
Drawing and Coordinate Systems 



Coordinate Systems  

  Screen Coordinate system 
  World Coordinate system 
  World window  
  Viewport  
  Window to viewport mapping  



Screen Coordinate System 

(0,0) 
OpenGL 

Glut 



Screen Coordinate System  

-   2D Regular Cartesian Grid 
-   Origin (0,0) at lower left  
   corner (OpenGL convention) 
-   Horizontal axis – x  
   Vertical axis – y  
-   Pixels are defined at the grid  
   intersections 
-   This coordinate system is defined  
   relative to the display window origin 
   (OpenGL: the lower left corner  
    of the window)  

(0,0) 

y 

x 

(2,2) 



World Coordinate System 

  Screen coordinate system is not easy to 
use  

20 feet 

10 feet 



World Coordinate System  

  Another example:  
   plot a sinc function:  
      sinc(x) = sin(PI*x)/PI*x  
   x = -4 .. +4  



World Coordinate System  
  It would be nice if we can use 

application specific coordinates –  
   world coordinate system 

glBegin(GL_LINE_STRIP);  
  for (x = -4.0; x <4.0; x+=0.1){ 
    GLfloat y = sin(3.14 * x) / (3.14 * x); 
    glVertex2f (x,y);  
  }  

glEnd();  



OpenGL 2D Drawing 
  You can use your own unit/range to define 

the positions of your objects 
  Specify a world window (in world coordinate 

system) to define what you want to display 
  Specify a viewport (in screen coordinate 

system) to indicate where in the window you 
want to draw the objects 

  OpenGL will do the mapping and drawing for 
you  



Define a world window 



World Window 

  World window – a rectangular region in 
the world that is to be displayed  

Define by  

W_L, W_R, W_B, W_T 

W_L W_R 

W_B 

W_T 

Use OpenGL command: 

gluOrtho2D(left, right, bottom,  
               top)  



Viewport  
  The rectangular area in the screen used to  

display the objects contained in the world 
window 

  Defined in the screen coordinate system  

V_L V_R 

V_B 

V_T 

glViewport(int  left, int  bottom,  
                int  (right-left), 
                int (top-bottom));  

  always call this function before 
  drawing 



A simple example  

DrawQuad()  
{ 
   glViewport(0,0,300,200); 
   glMatrixMode(GL_PROJECTION);  
   glLoadIdentity();  
   gluOrtho2D(-1,1,-1,1);  
   glBegin(GL_QUADS);  
   glColor3f(1,1,0);  
   glVertex2f(-0.5,-0.5);  
   glVertex2f(+0.5,-0.5);  
   glVertex2f(+0.5,+0.5);  
   glVertex2f(-0.5,+0.5);     
   glEnd();  
}  

(0,0) 

(300,200) 

viewport 

How  big is the quad? 



Window to viewport mapping 

  The objects in the world window will 
then be drawn onto the viewport  

(x,y) 

(Sx, Sy) 
World window 

viewport 



Window to viewport mapping 

  How to calculate (sx, sy) from (x,y)?  

(x,y) 

(Sx, Sy) 



Window to viewport mapping 

  Remember – you don’t need to do it by 
yourself. OpenGL will do it for you 
  You just need to specify the viewport (with 

glViewport()), and the world window (with 
gluOrtho2D())  

  But let me explain to you how it is done 



Also, one thing to remember … 

  A practical OpenGL usage:  
  Before calling gluOrtho2D(), you need to 

have the following two lines of code – 

glMatrixMode(GL_PROJECTION);  
glLoadIdentity();  

gluOrtho2D(Left, Right, Bottom, Top);  



Window to viewport mapping 

  Things that are given: 
  The world window (W_L, W_R, W_B, W_T) 
  The viewport (V_L, V_R, V_B, V_T) 
  A point (x,y) in the world coordinate 

system  

  Calculate the corresponding point (sx, 
sy) in the screen coordinate system  



Window to viewport mapping 

  Basic principle: the mapping should be 
proportional  

(x,y) (sx,sy) 

(x – W_L) /  (W_R – W_L)        =      (sx – V_L)  / (V_R – V_L)  

(y -  W_B) /   (W_T – W_B)     =     (sy – V_B) / (V_T – V_B)        



