Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4, Chapter 9, Section 9.6
Outline

• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs
“Intermediate” Program Representations: ASTs and Three-Address Code

• AST is a high-level IR
 – Close to the source language
 – Suitable for tasks such as type checking

• Three-address code is a lower-level IR
 – Closer to the target language (i.e., assembly code), but machine-independent
 – Suitable for tasks such as code generation/optimization

• Basic ideas
 – A small number of simple instructions: e.g. \(x = y \text{ op } z \)
 – A number of compiler-generated temporary variables
 \[a = b + c + d; \] in source code \(\rightarrow t = b + c; a = t + d; \)
 – Simple flow of control – conditional and unconditional jumps to labeled statements (no while-do, switch, …)
Addresses and Instructions

• “Address”: a program variable, a constant, or a compiler-generated temporary variable

• Instructions
 – \(x = y \, \text{op} \, z \): binary operator \(\text{op} \)
 – \(x = \text{op} \, y \): unary operator \(\text{op} \)
 – \(x = y \): copy instruction
 – Flow-of-control (more later ...)
 – Each instruction contains at most three “addresses”
 • Thus, three-address code

• This looks very similar to the assembly language we discussed in the code generation examples
Examples of Three-Address Code

\(x = y; \) in the source code produces one three-address instruction

Left: a pointer to the symbol table entry for \(x \)
Right: a pointer to the symbol table entry for \(y \)
For convenience, we will write this as \(x = y \)

\(x = - y; \) produces \(t1 = - y; x = t1; \)
\(x = y + z; \) produces \(t1 = y + z; x = t1; \)
\(x = y + z + w; \) produces \(t1 = y + z; t2 = t1 + w; x = t2; \)
\(x = y + - z; \) produces \(t1 = - z; t2 = y + t1; x = t2; \)
More Complex Expressions & Assignments

• All binary & unary operators are handled similarly
• We run into more interesting issues with
 – Expressions that have side effects
 – Arrays
• Example: in C, we can write \(x = y = z + z \): maybe it should be translated to \(t1 = z + z; y = t1; x = y \)?
 – How should we translate \(x = y = z++ + w \)? How about \(a[v = x++] = y = z++ + w \)? Or \(i = i++ + 1 \)? Or \(a[i++] = i \)?
 – Not discussed in this course; some details in CSE 5343
Flow of Control - Statements

Example: \(\text{if (} x < 100 \text{ || } x > 200 \text{ && } x \neq y \text{)} x = 0; \)
\(\text{if (} x < 100 \text{)} \text{goto L2;} \)
\(\text{if (} !(x > 200)) \text{goto L1;} \)
\(\text{if (} !(x \neq y)) \text{goto L1;} \)
\(\text{L2: } x = 0; \)
\(\text{L1: } \ldots \)

Instructions

– \text{goto L:} unconditional jump to the three-address instruction with label L
– \text{if (} x \text{ relop } y \text{) goto L:} x \text{ and } y \text{ are variables, temporaries, or constants; relop } \in \{ <, \leq, =, \neq, >, \geq \}
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations; done as part of the code generation phase
 – Across basic blocks: global code optimizations; done as part of the code optimization phase
 – Other aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by \textit{while}, \textit{do-while}, and \textit{for} statements” – need a general graph-theoretic definition
Part 1: Constructing a CFG

• Nodes: basic blocks; edges: possible control flow

• **Basic block**: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 – Can exit only at the last instruction (i.e., no jumps out of the middle of the block)

• Advantages of using basic blocks
 – Reduces the cost and complexity of compile-time analysis
 – Intra-BB optimizations are relatively easy
CFG Construction

• Given: the entire sequence of instructions
• First, find the **leaders** (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

• Next, find the **basic blocks**: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Example

1. $i = 1$
2. $j = 1$
3. $t1 = 10 \times i$
4. $t2 = t1 + j$
5. $t3 = 8 \times t2$
6. $t4 = t3 - 88$
7. $a[t4] = 0.0$
8. $j = j + 1$
9. if ($j \leq 10$) goto (3)
10. $i = i + 1$
11. if ($i \leq 10$) goto (2)
12. $i = 1$
13. $t5 = i - 1$
14. $t6 = 88 \times t5$
15. $a[t6] = 1.0$
16. $i = i + 1$
17. if ($i \leq 10$) goto (13)

