Data-Flow Analysis

Dragon Book, Chapter 9, Section 9.2, 9.3, 9.4
Data-Flow Analysis

• Data-flow analysis is a sub-area of **static program analysis** (aka **compile-time** analysis)
 – Used in the compiler back end for optimizations of three-address code and for generation of target code
 – For software engineering tools: software understanding, restructuring, testing, verification

• Attaches to each CFG node some information that describes **properties** of the program at that point
 – Based on **lattice theory**

• Defines algorithms for inferring these properties
 – e.g., **fixed-point computation**
Example: Reaching Definitions

• A classical example of a data-flow analysis
 – We will consider *intraprocedural* analysis: only inside a single procedure, based on its CFG

• For ease of discussion, pretend that the CFG nodes are individual instructions, not basic blocks
 – Each node defines two *program points*: immediately before and immediately after

• Goal: identify all connections between variable definitions (“write”) and variable uses (“read”)
 – $x = y + z$ has a *definition* of x and *uses* of y and z
Reaching Definitions

• A definition d reaches a program point p if there exists a CFG path that
 – starts at the program point immediately after d
 – ends at p
 – does not contain a definition of d (i.e., d is not “killed”)

• The CFG path may be impossible (*infeasible*) at run time
 – Any compile-time analysis has to be *conservative*, so we consider all paths in the CFG

• For a CFG node n
 – $\text{IN}[n]$ is the set of definitions that reach the program point immediately before n
 – $\text{OUT}[n]$ is the set of definitions that reach the program point immediately after n
 – Reaching definitions analysis computes $\text{IN}[n]$ and $\text{OUT}[n]$
ENTRY

\(i = m-1 \)

\(j = n \)

\(a = u_1 \)

\(i = i + 1 \)

\(j = j - 1 \)

if \((i < a) \)

\(a = u_2 \)

\(i = u_3 \)

if \((j < a) \)

EXIT

\[\text{OUT}[n_1] = \{ \} \]
\[\text{IN}[n_2] = \{ \} \]
\[\text{OUT}[n_2] = \{ \text{d}1 \} \]
\[\text{IN}[n_3] = \{ \text{d}1 \} \]
\[\text{OUT}[n_3] = \{ \text{d}1, \text{d}2 \} \]
\[\text{IN}[n_4] = \{ \text{d}1, \text{d}2 \} \]
\[\text{OUT}[n_4] = \{ \text{d}1, \text{d}2, \text{d}3 \} \]
\[\text{IN}[n_5] = \{ \text{d}1, \text{d}2, \text{d}3, \text{d}5, \text{d}6, \text{d}7 \} \]
\[\text{OUT}[n_5] = \{ \text{d}2, \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{IN}[n_6] = \{ \text{d}2, \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{OUT}[n_6] = \{ \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{IN}[n_7] = \{ \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{OUT}[n_7] = \{ \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{IN}[n_8] = \{ \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{OUT}[n_8] = \{ \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{IN}[n_9] = \{ \text{d}3, \text{d}4, \text{d}5, \text{d}6 \} \]
\[\text{OUT}[n_9] = \{ \text{d}3, \text{d}5, \text{d}6, \text{d}7 \} \]
\[\text{IN}[n_{10}] = \{ \text{d}3, \text{d}5, \text{d}6, \text{d}7 \} \]
\[\text{OUT}[n_{10}] = \{ \text{d}3, \text{d}5, \text{d}6, \text{d}7 \} \]
\[\text{IN}[n_{11}] = \{ \text{d}3, \text{d}5, \text{d}6, \text{d}7 \} \]
Uses of Reaching Definitions Analysis

• Def-use (du) chains
 – For a given definition (i.e., write) of a variable, which statements read the value created by the def?

• Use-def (ud) chains
 – For a given use (i.e., read) of a variable, which statements performed the write of this value?
 – The reverse of du-chains

• Goal: potential write-read (flow) data dependences
 – Compiler optimizations
 – Program understanding (e.g., slicing)
 – Data-flow-based testing: coverage criteria
 – Semantic checks: e.g., use of uninitialized variables
ENTRY

\(i = m - 1 \)

\(j = n \)

\(a = u_1 \)

\(i = i + 1 \)

\(j = j - 1 \)

\(a = u_2 \)

\(i = u_3 \)

\(\text{if } (i < a) \)

\(\text{if } (j < a) \)

