Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4,
Chapter 9, Section 9.6
Outline

• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs
“Intermediate” Program Representations: ASTs and Three-Address Code

• AST is a **high-level** IR
 – Close to the source language
 – Suitable for tasks such as type checking

• Three-address code is a **lower-level** IR
 – Closer to the target language (i.e., assembly code), but machine-independent
 – Suitable for tasks such as code generation/optimization

• Basic ideas
 – A small number of simple instructions: e.g. $x = y \text{ op } z$
 – A number of compiler-generated temporary variables
 \[a = b + c + d; \text{ in source code } \rightarrow t = b + c; a = t + d; \]
 – Simple flow of control – conditional and unconditional jumps to labeled statements (no **while-do**, **switch**, …)
Addresses and Instructions

• “Address”: a program variable, a constant, or a compiler-generated temporary variable

• Instructions
 – \(x = y \, \text{op} \, z \): binary operator \(\text{op} \)
 – \(x = \text{op} \, y \): unary operator \(\text{op} \)
 – \(x = y \): copy instruction
 – Flow-of-control (more later ...)
 – Each instruction contains at most three “addresses”
 • Thus, three-address code

• This looks very similar to the assembly language we discussed in the code generation examples
Examples of Three-Address Code

\(x = y; \) in the source code produces one three-address instruction

Left: a pointer to the symbol table entry for \(x \)
Right: a pointer to the symbol table entry for \(y \)

For convenience, we will write this as \(x = y \)

\(x = -y; \) produces \(t1 = -y; \; x = t1; \)

\(x = y + z; \) produces \(t1 = y + z; \; x = t1; \)

\(x = y + z + w; \) produces \(t1 = y + z; \; t2 = t1 + w; \; x = t2; \)

\(x = y + -z; \) produces \(t1 = -z; \; t2 = y + t1; \; x = t2; \)
More Complex Expressions & Assignments

• All binary & unary operators are handled similarly
• We run into more interesting issues with
 – Expressions that have side effects
 – Arrays
• Example: in C, we can write $x = y = z + z$: maybe it should be translated to $t1 = z + z; y = t1; x = y$?
 – How should we translate $x = y = z++ + w$? How about $a[v = x++] = y = z++ + w$? Or $i = i++ + 1$? Or $a[i++] = i$?
 – Not discussed in this course; details in CSE 5343
Flow of Control - Statements

Example: if (x < 100 || x > 200 && x != y) x = 0;
if (x < 100) goto L2;
if (!(x > 200)) goto L1;
if (!(x != y)) goto L1;
L2: x = 0;
L1: ...

Instructions

– goto L: unconditional jump to the three-address instruction with label L
– if (x relop y) goto L: x and y are variables, temporaries, or constants; relop ∈ { <, <=, ==, !=, >, >= }
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a **basic block**: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: **local code optimizations**; done as part of the code generation phase
 – Across basic blocks: **global code optimizations**; done as part of the code optimization phase
 – Other aspects of code generation: e.g., **global register allocation**
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition
Part 1: Constructing a CFG

• Nodes: basic blocks; edges: possible control flow

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 – Can exit only at the last instruction (i.e., no jumps out of the middle of the block)

• Advantages of using basic blocks
 – Reduces the cost and complexity of compile-time analysis
 – Intra-BB optimizations are relatively easy
CFG Construction

• Given: the entire sequence of instructions

• First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Note: this example sets array elements $a[i][j]$ to 0.0, for $1 \leq i,j \leq 10$ (instructions 1-11). It then sets $a[i][i]$ to 1.0, for $1 \leq i \leq 10$ (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets from the beginning of the array.

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$i = 1$</td>
<td>First instruction</td>
</tr>
<tr>
<td>2.</td>
<td>$j = 1$</td>
<td>Target of 11</td>
</tr>
<tr>
<td>3.</td>
<td>$t1 = 10 \times i$</td>
<td>Target of 9</td>
</tr>
<tr>
<td>4.</td>
<td>$t2 = t1 + j$</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>$t3 = 8 \times t2$</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>$t4 = t3 - 88$</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>$a[t4] = 0.0$</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>$j = j + 1$</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>if $(j \leq 10)$ goto (3)</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>$i = i + 1$</td>
<td>Follows 9</td>
</tr>
<tr>
<td>11.</td>
<td>if $(i \leq 10)$ goto (2)</td>
<td>Follows 11</td>
</tr>
<tr>
<td>12.</td>
<td>$i = 1$</td>
<td>Target of 17</td>
</tr>
<tr>
<td>13.</td>
<td>$t5 = i - 1$</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>$t6 = 88 \times t5$</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>$a[t6] = 1.0$</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>$i = i + 1$</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>if $(i \leq 10)$ goto (13)</td>
<td></td>
</tr>
</tbody>
</table>
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Single Exit Node

