Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4,
Chapter 9, Section 9.6
Outline

• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs
"Intermediate" Program Representations: ASTs and Three-Address Code

• AST is a high-level IR
 – Close to the source language
 – Suitable for tasks such as type checking

• Three-address code is a lower-level IR
 – Closer to the target language (i.e., assembly code), but machine-independent
 – Suitable for tasks such as code generation/optimization

• Basic ideas
 – A small number of simple instructions: e.g. \(x = y \ op \ z \)
 – A number of compiler-generated temporary variables
 \(a = b + c + d; \) in source code \(\rightarrow t = b + c; a = t + d; \)
 – Simple flow of control – conditional and unconditional jumps to labeled statements (no \text{while-do, switch}, ...)
Addresses and Instructions

• “Address”: a program variable, a constant, or a compiler-generated temporary variable

• Instructions
 – \(x = y \text{ op } z \): binary operator \textbf{op}
 – \(x = \text{ op } y \): unary operator \textbf{op}
 – \(x = y \): copy instruction
 – Flow-of-control (more later ...)
 – Each instruction contains at most three “addresses”
 • Thus, \textbf{three-address code}

• This looks very similar to the assembly language we discussed in the code generation examples
Examples of Three-Address Code

\(x = y; \) in the source code produces one three-address instruction

Left: a pointer to the symbol table entry for \(x \)
Right: a pointer to the symbol table entry for \(y \)

For convenience, we will write this as \(x = y \)

\(x = -y; \) produces \(t_1 = -y; \) \(x = t_1; \)

\(x = y + z; \) produces \(t_1 = y + z; \) \(x = t_1; \)

\(x = y + z + w; \) produces \(t_1 = y + z; \) \(t_2 = t_1 + w; \) \(x = t_2; \)

\(x = y + -z; \) produces \(t_1 = -z; \) \(t_2 = y + t_1; \) \(x = t_2; \)
More Complex Expressions & Assignments

• All binary & unary operators are handled similarly

• We run into more interesting issues with
 – Expressions that have side effects
 – Arrays

• Example: in C, we can write \(x = y = z + z \): maybe it should be translated to \(t1 = z + z; y = t1; x = y \) ?
 – How should we translate \(x = y = z++ + w \)? How about \(a[v = x++] = y = z++ + w \)? Or \(i = i++ + 1 \)? Or \(a[i++] = i \)?
 – Not discussed in this course; some details in CSE 5343
Flow of Control - Statements

Example: \(\text{if } (x < 100 \text{ } || \text{ } x > 200 \text{ } && \text{ } x != y) \text{ } x = 0; \)

- if \((x < 100) \) goto L2;
- if \((! (x > 200)) \) goto L1;
- if \((! (x != y)) \) goto L1;

L2: \(x = 0; \)
L1: ...

Instructions

- goto L: unconditional jump to the three-address instruction with label L
- if (x relop y) goto L: x and y are variables, temporaries, or constants; relop \(\in \{ <, <=, ==, !=, >, >= \} \)
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations; done as part of the code generation phase
 – Across basic blocks: global code optimizations; done as part of the code optimization phase
 – Other aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition
Part 1: Constructing a CFG

• Nodes: basic blocks; edges: possible control flow

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 – Can exit only at the last instruction (i.e., no jumps out of the middle of the block)

• Advantages of using basic blocks
 – Reduces the cost and complexity of compile-time analysis
 – Intra-BB optimizations are relatively easy
CFG Construction

• Given: the entire sequence of instructions

• First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Note: this example sets array elements $a[i][j]$ to 0.0, for $1 \leq i,j \leq 10$ (instructions 1-11). It then sets $a[i][i]$ to 1.0, for $1 \leq i \leq 10$ (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets from the beginning of the array.
\[\begin{align*}
i &= 1 \\
j &= 1 \\
t_1 &= 10 \times i \\
t_2 &= t_1 + j \\
t_3 &= 8 \times t_2 \\
t_4 &= t_3 - 88 \\
a[t_4] &= 0.0 \\
j &= j + 1 \\
\end{align*} \]

\[\begin{align*}
t_5 &= i - 1 \\
t_6 &= 88 \times t_5 \\
a[t_6] &= 1.0 \\
i &= i + 1 \\
\text{if } (i \leq 10) \text{ goto B6} \\
\end{align*} \]

Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from \(B_p \) to \(B_q \) if it is possible for the first instruction of \(B_q \) to be executed immediately after the last instruction of \(B_p \).
Single Exit Node

• Single-exit CFG
 – If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
 – Use an artificial return variable ret
 – return expr; becomes $ret = \text{expr}; \text{goto exit}$;

• It gets ugly with exceptions (e.g., Java exceptions)

• Common properties (we will always assume them in this class)
 – Every node is reachable from the entry node
 – The exit node is reachable from every node
 • Not always true: e.g., a server thread could be while(true) ...
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

- A CFG node d dominates another node n if every path from ENTRY to n goes through d
 - Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 - A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 - The relation is trivially reflexive: $d \text{ dom } d$

- Node m is the immediate dominator of n if
 - $m \neq n$
 - $m \text{ dom } n$
 - For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