EXIT

OUT\[n1\] = \{ \}

IN\[n2\] = \{ \}

OUT\[n2\] = \{ d1 \}

IN\[n3\] = \{ d1 \}

OUT\[n3\] = \{ d1, d2 \}

IN\[n4\] = \{ d1, d2 \}

OUT\[n4\] = \{ d1, d2, d3 \}

IN\[n5\] = \{ d1, d2, d3, d5, d6, d7 \}

OUT\[n5\] = \{ d2, d3, d4, d5, d6 \}

IN\[n6\] = \{ d2, d3, d4, d5, d6 \}

OUT\[n6\] = \{ d3, d4, d5, d6 \}

IN\[n7\] = \{ d3, d4, d5, d6 \}

OUT\[n7\] = \{ d3, d4, d5, d6 \}

IN\[n8\] = \{ d3, d4, d5, d6 \}

OUT\[n8\] = \{ d4, d5, d6 \}

IN\[n9\] = \{ d3, d4, d5, d6 \}

OUT\[n9\] = \{ d3, d5, d6, d7 \}

IN\[n10\] = \{ d3, d5, d6, d7 \}

OUT\[n10\] = \{ d3, d5, d6, d7 \}

IN\[n11\] = \{ d3, d5, d6, d7 \}

Def-use chains for \(d_1 \):

DU(\(d_1 \)): uses of \(i \) in nodes with \(d_1 \in \text{IN}[n] \)

DU(\(d_1 \)) = \{ n_5 \}

Other examples:

DU(\(d_2 \)) = \{ n_6 \}

DU(\(d_3 \)) = \{ n_7, n_{10} \}

DU(\(d_4 \)) = \{ n_7 \}

DU(\(d_5 \)) = \{ n_{10}, n_6 \}

DU(\(d_6 \)) = \{ n_{10}, n_7 \}

DU(\(d_7 \)) = \{ n_5 \}

Use-def chains:

UD(\(i @ n_5 \)) = \{ d_1, d_7 \}

UD(\(j @ n_6 \)) = \{ d_2, d_5 \}

UD(\(i @ n_7 \)) = \{ d_4 \}

UD(\(a @ n_7 \)) = \{ d_3, d_6 \}

UD(\(j @ n_{10} \)) = \{ d_5 \}

UD(\(a @ n_{10} \)) = \{ d_3, d_6 \}
Example: Live Variables

• A variable v is **live** at a program point p if there exists a CFG path that
 – starts at p
 – ends immediately before some statement that reads v
 – does **not** contain a definition of v

• Thus, the value that v has at p could be used later
 – “could” because the CFG path may be infeasible
 – If v is not live at p, we say that v is **dead** at p

• For a CFG node n
 – $\text{IN}[n]$ is the set of variables that are live at the program point immediately before n
 – $\text{OUT}[n]$ is the set of variables that are live at the program point immediately after n
ENTRY

\[i = m - 1 \]

\[j = n \]

\[a = u_1 \]

\[i = i + 1 \]

\[j = j - 1 \]

if (…)

\[a = u_2 \]

\[i = u_3 \]

if (…)

EXIT

\[\text{OUT}[n1] = \{ m, n, u_1, u_2, u_3 \} \]

\[\text{IN}[n2] = \{ m, n, u_1, u_2, u_3 \} \]

\[\text{OUT}[n2] = \{ n, u_1, i, u_2, u_3 \} \]

\[\text{IN}[n3] = \{ n, u_1, i, u_2, u_3 \} \]

\[\text{OUT}[n3] = \{ u_1, i, j, u_2, u_3 \} \]

\[\text{IN}[n4] = \{ u_1, i, j, u_2, u_3 \} \]

\[\text{OUT}[n4] = \{ i, j, u_2, u_3 \} \]

\[\text{IN}[n5] = \{ i, j, u_2, u_3 \} \]

\[\text{OUT}[n5] = \{ j, u_2, u_3 \} \]

\[\text{IN}[n6] = \{ j, u_2, u_3 \} \]

\[\text{OUT}[n6] = \{ u_2, u_3, j \} \]

\[\text{IN}[n7] = \{ u_2, u_3, j \} \]

\[\text{OUT}[n7] = \{ u_2, u_3, j \} \]

\[\text{IN}[n8] = \{ u_2, u_3, j \} \]

\[\text{OUT}[n8] = \{ u_3, j, u_2 \} \]

\[\text{IN}[n9] = \{ u_3, j, u_2 \} \]

\[\text{OUT}[n9] = \{ i, j, u_2, u_3 \} \]

\[\text{IN}[n10] = \{ i, j, u_2, u_3 \} \]

\[\text{OUT}[n10] = \{ i, j, u_2, u_3 \} \]

\[\text{IN}[n11] = \{ \} \]

Uses of Live Variables
- Dead code elimination: e.g., when \(x \) is not live at \(x = y + z \)
- Register allocation
Example: Constant Propagation

• Can we guarantee that the value of a variable v at a program point p is always a known constant?