Window to viewport mapping 

(x,y) (sx,sy) 

(x – W_L) /  (W_R – W_L)        =      (sx – V_L)  / (V_R – V_L)  

(y -  W_B) /   (W_T – W_B)     =     (sy – V_B) / (V_T – V_B)        

sx =  x * (V_R-V_L)/(W_R-W_L)  -  W_L *  (V_R – V_L)/(W_R-W_L) + V_L 

sy =  y * (V_T-V_B)/(W_T-W_B) – W_B * (V_T-V_B)/(W_T-W_B)  + V_B 



Some practical issues 

  How to set up an appropriate world 
window automatically? 

  How to zoom in the picture?  
  How to set up an appropriate viewport, 

so that the picture is not going to be 
distorted?  



World window setup  

  A general approach is to display all the 
objects in the world  
  This can be your initial view, and the user 

can change it later  

  How to achieve it?  



World window set up 

  Find the world coordinates extent that 
will cover the entire scene  

min X max X 

min Y 

max Y 



Zoom into the picture 
Shrink your world window – call gluOrtho2D() with a new range 

Viewport  



Non-distorted viewport setup 

  Distortion happens when … 
  World window and display window have 

different aspect ratios 
  Aspect ratio?    
  R = W / H 



Compare aspect ratios 

World window 

Aspect Ratio = R   

Viewport 

Aspect Ratio = W / H    

W 

H 

R >   W / H  



Match aspect ratios 

World window 

Aspect Ratio = R   

Shrink the viewport height  
so that  

W/new H = R  

W 

H 

R >   W / H  

R ?  



Match aspect ratios 

World window 

Aspect Ratio = R   

Viewport 

Aspect Ratio = W / W/R  = R    

W 

H 

R >   W / H  

R W/R  

glViewport(0, 0, W, W/R) 



Compare aspect ratios 

World window 

Aspect Ratio = R   

Viewport  

Aspect Ratio = W / H    

W 

H 

R <   W / H  



Match aspect ratios 

World window 

Aspect Ratio = R   

Shrink the viewport width  
so that 

Aspect Ratio = new W / H    

W 

H 

R <   W / H  

? 



Match aspect ratios 

World window 

Aspect Ratio = R   

Viewport  

Aspect Ratio = H*R / H = R    

W 

H 

 H * R  

R <   W / H  glViewport(0, 0, H*R, H) 



When to call glViewport() ? 

  Initialization  
  Default size: same as the window size  

  Every time when the user resizes the 
display window (but GLUT will do that 
for you) 

Two places:  



Resize (Reshape) window  
Void main(int argc, char** argv)  
{ 
        … 
    glutDisplayFunc(display);  
    glutReshapeFunc(resize);  
    glutKeyboardFunc(key);  
    … 
} 

void resize () – a function 
provided by you.  It will be  
called when the window  
changes size.  



Resize (reshape) window  

Void resize(int W, int H)  
{ 

 glViewport(0,0,W, H);  
} 

This is done by default in GLUT  

You can use the call to make 
sure the aspect ratio  is adjusted as we just discussed.  



Put it all together  

DrawQuad()  
{ 
   glViewport(0,0,300,200); 
   glMatrixMode(GL_PROJECTION);  
   glLoadIdentity();  
   gluOrtho2D(-1,1,-1,1);  
   glBegin(GL_QUADS);  
   glColor3f(1,1,0);  
   glVertex2f(-0.5,-0.5);  
   glVertex2f(+0.5,-0.5);  
   glVertex2f(+0.5,+0.5);  
   glVertex2f(-0.5,+0.5);     
   glEnd();  
}  

(0,0) 

(300,200) 

viewport 

How  big is the quad? 



Well, this works too … 

DrawQuad()  
{ 
   glBegin(GL_QUADS);  
   glColor3f(1,1,0);  
   glVertex2f(-0.5,-0.5);  
   glVertex2f(+0.5,0);  
   glVertex2f(+0.5,+0.5);  
   glVertex2f(-0.5,+0.5);     
   glEnd();  
}  

Why?  

OpenGL Default:  

glViewport: as large as 
   your display window  

gluOrtho2D:  
   gluOrtho2D(-1,1,-1,1); 


