!'_ Drawing and Coordinate Systems

‘.L Coordinate Systems

= Screen Coordinate system

= World Coordinate system

= World window

= Viewport

= Window to viewport mapping

‘_L Screen

Glut

OpenGL
(0,0)

Coordinate System

| o

i Screen Coordinate System

- 2D Regular Cartesian Grid

- Origin (0,0) at lower left ®

corner (OpenGL convention) o

- Horizontal axis — X

Vertical axis —y

- Pixels are defined at the grid X

Intersections

- This coordinate system is defmc \
relative to the display window origin
(OpenGL: the lower left corner
of the window) (2,2)

‘_L World Coordinate System

= Screen coordinate system is not easy to
use

10 feet

. 20 feet

‘_L World Coordinate System

= Another example:
plot a sinc function:
sinc(x) = sin(PI*x)/PI*x
X=-4. +4

AWAVERVAWAN

IV

World Coordinate System

= It would be nice if we can use
application specific coordinates —

world coordinate system

glBegin(GL _LINE STRIP);
for (x = -4.0; x <4.0; x+=0.1){
GLfloat vy = sin(3.14 * x) / (3.14 * x);
glVertex2f (x,y);
}

glEnd () ;

‘_L OpenGL 2D Drawing

You can use your own unit/range to define
the positions of your objects

Specify a world window (in world coordinate
system) to define what you want to display

Specify a viewport (in screen coordinate
system) to indicate where in the window you
want to draw the objects

OpenGL will do the mapping and drawing for
you

ﬁ Define a world window

7

laSr el

‘_L World Window

= World window — a rectangular region in
the world that is to be displayed

WT: —-- Define by
) W_L, W_R, W_B, W_T
WB |---3 |
|
| BB : Use OpenGL command:
|
|

* | gluOrtho2D(left, right, bottom,
W L W R top)

i Viewport

= The rectangular area in the screen used to

display the objects contained in the world
window

. [Deﬁned in the screen coordinate system

glViewport(int left, int bottom,
int (right-left),
int (top-bottom));

always call this function before
drawing

* A simple example

DrawQuad ()

{

glViewport(0,0,300,200);
glMatrixMode (GL PROJECTION) ;

glLoadIdentity();

gluOrtho2D(-1,1,-1,1);

glBegin(GL_QUADS) ;

glColor3f (1,1,
glVertex2f (-0.
glVertex2f (+0.
glVertex2f (+0.
glVertex2f (-0.
glEnd () ;

)
5

d,
d,
d,

.
9

-0.5);
-0.5);
+0.5);
+0.5);

(300,200)

(0,0)

viewport

How big is the quad?

‘_L Window to viewport mapping

= The objects in the world window wiill
then be drawn onto the viewport

(X,y) viewport

World window
)
— H ‘
ﬂ?;,{ >

‘_L Window to viewport mapping
= How to calculate (sx, sy) from (x,y)?

(X,y)

K] PR

‘.L Window to viewport mapping

= Remember — you don’t need to do it by
yourself. OpenGL will do it for you

= You just need to specify the viewport (with
glViewport()), and the world window (with
gluOrtho2D())

= But let me explain to you how it is done

‘_L Also, one thing to remember ...

= A practical OpenGL usage:

= Before calling gluOrtho2D(), you need to
have the following two lines of code —

glMatrixMode(GL_PROJECTION);
glLoadldentity();

gluOrtho2D(Left, Right, Bottom, Top);

‘_L Window to viewport mapping

= Things that are given:
= The world window (W_L, W_R, W_B, W_T)
= The viewport (V_L, V_R,V_B, V_T)

= A point (X,y) in the world coordinate
system

= Calculate the corresponding point (sx,
sy) in the screen coordinate system

‘_L Window to viewport mapping

= Basic principle: the mapping should be

proportional
_ (%) 1 (s%,5Y)
(x-W.L/ WR-WL = (sx=V.L)/(VR=-V.L)

