Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6
Phases of the Compilation Process

Front end
- Lexical analysis
- Syntax analysis
- Semantic analysis (e.g., type checking)
- Generation of three-address code

Middle/Back end
- Code optimization: machine-independent optimization of three-address code
- Code generation: target code (e.g., assembly)
Control-Flow Graphs

Control-flow graph (CFG) for a procedure/method

- A node is a basic block: a single-entry-single-exit sequence of three-address instructions
- An edge represents the potential flow of control from one basic block to another

Uses of a control-flow graph

- Inside a basic block: local code optimizations; done as part of the code generation phase (e.g., Section 8.5)
- Across basic blocks: global code optimizations; done as part of the code optimization phase
- Other aspects of code generation: e.g., global register allocation
Control-Flow Analysis

Part 1: Constructing a CFG

Part 2: Finding dominators and post-dominators

Part 3: Finding loops in a CFG
 - What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition

Part 4: Finding control dependences in a CFG
 - Needed for optimizations: cannot violate dependences
 - Needed for analyses in software tools: e.g., slicing
Part 1: Constructing a CFG

Nodes: basic blocks; edges: possible control flow

Basic block: maximal sequence of consecutive three-address instructions such that

– The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
– Can exit only at the last instruction

Advantages of using basic blocks

– Reduces the cost and complexity of compile-time analysis
– Intra-BB optimizations are relatively easy
CFG Construction

Given: the entire sequence of instructions

First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Note: this example sets array elements \(a[i][j]\) to 0.0, for \(1 \leq i,j \leq 10\) (instructions 1-11). It then sets \(a[i][i]\) to 1.0, for \(1 \leq i \leq 10\) (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(i = 1)</td>
</tr>
<tr>
<td>2.</td>
<td>(j = 1)</td>
</tr>
<tr>
<td>3.</td>
<td>(t1 = 10 \times i)</td>
</tr>
<tr>
<td>4.</td>
<td>(t2 = t1 + j)</td>
</tr>
<tr>
<td>5.</td>
<td>(t3 = 8 \times t2)</td>
</tr>
<tr>
<td>6.</td>
<td>(t4 = t3 - 88)</td>
</tr>
<tr>
<td>7.</td>
<td>(a[t4] = 0.0)</td>
</tr>
<tr>
<td>8.</td>
<td>(j = j + 1)</td>
</tr>
<tr>
<td>9.</td>
<td>if ((j \leq 10)) goto (3)</td>
</tr>
<tr>
<td>10.</td>
<td>(i = i + 1)</td>
</tr>
<tr>
<td>11.</td>
<td>if ((i \leq 10)) goto (2)</td>
</tr>
<tr>
<td>12.</td>
<td>(i = 1)</td>
</tr>
<tr>
<td>13.</td>
<td>(t5 = i - 1)</td>
</tr>
<tr>
<td>14.</td>
<td>(t6 = 88 \times t5)</td>
</tr>
<tr>
<td>15.</td>
<td>(a[t6] = 1.0)</td>
</tr>
<tr>
<td>16.</td>
<td>(i = i + 1)</td>
</tr>
<tr>
<td>17.</td>
<td>if ((i \leq 10)) goto (13)</td>
</tr>
</tbody>
</table>
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from B_p to B_q if it is possible for the first instruction of B_q to be executed immediately after the last instruction of B_p. This is conservative: e.g., if $(3.14 > 2.78)$ still generates two edges.
Single Exit Node

Single-exit CFG

– If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
– Use an artificial compiler-created return variable \(\text{ret} \)
– \(\text{return expr; \} \) becomes \(\text{ret} = \text{expr; goto exit;} \)

It gets ugly with exceptions

– Java: \(\text{throw; \} \) uncaught exceptions (e.g., null pointer exception, or an exception thrown by a callee)
– C: \(\text{setjmp and longjmp} \)
– We will ignore these

