
CSE 681
Ray Tracing and Shadows

2

Why Shadows?
 Makes 3D Graphics more believable
 Provides additional cues for the shapes and

relative positions of objects in 3D

3

What is shadow?

 Shadow: comparative
darkness given by
shelter from direct light;
patch of shade
projected by a body
intercepting light

4

Terminology

(area) light source

receiver
shadow

occluder

umbra

penumbra • umbra – fully shadowed region
• penumbra – partially shadowed region

5

“Hard” and “Soft” Shadows
 Depends on the type of light sources

 Point or Directional (“Hard Shadows”, umbra)

 Area (“Soft Shadows”, umbra, penumbra),
more difficult problem

point directional area

6

Shadows in Ray Tracing

 Cast ray to light
(shadow rays)

 Surface point in
shadow if the shadow
rays hits an occluder
object.

 How do we add
shadows in ray tracing?

Quick Review: Phong Illumination

Ambient
Diffuse (view independent)

Specular N

ray

L

R
V

Phong Illumination
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 for each light source

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

Shadows
• A ray-object intersection point is in shadow if

an object occludes it from a light source

• Shoot a ray from the point
 to each light source and detect
 occluders

Shadows
• Is the light ray blocked from reaching the ray-

object intersection point

occluders

Shading a Point In Shadow
• Assume Phong illumination …

• Ambient?
– Unaffected by a shadow

• Diffuse?
– Turn off

• Specular?
– Turn off

Pseudocode:

for each light source

inShadow = FALSE;
ray = intersection point p to light

source;
for each object
 inShadow = intersect (ray);
 if inShadow is TRUE
 break out of loop;

return inShadow;

Optimization:
Stop at very first object intersection
Don’t need closest intersection!!!

Shadows With Phong Illumination
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 shadowFlag = intersectShadowRay (p);
 if shadowFlag is FALSE

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

What!!??
Color shade(ray)
{
 c = background color;

 intersectFlag = FALSE;
 for each object
 intersectFlag = intersect (ray, p);

 if intersectFlag is TRUE
 c = ambient;
 shadowFlag = intersectShadowRay (p);
 if shadowFlag is FALSE

 compute reflective ray R (or H);
 c += diffuse;
 c += specular components;

 return c;
}

Problem: Self-Shadowing
• Precision problems
• Your approximation to the ray-object

intersection is off by a small amount ...
sometimes

true solution

approx solution

no occlusion

occlusion

A Solution
• Move our approximate solution (intersection

point) towards the light by some small amount
ε > 0 so that our point is outside the object

• The value ε is pre-chosen to be some small
number close to zero

Pseudocode: IntersectShadowRay

for each light source
if face is a backface wrt light

source
inShadow = TRUE;

else
inShadow = FALSE;
p = p + εL // L is the light ray
ray = intersection point p to light

source;
for each object
 inShadow = intersect (ray);
 if inShadow is TRUE
 break out of loop;

return inShadow;

Cool Example

Soft Shadows
• Hard shadows (left) vs soft shadows

(right)

Soft Shadows

• Hard shadows
– Assume an infinitely small (point) light source

• Soft shadows
– Umbra (invisible) and Penumbra (fuzzy looking

drop off)
– Assumes an area light source
– Treat the light as many point lights

• Expensive!!!