Note: this example sets array elements $a[i][j]$ to 0.0, for $1 \leq i, j \leq 10$ (instructions 1-11). It then sets $a[i][i]$ to 1.0, for $1 \leq i \leq 10$ (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets from the beginning of the array.
ENTRY

B1
 i = 1

B2
 j = 1

B3
 t1 = 10 * i
 t2 = t1 + j
 t3 = 8 * t2
 t4 = t3 - 88
 a[t4] = 0.0
 j = j + 1
 if (j <= 10) goto B3

B4
 i = i + 1
 if (i <= 10) goto B2

B5
 i = 1

B6
 t5 = i - 1
 t6 = 88 * t5
 a[t6] = 1.0
 i = i + 1
 if (i <= 10) goto B6

EXIT

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p.
Single Exit Node

• Single-exit CFG
 – If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
 – Use an artificial return variable `ret`
 – `return expr;` becomes `ret = expr; goto exit;`

• It gets ugly with exceptions (e.g., Java exceptions)

• Common properties (we will always assume them in this class)
 – Every node is reachable from the entry node
 – The exit node is reachable from every node
 • Not always true: e.g., a server thread could be `while(true) ...`
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node \(d \) dominates another node \(n \) if every path from ENTRY to \(n \) goes through \(d \)
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation \(\text{dom} \subseteq \text{Nodes} \times \text{Nodes}: d \text{ dom } n \)
 – The relation is trivially reflexive: \(d \text{ dom } d \)

• Node \(m \) is the immediate dominator of \(n \) if
 – \(m \neq n \)
 – \(m \text{ dom } n \)
 – For any \(d \neq n \) such \(d \text{ dom } n \), we have \(d \text{ dom } m \)

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
ENTRY

1

2

ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
EXIT → 10
A Few Observations

• Dominance is a **transitive** relation: \(a \ dom \ b \) and \(b \ dom \ c \) means \(a \ dom \ c \)

• Dominance is an **anti-symmetric** relation: \(a \ dom \ b \) and \(b \ dom \ a \) means that \(a \) and \(b \) must be the same
 – Reflexive, anti-symmetric, transitive: **partial order**

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom \ b \) or \(b \ dom \ a \)
 – Therefore, \(dom \) is a **total order** for \(n \)’s dominator set
 – Corollary: for any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order; the last one is the immediate dominator
The parent of \(n \) is its immediate dominator.

The path from \(n \) to the root contains all and only dominators of \(n \).

Post-Dominance

• A CFG node d **post-dominates** another node n if every path from n to EXIT goes through d
 ─ Implicit assumption: EXIT is reachable from every node
 ─ A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 ─ The relation is trivially reflexive: $d \ pdom \ d$

• Node m is the **immediate post-dominator** of n if
 ─ $m \neq n$; $m \ pdom \ n$; $\forall d \neq n$. $d \ pdom \ n \Rightarrow d \ pdom \ m$
 ─ Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• **Post-dominator tree**: the parent of n is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other \(n \)

1 \(pdom \) ENTRY, 1, 9

2 does not post-dominate any other \(n \)

3 \(pdom \) ENTRY, 1, 2, 3, 9

4 \(pdom \) ENTRY, 1, 2, 3, 4, 9

5 does not post-dominate any other \(n \)

6 does not post-dominate any other \(n \)

7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9

8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 does not post-dominate any other \(n \)

10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

EXIT \(pdom \) \(n \) for any \(n \)

Immediate post-dominators:

ENTRY \(\rightarrow \) 1
1 \(\rightarrow \) 3
2 \(\rightarrow \) 3
3 \(\rightarrow \) 4
4 \(\rightarrow \) 7
5 \(\rightarrow \) 7
6 \(\rightarrow \) 7
7 \(\rightarrow \) 8
8 \(\rightarrow \) 10
9 \(\rightarrow \) 1
10 \(\rightarrow \) EXIT
The parent of \(n \) is its immediate post-dominator.

The path from \(n \) to the root contains all and only post-dominators of \(n \).

