
Drawing and Coordinate Systems

Coordinate Systems

  Screen Coordinate system
  World Coordinate system
  World window
  Viewport
  Window to viewport mapping

Screen Coordinate System

(0,0)
OpenGL

Glut

Screen Coordinate System

-  2D Regular Cartesian Grid
-  Origin (0,0) at lower left
 corner (OpenGL convention)
-  Horizontal axis – x
 Vertical axis – y
-  Pixels are defined at the grid
 intersections
-  This coordinate system is defined
 relative to the display window origin
 (OpenGL: the lower left corner
 of the window)

(0,0)

y

x

(2,2)

World Coordinate System

  Screen coordinate system is not easy to
use

20 feet

10 feet

World Coordinate System

  Another example:
 plot a sinc function:
 sinc(x) = sin(PI*x)/PI*x
 x = -4 .. +4

World Coordinate System
  It would be nice if we can use

application specific coordinates –
 world coordinate system

glBegin(GL_LINE_STRIP);
 for (x = -4.0; x <4.0; x+=0.1){
 GLfloat y = sin(3.14 * x) / (3.14 * x);
 glVertex2f (x,y);
 }

glEnd();

OpenGL 2D Drawing
  You can use your own unit/range to define

the positions of your objects
  Specify a world window (in world coordinate

system) to define what you want to display
  Specify a viewport (in screen coordinate

system) to indicate where in the window you
want to draw the objects

  OpenGL will do the mapping and drawing for
you

Define a world window

World Window

  World window – a rectangular region in
the world that is to be displayed

Define by

W_L, W_R, W_B, W_T

W_L W_R

W_B

W_T

Use OpenGL command:

gluOrtho2D(left, right, bottom,
 top)

Viewport
  The rectangular area in the screen used to

display the objects contained in the world
window

  Defined in the screen coordinate system

V_L V_R

V_B

V_T

glViewport(int left, int bottom,
 int (right-left),
 int (top-bottom));

 always call this function before
 drawing

A simple example

DrawQuad()
{
 glViewport(0,0,300,200);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(-1,1,-1,1);
 glBegin(GL_QUADS);
 glColor3f(1,1,0);
 glVertex2f(-0.5,-0.5);
 glVertex2f(+0.5,-0.5);
 glVertex2f(+0.5,+0.5);
 glVertex2f(-0.5,+0.5);
 glEnd();
}

(0,0)

(300,200)

viewport

How big is the quad?

Window to viewport mapping

  The objects in the world window will
then be drawn onto the viewport

(x,y)

(Sx, Sy)
World window

viewport

Window to viewport mapping

  How to calculate (sx, sy) from (x,y)?

(x,y)

(Sx, Sy)

Window to viewport mapping

  Remember – you don’t need to do it by
yourself. OpenGL will do it for you
  You just need to specify the viewport (with

glViewport()), and the world window (with
gluOrtho2D())

  But let me explain to you how it is done

Also, one thing to remember …

  A practical OpenGL usage:
  Before calling gluOrtho2D(), you need to

have the following two lines of code –

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluOrtho2D(Left, Right, Bottom, Top);

Window to viewport mapping

  Things that are given:
  The world window (W_L, W_R, W_B, W_T)
  The viewport (V_L, V_R, V_B, V_T)
  A point (x,y) in the world coordinate

system

  Calculate the corresponding point (sx,
sy) in the screen coordinate system

Window to viewport mapping

  Basic principle: the mapping should be
proportional

(x,y) (sx,sy)

(x – W_L) / (W_R – W_L) = (sx – V_L) / (V_R – V_L)

(y - W_B) / (W_T – W_B) = (sy – V_B) / (V_T – V_B)

Window to viewport mapping

(x,y) (sx,sy)

(x – W_L) / (W_R – W_L) = (sx – V_L) / (V_R – V_L)

(y - W_B) / (W_T – W_B) = (sy – V_B) / (V_T – V_B)

sx = x * (V_R-V_L)/(W_R-W_L) - W_L * (V_R – V_L)/(W_R-W_L) + V_L

sy = y * (V_T-V_B)/(W_T-W_B) – W_B * (V_T-V_B)/(W_T-W_B) + V_B

Some practical issues

  How to set up an appropriate world
window automatically?

  How to zoom in the picture?
  How to set up an appropriate viewport,

so that the picture is not going to be
distorted?

World window setup

  A general approach is to display all the
objects in the world
  This can be your initial view, and the user

can change it later

  How to achieve it?

World window set up

  Find the world coordinates extent that
will cover the entire scene

min X max X

min Y

max Y

Zoom into the picture
Shrink your world window – call gluOrtho2D() with a new range

Viewport

Non-distorted viewport setup

  Distortion happens when …
  World window and display window have

different aspect ratios
  Aspect ratio?
  R = W / H

Compare aspect ratios

World window

Aspect Ratio = R

Viewport

Aspect Ratio = W / H

W

H

R > W / H

Match aspect ratios

World window

Aspect Ratio = R

Shrink the viewport height
so that

W/new H = R

W

H

R > W / H

R ?

Match aspect ratios

World window

Aspect Ratio = R

Viewport

Aspect Ratio = W / W/R = R

W

H

R > W / H

R W/R

glViewport(0, 0, W, W/R)

Compare aspect ratios

World window

Aspect Ratio = R

Viewport

Aspect Ratio = W / H

W

H

R < W / H

Match aspect ratios

World window

Aspect Ratio = R

Shrink the viewport width
so that

Aspect Ratio = new W / H

W

H

R < W / H

?

Match aspect ratios

World window

Aspect Ratio = R

Viewport

Aspect Ratio = H*R / H = R

W

H

 H * R

R < W / H glViewport(0, 0, H*R, H)

When to call glViewport() ?

  Initialization
  Default size: same as the window size

  Every time when the user resizes the
display window (but GLUT will do that
for you)

Two places:

Resize (Reshape) window
Void main(int argc, char** argv)
{
 …
 glutDisplayFunc(display);
 glutReshapeFunc(resize);
 glutKeyboardFunc(key);
 …
}

void resize () – a function
provided by you. It will be
called when the window
changes size.

Resize (reshape) window

Void resize(int W, int H)
{

 glViewport(0,0,W, H);
}

This is done by default in GLUT

You can use the call to make
sure the aspect ratio is adjusted as we just discussed.

Put it all together

DrawQuad()
{
 glViewport(0,0,300,200);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(-1,1,-1,1);
 glBegin(GL_QUADS);
 glColor3f(1,1,0);
 glVertex2f(-0.5,-0.5);
 glVertex2f(+0.5,-0.5);
 glVertex2f(+0.5,+0.5);
 glVertex2f(-0.5,+0.5);
 glEnd();
}

(0,0)

(300,200)

viewport

How big is the quad?

Well, this works too …

DrawQuad()
{
 glBegin(GL_QUADS);
 glColor3f(1,1,0);
 glVertex2f(-0.5,-0.5);
 glVertex2f(+0.5,0);
 glVertex2f(+0.5,+0.5);
 glVertex2f(-0.5,+0.5);
 glEnd();
}

Why?

OpenGL Default:

glViewport: as large as
 your display window

gluOrtho2D:
 gluOrtho2D(-1,1,-1,1);