(y-wsB)y/ (W.T-WB) = (sy-V_B)/(V_T-V_B)

‘_L Window to viewport mapping

_ () I . (sx,sy)
(x-W_L)/ WR-WL) = (sx-V_L)/(VR=-V_L)
(y- WB)/ (WT-WB) = (sy-V_B)/(V.T-V_B)

sx = x* (V_RV_L)/(WRW.L) - WL* (VR-VL/WRWL)+VL

:: sy =y *(V_T-V_B)/(W_T-W_B) - W_B * (V_T-V_B)/(W_T-W_B) + V_B

‘_L Some practical issues

= How to set up an appropriate world
window automatically?

= How to zoom in the picture?

= How to set up an appropriate viewport,
so that the picture is not going to be
distorted?

‘_L World window setup

= A general approach is to display all the
objects in the world

= This can be your initial view, and the user
can change it later

= How to achieve it?

‘_L World window set up

= Find the world coordinates extent that
will cover the entire scene

|

min Y ﬂ%ﬁ(/)

min X max X

‘_L Zoom into the picture

Shrink your world window — call gluOrtho2D() with a new range

Viewport

\

\
\
\
L
A
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

i

‘-L Non-distorted viewport setup

= Distortion happens when ...

= World window and display window have
different aspect ratios

= Aspect ratio?
[R — W/ H

‘L Compare aspect ratios

World window Viewport

Aspect Ratio = R Aspect Ratio =W / H

R> W/H

* Match aspect ratios

World window

Aspect Ratio = R

R >

H
?
> W
Shrink the viewport height
so that
W/new H =R

W/ H

* Match aspect ratios

W/R

W ' .
orld window Viewport

Aspect Ratio = |
spect Ratio = R Aspect Ratio = W / W/R = R

R> W/H glViewport(0, 0, W, W/R)

‘L Compare aspect ratios

World window Viewport

Aspect Ratio = R Aspect Ratio =W / H

R< W/H

* Match aspect ratios

World window

Aspect Ratio = R

R <

?

- W

Shrink the viewport width
so that

Aspect Ratio = new W / H

W/ H

* Match aspect ratios

H * R

World wi .
orld window Viewport

Aspect Ratio = |
spect Ratio = R Aspect Ratio = H*R / H = R

R< W/H glViewport(0, 0, H*R, H)

‘_L When to call glViewport() ?

Two places:

= Initialization
= Default size: same as the window size

= Every time when the user resizes the
display window (but GLUT will do that
for you)

‘L Resize (Reshape) window

Void main(int argc, char** argv)

{

glutDisplayFunc(display);
glutReshapeFunc(resize);
glutKeyboardFunc (key) ;

|

void resize () — a function
provided by you. It will be
called when the window
changes size.

‘_L Resize (reshape) window

Void resize(int W, int H)
{

¥

This is done by default in GLUT

glViewport(0,0,W, H);

You can use the call to make
sure the aspect ratio is adjusted as we just discussed.

* Put it all together

DrawQuad ()

{

glViewport(0,0,300,200);
glMatrixMode (GL PROJECTION) ;

glLoadIdentity();

gluOrtho2D(-1,1,-1,1);

glBegin(GL_QUADS) ;

glColor3f (1,1,
glVertex2f (-0.
glVertex2f (+0.
glVertex2f (+0.
glVertex2f (-0.
glEnd () ;

)
5

d,
d,
d,

.
9

-0.5);
-0.5);
+0.5);
+0.5);

(300,200)

(0,0)

viewport

How big is the quad?

‘L Well, this works too ...

DrawQuad ()

{
g1lBegin(GL_QUADS) ;
g1Color3f(1,1,0): OpenGL Default:
glVertex2f(-0.5,-0.5);
glVertex2f(+0.5,0); glViewport: as large as
glVertex2f(+0.5,+0.5); your display window
glVertex2f(-0.5,+0.5);
glEnd () ; gluOrtho2D:

) gluOrtho2D(-1,1,-1,1);

Why?