• Single-exit CFG
 – If there are multiple exits (e.g. multiple return statements), redirect them to the artificial EXIT node
 – Use an artificial return variable \texttt{ret}
 – \texttt{return expr;} becomes \texttt{ret = expr; goto exit;}

• It gets ugly with exceptions (e.g., Java exceptions)

• Common properties (we will always assume them in this class)
 – Every node is reachable from the entry node
 – The exit node is reachable from every node
 • Not always true: e.g., a server thread could be \texttt{while(true) ...}
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node d dominates another node n if every path from ENTRY to n goes through d
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 – The relation is trivially reflexive: $d \text{ dom } d$

• Node m is the immediate dominator of n if
 – $m \neq n$
 – $m \text{ dom } n$
 – For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
EXIT → 10
A Few Observations

• Dominance is a **transitive** relation: \(a \ dom \ b \) and \(b \ dom \ c \) means \(a \ dom \ c \)

• Dominance is an **anti-symmetric** relation: \(a \ dom \ b \) and \(b \ dom \ a \) means that \(a \) and \(b \) must be the same
 – Reflexive, anti-symmetric, transitive: **partial order**

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom \ b \) or \(b \ dom \ a \)
 – Therefore, \(dom \) is a **total order** for \(n \)’s dominator set
 – Corollary: for any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

• The parent of n is its immediate dominator

The path from n to the root contains all and only dominators of n

Post-Dominance

- A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 - Implicit assumption: EXIT is reachable from every node
 - A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 - The relation is trivially reflexive: $d \ pdom \ d$

- Node m is the immediate post-dominator of n if
 - $m \neq n$; $m \ pdom \ n$; $\forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m$
 - Every n has a unique immediate post-dominator

- Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

- Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom$ n for any n

Immediate post-dominators:
ENTRY \rightarrow 1 1 \rightarrow 3
2 \rightarrow 3 3 \rightarrow 4
4 \rightarrow 7 5 \rightarrow 7
6 \rightarrow 7 7 \rightarrow 8
8 \rightarrow 10 9 \rightarrow 1
10 \rightarrow EXIT
The path from n to the root contains all and only post-dominators of n.

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed.
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected (induced) subgraph**: each node in the subgraph is reachable from every other node in the subgraph
 - Example: 2, 3, 4, 5

- **Loop**: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }

Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }

Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }

Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $header(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $header(L)$
 – Note that $header(L) \in body(L)$

• Example: this is a single loop with header node 1

• For two CFG loops L_1 and L_2
 – $header(L_1)$ is different from $header(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Use Scenario: Loop-Invariant Code Motion

Motivation: avoid redundancy

\[a = \ldots \]
\[b = \ldots \]
\[c = \ldots \]

start loop

\[\ldots \]
\[d = a + b \]
\[e = c + d \]

Both instructions are loop-invariant; let’s move them out

\[\ldots \]

end loop
Code Transformation

• First, create a **preheader** for the loop

 – Original CFG

 1 → 3 → 4 → 5 → 6 → 7
 2

 – Modified CFG

 1 → 3' → 3 → 4 → 5 → 6 → 7
 2

• Next, move loop-invariant instructions into the preheader (but only if correctness conditions are satisfied)

• Need control flow analysis to identify loops and loop headers
One of Several Correctness Conditions

• The basic block that contains the loop-invariant instruction **must dominate all exits of the loop**
 – i.e., all nodes that are sources of loop-exit edges: source node is in the loop, target node is not
 – This means that it is impossible to exit the loop before the instruction is executed

• Node 6 is a **loop exit** node; 3 dominates 6, but 4 and 5 do not dominate 6
• Any loop-invariant instructions in 4 and 5 cannot be moved into a preheader
May Need an Enabling Pre-Transformation

- CFGs for `while` and `for` loops will not work.
- Consider `while(y<0) { a = 1+2; y++; }`

L1: if `(y<0)` goto L2;
goto L3;
y = y + 1;
goto L1;
L3: ...

\[
a = 1+2 \text{ does not dominate the exit node B1}
\]

loop header is now B3
and \(a = 1+2\) dominates the exit node B5