CSE 681
Ray Tracing and Shadows

==
Flax
4
=
=
=
=
==

Why Shadows?

e Makes 3D Graphics more believable

¢ Provides additional cues for the shapes and
relative positions of objects in 3D

What is shadow?

e Shadow: comparative
darkness given by
shelter from direct light;
patch of shade
projected by a body
iIntercepting light

Terminology

« umbra — fully shadowed region
* penumbra — partially shadowed region

penumbra

receiver

“Hard” and “Soft” Shadows

e Depends on the type of light sources
Point or Directional (“Hard Shadows”, umbra)

’ \ \ —
I\ \ \ AN
7 N\ AY \ v
/ \ \ \ foa)
’ \ \ \ AN
/ \ \ \ !, N
’ \ \ s !y v

pomtwsw m
Area ("Soft Shadow bra, penumbra),

more difficult problem

Shadows in Ray Tracing

e Cast ray to light
(shadow rays)

e Surface point in
shadow if the shadow
rays hits an occluder
object.

e How do we add
shadows in ray tracing?

Quick Review: Phong lllumination

Ambient
Diffuse (view mdependent)
Specular

Phong lllumination

Color shade(ray)
{

¢ = background color;

intersectFIag = FALSE:; \BM%;
for each object EO%
ZM

intersectFlag = intersect (ray, p);

if intersectFlag is TRUE
Cc = ambient;
for each light source
compute reflective ray R (or H);
c += diffuse;
c += specular components;

return c;

Shadows

* A ray-object intersection point is in shadow if
an object occludes it from a light source

» Shoot a ray from the point Wi
to each light source and detect

occluders

2

Shadows

* |s the light ray blocked from reaching the ray-
object intersection point

IO

7

occluders

P

Shading a Point In Shadow

Assume Phong illumination ...

v
BN

Ambient?
— Unaffected by a shadow

Diffuse?
— Turn off

Specular?
— Turn off

Pseudocode:

Optimization:

for each Ilg ht source Stop at very first object intersection

Don’t need closest intersection!!!

inShadow = FALSE;

ray = intersection point p to light
source;

for each object
inShadow = intersect (ray);

if inShadow is TRUE

break out of loop
return inShadow;

Shadows With Phong lllumination

Color shade(ray)
{

c = background color;

intersectFlag = FALSE;
for each object
intersectFlag = intersect (ray, p);

if intersectFlag is TRUE
c = ambient;
shadowFlag = intersectShadowRay (p);

if shadowFlag is FALSE
compute reflective ray R (or H);
c += diffuse;
c += specular components;

return c;

What!!??
folor shade(ray)

c = background color;

intersectFlag = FALSE;
for each object

intersectFlag = intersect (ray, p); :>

if intersectFlag is TRUE
c = ambient;
shadowFlag = intersectShadowRay (p);

if shadowFlag is FALSE
compute reflective ray R (or H);
c += diffuse;
¢ += specular components;

return c;

Problem: Self-Shadowing

* Precision problems

* Your approximation to the ray-object
intersection is

sometimes
\@M@ \@M@
e e

no occlusion

v\
@
approx solution "~

true solution -~

A Solution

* Move our approximate solution (intersection
point) towards the light by some small amount
¢ > 0 so that our point is outside the object

« The value ¢ is pre-chosen to be some small
number close to zero

Pseudocode: IntersectShadowRay

for each light source

if face is a backface wrt light
source
inShadow = TRUE;

else
inShadow = FALSE; —>
p=p+elL// Listhe light ray
ray = intersection point p to light
source;
for each object
inShadow = intersect (ray);
if inShadow is TRUE
break out of loop;

return inShadow:

Cool Example

Soft Shadows

« Hard shadows (left) vs soft shadows
(right)

Soft Shadows

* Hard shadows
— Assume an infinitely small (point) light source

o Soft shadows

— Umbra (invisible) and Penumbra (fuzzy looking
drop off)

— Assumes an area light source
— Treat the light as many point lights

* Expensivelll