Common assumption

– Every node is reachable from the entry node
– The exit node is reachable from every node
 • Not always true: e.g., a server thread could be \(\text{while(true) \} \)
– A number of techniques depend on having a single exit and on the reachability assumption
Practical Considerations

The usual data structures for graphs can be used

- The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 - Number of edges is at most $2 \times$ number of nodes

Nodes are basic blocks; edges are between basic blocks, not between instructions

- Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
- Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node d dominates another node n if every path from ENTRY to n goes through d
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 – The relation is trivially reflexive: $d \text{ dom } d$

• Node m is the immediate dominator of n if
 – $m \neq n$
 – $m \text{ dom } n$
 – For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
ENTRY $dom\ n$ for any n

1 $dom\ n$ for any n except ENTRY
2 does not dominate any other node
3 $dom\ 3, 4, 5, 6, 7, 8, 9, 10, \text{EXIT}$
4 $dom\ 4, 5, 6, 7, 8, 9, 10, \text{EXIT}$
5 does not dominate any other node
6 does not dominate any other node
7 $dom\ 7, 8, 9, 10, \text{EXIT}$
8 $dom\ 8, 9, 10, \text{EXIT}$
9 does not dominate any other node
10 $dom\ 10, \text{EXIT}$

Immediate dominators:

1 \rightarrow ENTRY 2 \rightarrow 1
3 \rightarrow 1 4 \rightarrow 3
5 \rightarrow 4 6 \rightarrow 4
7 \rightarrow 4 8 \rightarrow 7
9 \rightarrow 8 10 \rightarrow 8
EXIT \rightarrow 10
A Few Observations

• Dominance is a transitive relation: $a \ dom \ b$ and $b \ dom \ c$ means $a \ dom \ c$

• Dominance is an anti-symmetric relation: $a \ dom \ b$ and $b \ dom \ a$ means that a and b must be the same
 – Reflexive, anti-symmetric, transitive: partial order

• If a and b are two dominators of some n, either $a \ dom \ b$ or $b \ dom \ a$
 – Therefore, dom is a total order for n’s dominator set
 – Corollary: for any acyclic path from ENTRY to n, all dominators of n appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

The parent of n is its immediate dominator

The path from n to the root contains all and only dominators of n

Post-Dominance

• A CFG node \(d \) post-dominates another node \(n \) if every path from \(n \) to EXIT goes through \(d \)
 – Implicit assumption: EXIT is reachable from every node
 – A relation \(pdom \subseteq \text{Nodes} \times \text{Nodes}: d pdom n \)
 – The relation is trivially reflexive: \(d pdom d \)

• Node \(m \) is the immediate post-dominator of \(n \) if
 – \(m \neq n; m pdom n; \forall d \neq n. d pdom n \Rightarrow d pdom m \)
 – Every \(n \) has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of \(n \) is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom$ n for any n

Immediate post-dominators:
ENTRY \rightarrow 1 1 \rightarrow 3
2 \rightarrow 3 3 \rightarrow 4
4 \rightarrow 7 5 \rightarrow 7
6 \rightarrow 7 7 \rightarrow 8
8 \rightarrow 10 9 \rightarrow 1
10 \rightarrow EXIT
The path from n to the root contains all and only post-dominators of n.

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed.
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected (induced) subgraph**: each node in the subgraph is reachable from every other node in the subgraph
 - Example:

- **Loop**: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n,h)\) where \(h\) dominates \(n\)

• Natural loop for a back edge \((n,h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Trivial algorithm to find the natural loop of \((n,h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }
Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $header(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $header(L)$
 – Note that $header(L) \in body(L)$

• Example: this is a single loop with header node 1

• For any two CFG loops L_1 and L_2
 – $header(L_1)$ is different from $header(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Flashback to Graph Algorithms

• Depth-first search in the CFG [Cormen et al. book]
 – Set each node’s color as \textit{white}
 – Call DFS(ENTRY)
 – DFS(n)
 • Set the color of n to \textit{gray}
 • For each successor m: if color is \textit{white}, call DFS(m)
 • Set the color of n to \textit{black}