- Every node has a unique immediate dominator
 - Except ENTRY, which is dominated only by itself
ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
EXIT → 10
A Few Observations

• Dominance is a **transitive** relation: \(a \ dom \ b \) and \(b \ dom \ c \) means \(a \ dom \ c \)

• Dominance is an **anti-symmetric** relation: \(a \ dom \ b \) and \(b \ dom \ a \) means that \(a \) and \(b \) must be the same

 – Reflexive, anti-symmetric, transitive: **partial order**

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom \ b \) or \(b \ dom \ a \)

 – Therefore, \(dom \) is a **total order** for \(n \)’s dominator set

 – Corollary: for any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

• The parent of n is its immediate dominator

The path from n to the root contains all and only dominators of n

Post-Dominance

• A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 — Implicit assumption: EXIT is reachable from every node
 — A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}$: $d \ pdom \ n$
 — The relation is trivially reflexive: $d \ pdom \ d$

• Node m is the immediate post-dominator of n if
 — $m \neq n$; $m \ pdom \ n$; $\forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m$
 — Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom$ n for any n

Immediate post-dominators:
ENTRY \rightarrow 1 1 \rightarrow 3
2 \rightarrow 3 3 \rightarrow 4
4 \rightarrow 7 5 \rightarrow 7
6 \rightarrow 7 7 \rightarrow 8
8 \rightarrow 10 9 \rightarrow 1
10 \rightarrow EXIT
The path from n to the root contains all and only post-dominators of n.

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed.
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected (induced) subgraph**: each node in the subgraph is reachable from every other node in the subgraph
 - Example: 2, 3, 4, 5

- **Loop**: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
- $1 \rightarrow \text{ENTRY}$
- $2 \rightarrow 1$
- $3 \rightarrow 1$
- $4 \rightarrow 3$
- $5 \rightarrow 4$
- $6 \rightarrow 4$
- $7 \rightarrow 4$
- $8 \rightarrow 7$
- $9 \rightarrow 8$
- $10 \rightarrow 8$

Back edges: $4 \rightarrow 3$, $7 \rightarrow 4$, $8 \rightarrow 3$, $9 \rightarrow 1$, $10 \rightarrow 7$

Loop($10 \rightarrow 7$) = \{7, 8, 10\}

Loop($7 \rightarrow 4$) = \{4, 5, 6, 7, 8, 10\}

Note: Loop($10 \rightarrow 7$) \subseteq Loop($7 \rightarrow 4$)

Loop($4 \rightarrow 3$) = \{3, 4, 5, 6, 7, 8, 10\}

Note: Loop($7 \rightarrow 4$) \subseteq Loop($4 \rightarrow 3$)

Loop($8 \rightarrow 3$) = \{3, 4, 5, 6, 7, 8, 10\}

Note: Loop($8 \rightarrow 3$) = Loop($4 \rightarrow 3$)

Loop($9 \rightarrow 1$) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}

Note: Loop($4 \rightarrow 3$) \subseteq Loop($9 \rightarrow 1$)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $\text{header}(L) = h$

• $\text{body}(L)$ is the union of the natural loops of all back edges whose target is $\text{header}(L)$
 – Note that $\text{header}(L) \in \text{body}(L)$

• Example: this is a single loop with header node 1

• For two CFG loops L_1 and L_2
 – $\text{header}(L_1)$ is different from $\text{header}(L_2)$
 – $\text{body}(L_1)$ and $\text{body}(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Use Scenario: Loop-Invariant Code Motion
Motivation: avoid redundancy

\[
\begin{align*}
a &= \ldots \\
b &= \ldots \\
c &= \ldots \\
&\textit{start loop} \\
&\ldots \\
&d = a + b \\
&e = c + d \\
&\ldots \\
&\textit{end loop}
\end{align*}
\]

Both instructions are loop-invariant; let’s move them out.
Code Transformation

• First, create a preheader for the loop

 – Original CFG

 1 → 3 → 4 → 5 → 6 → 7
 2

 – Modified CFG

 1 → 3' → 3 → 4 → 5 → 6 → 7
 2

• Next, move loop-invariant instructions into the preheader (but only if correctness conditions are satisfied)

• Need control flow analysis to identify loops and loop headers
One of Several Correctness Conditions

• The basic block that contains the loop-invariant instruction must dominate all loop exit nodes — i.e., all nodes that are sources of loop-exit edges: source node is in the loop, target node is not — This means that it is impossible to exit the loop before the instruction is executed

• Node 6 is a loop exit node; 3 dominates 6, but 4 and 5 do not dominate 6
• Any loop-invariant instructions in 4 and 5 cannot be moved into a preheader
May Need an Enabling Pre-Transformation

• CFGs for `while` and `for` loops will not work
• Consider `while(y<0) { a = 1+2; y++; }

L1: if (y<0) goto L2;
goto L3;
L2: a = 1+2;
y = y + 1;
goto L1;
L3: ...

`a = 1+2` does not dominate the exit node B1

`loop header is now B3` and `a = 1+2` dominates the exit node B5