Control-Flow Static Analysis

Dragon Book: Chapter 8, Section 8.4, Chapter 9, Section 9.6
Outline

• Program representation: three-address code
• Control-Flow Graphs (CFGs)
• Dominators and post-dominators in CFGs
• Loops in CFGs
“Intermediate” Program Representations: ASTs and Three-Address Code

• AST is a high-level IR
 – Close to the source language
 – Suitable for tasks such as type checking

• Three-address code is a lower-level IR
 – Closer to the target language (i.e., assembly code), but machine-independent
 – Suitable for tasks such as code generation/optimization

• Basic ideas
 – A small number of simple instructions: e.g. \(x = y \text{ op } z \)
 – A number of compiler-generated temporary variables
 \(a = b + c + d; \) in source code \(\rightarrow t = b + c; a = t + d; \)
 – Simple flow of control – conditional and unconditional jumps to labeled statements (no \textbf{while-do, switch}, \ldots)
Addresses and Instructions

• “Address”: a program variable, a constant, or a compiler-generated temporary variable

• Instructions
 – $x = y \text{ op } z$: binary operator op
 – $x = \text{ op } y$: unary operator op
 – $x = y$: copy instruction
 – Flow-of-control (more later …)
 – Each instruction contains at most three “addresses”
 • Thus, three-address code

• This looks very similar to the assembly language we discussed in the code generation examples
Examples of Three-Address Code

\(x = y;\) produces one three-address instruction
Left: a pointer to the symbol table entry for \(x\)
Right: a pointer to the symbol table entry for \(y\)
For convenience, we will write this as \(x = y\)

\(x = -y;\) produces \(t1 = -y; x = t1;\)

\(x = y + z;\) produces \(t1 = y + z; x = t1;\)

\(x = y + z + w;\) produces \(t1 = y + z; t2 = t1 + w; x = t2;\)

\(x = y + - z;\) produces \(t1 = -z; t2 = y + t1; x = t2;\)
More Complex Expressions & Assignments

• All binary & unary operators are handled similarly

• We run into more interesting issues with
 – Expressions that have side effects
 – Arrays

• Example: in C, we can write \(x = y = z + z \): maybe it should be translated to \(t1 = z + z; y = t1; x = y; \) ?
 – How should we translate \(x = y = z++ + w \)? How about \(a[v = x++] = y = z++ + w \)? Or \(i = i++ + 1 \)? Or \(a[i++] = i \)?
 – Not discussed in this course; details in CSE 5343
Flow of Control - Statements

Example: \textbf{if} (x < 100 \textbf{||} x > 200 \textbf{&&} x \neq y) x = 0;

\textbf{if} (x < 100) \textbf{goto} L2;

\textbf{if} (!(x > 200)) \textbf{goto} L1;

\textbf{if} (!(x \neq y)) \textbf{goto} L1;

L2: x = 0;

L1: ...

Instructions

– \textbf{goto} L: unconditional jump to the three-address instruction with label L

– \textbf{if} (x \textbf{ relop } y) \textbf{goto} L: x and y are variables, temporaries, or constants; relop \in \{<, \leq, =, \neq, >, \geq \}
Control-Flow Graphs

• Control-flow graph (CFG) for a procedure/method
 – A node is a basic block: a single-entry-single-exit sequence of three-address instructions
 – An edge represents the potential flow of control from one basic block to another

• Uses of a control-flow graph
 – Inside a basic block: local code optimizations; done as part of the code generation phase
 – Across basic blocks: global code optimizations; done as part of the code optimization phase
 – Other aspects of code generation: e.g., global register allocation
Control-Flow Analysis

• Part 1: Constructing a CFG
• Part 2: Finding dominators and post-dominators
• Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition
Part 1: Constructing a CFG

• Nodes: basic blocks; edges: possible control flow

• Basic block: maximal sequence of consecutive three-address instructions such that
 – The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 – Can exit only at the last instruction

• Advantages of using basic blocks
 – Reduces the cost and complexity of compile-time analysis
 – Intra-BB optimizations are relatively easy
CFG Construction

• Given: the entire sequence of instructions

• First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

• Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Note: this example sets array elements \(a[i][j] \) to 0.0, for \(1 \leq i,j \leq 10 \) (instructions 1-11). It then sets \(a[i][i] \) to 1.0, for \(1 \leq i \leq 10 \) (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets from the beginning of the array.
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Single Exit Node

• Single-exit CFG
 – If there are multiple exits (e.g. multiple return statements), redirect them to the artificial EXIT node
 – Use an artificial return variable \textit{ret}
 – \textit{return expr}; becomes \textit{ret = expr; goto exit;}

• It gets ugly with exceptions (e.g., Java exceptions)

• Common assumption (we will use this)
 – Every node is reachable from the entry node
 – The exit node is reachable from every node
 • Not always true: e.g., a server thread could be \textit{while(true)} ...
 – A number of techniques depend on having a single exit and on the reachability assumption
Practical Considerations

• The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

• Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node \(d \) dominates another node \(n \) if every path from ENTRY to \(n \) goes through \(d \):
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation \(\text{dom} \subseteq \text{Nodes} \times \text{Nodes}: d \text{ dom } n \)
 – The relation is trivially reflexive: \(d \text{ dom } d \)