• Inside DFS(n), seeing a gray successor m means that (n,m) is a \underline{retreating edge}
 – Note: m could be n itself, if there is an edge (n,n)

• The order in which we consider the successors matters: the set of retreating edges depends on it
Reducible Control-Flow Graphs

• For **reducible** CFGs, the **retreating** edges discovered during DFS are all and only **back** edges
 – The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges

• For **irreducible** CFGs: a DFS traversal may produce retreating edges that are not back edges
 – Each traversal may produce different retreating edges
 – Example:

 • No back edges
 • One traversal produces the retreating edge $3 \rightarrow 2$
 • The other one produces the retreating edge $2 \rightarrow 3$
Reducibility

- A number of equivalent definitions
 - One of them is on the previous page
- Another definition: the graph can be reduced to a single node with the application of the following two rules
 - Given a node n with a single predecessor m, merge n into m; all successors of n become successors of m
 - Remove an edge $n \rightarrow n$
- Try this on the graphs from the previous slides
- More details: p. 677 in the textbook
Reducibility

• The essence of irreducibility: a strongly-connected subgraph with multiple possible entry points
 – If the original program was written using `if-then`, `if-then-else`, `while-do`, `do-while`, `break`, and `continue`, the resulting CFG is always reducible
 – If `goto` was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program
Part 4: Control Dependence: Informally

• The decision made at branch node \(c \) affects whether node \(n \) gets executed
 – Thus, \(n \) is control dependent on \(c \) – the control-flow leading to \(n \) depends on what \(c \) does

• A node \(n \) is control dependent on a node \(c \) if
 – There exists an edge \(e_1 \) coming out of \(c \) that definitely causes \(n \) to execute
 – There exists some edge \(e_2 \) coming out of \(c \) that is the start of some path that avoids the execution of \(n \)

• Informally: \(n \) postdominates some successor of \(c \), but does not postdominate \(c \) itself
Control Dependence: Formally

• (part 1) n is control dependent on c if
 – $n \neq c$
 – n does not post-dominate c
 – there is an edge $c \rightarrow m$ such that n post-dominates m

• (part 2) n is control dependent on n if
 – there exists a path from n to n such that n post-dominates every node on the path
 • this happens in the presence of loops; n is the source node of a loop exit edge
Consider all branch nodes \(c: 1, 4, 7, 8, 10 \)

ENTRY does not post-dominate any other \(n \)
1 \(pdom \) ENTRY, 1, 9
2 does not post-dominate any other \(n \)
3 \(pdom \) ENTRY, 1, 2, 3, 9
4 \(pdom \) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n \)
6 does not post-dominate any other \(n \)
7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n \)
10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \(pdom \) \(n \) for any \(n \)

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10
Finding All Control Dependences

• Consider all CFG edges \((c, x)\) such that \(x\) does not post-dominate \(c\) (therefore, \(c\) is a branch node)

• Traverse the post-dominator tree bottom-up
 – \(n = x\)
 – while \((n \neq \text{parent of } c \text{ in the post-dominator tree})\)
 • report that \(n\) is control dependent on \(c\)
 • \(n = \text{parent of } n\) in the post-dominator tree
 – Example: for CFG edge \((8, 9)\) from the previous slide, traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)

• Other algorithms exist, but this one is simple and works quite well
Why Does This Work?

- Given: edge \((c, x)\) such that \(x\) does not post-dominate \(c\)
- For any traversed node \(n \neq c\), we know that
 - \(n\) does not post-dominate \(c\)
 - This is why we stop before the parent of \(c\)
 - \(n\) does post-dominate \(x\): thus, if we follow the \((c, x)\) edge, we are guaranteed to execute \(n\)
 - Easy to show that this is equivalent to part 1 of the definition of control dependence given earlier
- If we traverse \(c\) itself, this means that \(c\) post-dominates \(x\) (thus, part 2 of the definition holds)