• Compile-time constants are quite useful
 – **Constant folding**: e.g., if we know that v is always 3.14 immediately before $w = 2*v$; replace it $w = 6.28$
 – Often due to symbolic constants
 – **Dead code elimination**: e.g., if we know that v is always false at \textbf{if} (v) ...
 – Program understanding, restructuring, verification, testing, etc.

• Very similar to the abstract interpretation we discussed earlier
Basic Ideas

• At each CFG node n, $\text{IN}[n]$ is a map $\text{Vars} \rightarrow \text{Values}$
 – Each variable v is mapped to a value $x \in \text{Values}$
 – $\text{Values} = \text{all possible constant values} \cup \{\text{any}\}$

• Special value any (not-a-constant) means that the variable cannot be definitely proved to be a compile-time constant at this program point
 – E.g., the value comes from user input, file I/O, network
 – E.g., the value is 5 along one branch of an if statement, and 6 along another branch of the if statement
 – E.g., value comes from some variable with any value
Formulation as a System of Equations

- OUT[ENTRY] = empty map

- For any other CFG node n
 - $IN[n] = \text{Merge}(OUT[m])$ for all predecessors m of n
 - $OUT[n] = \text{Update}(IN[n])$

- Merging two maps: if v is mapped to c_1 and c_2 respectively, in the merged map v is mapped to:
 - if $c_1 = \text{any}$ or $c_2 = \text{any}$, the result is any
 - Else if $c_1 \neq c_2$, the result is any
 - Else the result is c_1 (in this case we know that $c_1 = c_2$)
 - Remember IfStmt from Project 4?
Formulation as a System of Equations

- **Updating** a map at an assignment \(\mathbf{v} = \ldots \)
 - If the statement is not an assignment, \(\text{OUT}[n] = \text{IN}[n] \)
- The map does not change for any \(\mathbf{w} \neq \mathbf{v} \)
- If we have \(\mathbf{v} = \mathbf{c} \), where \(\mathbf{c} \) is a constant: in \(\text{OUT}[n] \), \(\mathbf{v} \) is now mapped to \(\mathbf{c} \)
- If we have \(\mathbf{v} = \mathbf{p} + \mathbf{q} \) (or similar binary operators) and \(\text{IN}[n] \) maps \(\mathbf{p} \) and \(\mathbf{q} \) to \(\mathbf{c}_1 \) and \(\mathbf{c}_2 \) respectively
 - If both \(\mathbf{c}_1 \) and \(\mathbf{c}_2 \) are constants: result is \(\mathbf{c}_1 + \mathbf{c}_2 \)
 - Else, \(\mathbf{c}_1 \) or \(\mathbf{c}_2 \) or both are \textit{any} and the result is \textit{any}
ENTRY

\[
a = 1
\]

\[
b = 2
\]

\[
c = a + b
\]

\[
\text{if (…)}
\]

\[
a = 1 + c
\]

\[
b = 4 + c
\]

\[
d = a + b
\]

\[
a = a + b
\]

\[
b = a + c
\]

EXIT

OUT[n1] = \{
\}

OUT[n2] = \{ a → 1 \}

OUT[n3] = \{ a → 1, b → 2 \}

OUT[n4] = \{ a → 1, b → 2, c → 3 \}

OUT[n6] = \{ a → 4, b → 2, c → 3 \}

OUT[n7] = \{ a → 4, b → 7, c → 3 \}

OUT[n8] = \{ a → 4, b → 7, c → 3, d → 11 \}

OUT[n9] = \{ a → 5, b → 2, c → 3 \}

OUT[n10] = \{ a → 5, b → 6, c → 3 \}

IN[n11] = \{ a → any, b → any, c → 3 \}

OUT[n11] = \{ a → any, b → any, c → 3 \}

OUT[n12] = \{ a → any, b → any, c → 3 \}

Note: at the exit node a and b are compile-time constants, but this analysis is not powerful enough to infer this