop;

return inShadow;

Optimization:
Stop at very first object intersection
Don’t need closest intersection!!!

Shadows With Phong Illumination
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 shadowFlag = intersectShadowRay (p);
 if shadowFlag is FALSE

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

What!!??
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 shadowFlag = intersectShadowRay (p);
 if shadowFlag is FALSE

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

Problem: Self-Shadowing
• Precision problems
• Your approximation to the ray-object

intersection is off by a small amount ...
sometimes

true solution

approx solution

no occlusion

occlusion

A Solution
• Move our approximate solution (intersection

point) towards the light by some small amount
ε > 0 so that our point is outside the object

• The value ε is pre-chosen to be some small
number close to zero

Pseudocode: IntersectShadowRay

for each light source
if face is a backface wrt light

source
inShadow = TRUE;

else
inShadow = FALSE;
p = p + εL // L is the light ray
ray = intersection point p to light

source;
for each object
 inShadow = intersect (ray);
 if inShadow is TRUE
 break out of loop;

return inShadow;

Cool Example

Soft Shadows
• Hard shadows (left) vs soft shadows

(right)

Soft Shadows

• Hard shadows
– Assume an infinitely small (point) light source

• Soft shadows
– Umbra (invisible) and Penumbra (fuzzy looking

drop off)
– Assumes an area light source
– Treat the light as many point lights

• Expensive!!!