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed.
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example: 1 → 2 → 3 → 4 → 5

- **Strongly-connected (induced) subgraph**: each node in the subgraph is reachable from every other node in the subgraph
 - Example: 2, 3, 4, 5

- **Loop**: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:
Back Edges and Natural Loops

- Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 - Easy to see that \(n\) and \(h\) belong to the same SCC

- Natural loop for a back edge \((n,h)\)
 - The set of all nodes \(m\) that can reach node \(n\) without
 going through node \(h\) (trivially, this set includes \(h\))
 - Easy to see that \(h\) dominates all such nodes \(m\)
 - Node \(h\) is the header of the natural loop

- Trivial algorithm to find the natural loop of \((n,h)\)
 - Mark \(h\) as visited
 - Perform depth-first search (or breadth-first) starting
 from \(n\), but follow the CFG edges in reverse direction
 - All and only visited nodes are in the natural loop
Immediate dominators:

\[
\begin{align*}
1 & \rightarrow \text{ENTRY} \\
4 & \rightarrow 3 \\
7 & \rightarrow 4 \\
10 & \rightarrow 8 \\
3 & \rightarrow 1 \\
5 & \rightarrow 4 \\
8 & \rightarrow 7 \\
9 & \rightarrow 8 \\
\end{align*}
\]

Back edges: \(4 \rightarrow 3, 7 \rightarrow 4, 8 \rightarrow 3, 9 \rightarrow 1, 10 \rightarrow 7\)

Loop(\(10 \rightarrow 7\)) = \{ 7, 8, 10 \}

Loop(\(7 \rightarrow 4\)) = \{ 4, 5, 6, 7, 8, 10 \}

\textit{Note: Loop}(\(10 \rightarrow 7\)) \subseteq \textit{Loop}(\(7 \rightarrow 4\))

Loop(\(4 \rightarrow 3\)) = \{ 3, 4, 5, 6, 7, 8, 10 \}

\textit{Note: Loop}(\(7 \rightarrow 4\)) \subseteq \textit{Loop}(\(4 \rightarrow 3\))

Loop(\(8 \rightarrow 3\)) = \{ 3, 4, 5, 6, 7, 8, 10 \}

\textit{Note: Loop}(\(8 \rightarrow 3\)) = \textit{Loop}(\(4 \rightarrow 3\))

Loop(\(9 \rightarrow 1\)) = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}

\textit{Note: Loop}(\(4 \rightarrow 3\)) \subseteq \textit{Loop}(\(9 \rightarrow 1\))
Loops in the CFG

• Find all back edges; each target \(h \) of at least one back edge defines a loop \(L \) with \(\text{header}(L) = h \)

• \(\text{body}(L) \) is the union of the natural loops of all back edges whose target is \(\text{header}(L) \)
 – Note that \(\text{header}(L) \in \text{body}(L) \)

• Example: this is a single loop with header node 1

• For two CFG loops \(L_1 \) and \(L_2 \)
 – \(\text{header}(L_1) \) is different from \(\text{header}(L_2) \)
 – \(\text{body}(L_1) \) and \(\text{body}(L_2) \) are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Use Scenario: Loop-Invariant Code Motion

Motivation: avoid redundancy

\[a = \ldots \]

\[b = \ldots \]

\[c = \ldots \]

\textit{start loop}

\[d = a + b \]

Both instructions are \textit{loop-invariant}; let’s move them out

\[e = c + d \]

\textit{end loop}
Code Transformation

• First, create a **preheader** for the loop

- Original CFG

- Modified CFG

• Next, move loop-invariant instructions into the preheader (but only if correctness conditions are satisfied)

• Need control flow analysis to identify loops and loop headers
One of Several Correctness Conditions

- The basic block that contains the loop-invariant instruction **must dominate all loop exit nodes**
 - i.e., all nodes that are sources of loop-exit edges: source node is in the loop, target node is not
 - This means that it is impossible to exit the loop before the instruction is executed

[Diagram]

- Node 6 is a **loop exit node**; 3 dominates 6, but 4 and 5 do not dominate 6
- Any loop-invariant instructions in 4 and 5 cannot be moved into a preheader
May Need an Enabling Pre-Transformation
• CFGs for \textbf{while} and \textbf{for} loops will not work
• Consider \texttt{while(y<0) \{ a = 1+2; y++; \}}

\begin{itemize}
 \item L1: if (y<0) goto L2;
 \item goto L3;
 \item L2: a = 1+2;
 \item y = y + 1;
 \item goto L1;
 \item L3: ...
\end{itemize}

\begin{itemize}
 \item \texttt{a = 1+2} does not dominate the exit node B1
 \item loop header is now B3 and \texttt{a = 1+2} dominates the exit node B5
\end{itemize}