• Node \(m \) is the immediate dominator of \(n \) if:
 – \(m \neq n \)
 – \(m \text{ dom } n \)
 – For any \(d \neq n \) such \(d \text{ dom } n \), we have \(d \text{ dom } m \)

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
ENTRY $dom \ n$ for any n
1 $dom \ n$ for any n except ENTRY
2 does not dominate any other node
3 $dom \ 3, 4, 5, 6, 7, 8, 9, 10, \EXIT$
4 $dom \ 4, 5, 6, 7, 8, 9, 10, \EXIT$
5 does not dominate any other node
6 does not dominate any other node
7 $dom \ 7, 8, 9, 10, \EXIT$
8 $dom \ 8, 9, 10, \EXIT$
9 does not dominate any other node
10 $dom \ 10, \EXIT$

Immediate dominators:
1 \rightarrow ENTRY \hspace{1cm} 2 \rightarrow 1
3 \rightarrow 1 \hspace{1cm} 4 \rightarrow 3
5 \rightarrow 4 \hspace{1cm} 6 \rightarrow 4
7 \rightarrow 4 \hspace{1cm} 8 \rightarrow 7
9 \rightarrow 8 \hspace{1cm} 10 \rightarrow 8
EXIT \rightarrow 10
A Few Observations

• Dominance is a transitive relation: \(a \ dom b \) and \(b \ dom c \) means \(a \ dom c \)

• Dominance is an anti-symmetric relation: \(a \ dom b \) and \(b \ dom a \) means that \(a \) and \(b \) must be the same
 — Reflexive, anti-symmetric, transitive: partial order

• If \(a \) and \(b \) are two dominators of some \(n \), either \(a \ dom b \) or \(b \ dom a \)
 — Therefore, \(dom \) is a total order for \(n \)’s dominator set
 — Corollary: for any acyclic path from ENTRY to \(n \), all dominators of \(n \) appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

• The parent of \(n \) is its immediate dominator

The path from \(n \) to the root contains all and only dominators of \(n \)

Post-Dominance

• A CFG node \(d \) post-dominates another node \(n \) if every path from \(n \) to EXIT goes through \(d \)
 - Implicit assumption: EXIT is reachable from every node
 - A relation \(pdom \subseteq \text{Nodes} \times \text{Nodes}: d \ pdom \ n \)
 - The relation is trivially reflexive: \(d \ pdom \ d \)

• Node \(m \) is the immediate post-dominator of \(n \) if
 - \(m \neq n; m \ pdom \ n; \forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m \)
 - Every \(n \) has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of \(n \) is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other \(n \)
1 \(pdom \) ENTRY, 1, 9
2 does not post-dominate any other \(n \)
3 \(pdom \) ENTRY, 1, 2, 3, 9
4 \(pdom \) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n \)
6 does not post-dominate any other \(n \)
7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n \)
10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \(pdom \) \(n \) for any \(n \)

Immediate post-dominators:
ENTRY → 1
1 → 3
2 → 3
3 → 4
4 → 7
5 → 7
6 → 7
7 → 8
8 → 10
9 → 1
10 → EXIT
The path from \(n \) to the root contains all and only post-dominators of \(n \)

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected component (SCC)**: a maximal set of nodes such as each node in the set is reachable from every other node in the set
 - Example:

- **Loop**: informally, a strongly-connected component with a single entry point
 - An SCC that is not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)
 – Easy to see that \(n\) and \(h\) belong to the same SCC

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }
Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
 Note: Loop(10 → 7) ⊆ Loop(7 → 4)
Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(7 → 4) ⊆ Loop(4 → 3)
Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
 Note: Loop(8 → 3) = Loop(4 → 3)
Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
 Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $header(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $header(L)$
 – Note that $header(L) \in body(L)$

• Example: this is a single loop with header node 1

• For two CFG loops L_1 and L_2
 – $header(L_1)$ is different from $header(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Use Scenario: Loop-Invariant Code Motion

Motivation: avoid redundancy

\[a = \ldots \]

\[b = \ldots \]

\[c = \ldots \]

\textit{start loop}

\[\ldots \]

\[d = a + b \quad \text{Both instructions are} \]

\[e = c + d \quad \text{loop-invariant; let’s move them out} \]

\[\ldots \]

\textit{end loop}
Code Transformation

• First, create a **preheader** for the loop

– Original CFG

– Modified CFG

• Next, move loop-invariant instructions into the preheader (but only if correctness conditions are satisfied)

• Need control flow analysis to identify loops and loop headers
One Correctness Condition

• The basic block that contains the loop-invariant instruction **must dominate all exits of the loop**
 – i.e., all nodes that are sources of loop-exit edges: source node is in the loop, target node is not
 – This means that it is impossible to exit the loop before the instruction is executed

![Diagram](Diagram.png)

• Node 6 is a **loop exit** node; 3 dominates 6, but 4 and 5 do not dominate 6
• Any loop-invariant instructions in 4 and 5 cannot be moved into a preheader
May Need an Enabling Pre-Transformation

- CFGs for `while` and `for` loops will not work.
- Consider `while(y<0) { a = 1+2; y++; }

L1: if (y<0) goto L2; goto L3;
L2: a = 1+2; y = y + 1; goto L1;
L3: ...

\[a = 1+2 \text{ does not dominate the exit node B1}\]

\[\text{loop header is now B3 and } a = 1+2 \text{ dominates the exit node B5}\]