Control-Flow Analysis

Chapter 8, Section 8.4
Chapter 9, Section 9.6
Phases of the Compilation Process

Front end
- Lexical analysis
- Syntax analysis
- Semantic analysis (e.g., type checking)
- Generation of three-address code

Middle/Back end
- Code optimization: machine-independent optimization of three-address code
- Code generation: target code (e.g., assembly)
Control-Flow Graphs

Control-flow graph (CFG) for a procedure/method

– A node is a **basic block**: a single-entry-single-exit sequence of three-address instructions
– An edge represents the potential flow of control from one basic block to another

Uses of a control-flow graph

– Inside a basic block: **local code optimizations**; done as part of the code generation phase (e.g., Section 8.5)
– Across basic blocks: **global code optimizations**; done as part of the code optimization phase
– Other aspects of code generation: e.g., **global register allocation**
Control-Flow Analysis

Part 1: Constructing a CFG

Part 2: Finding dominators and post-dominators

Part 3: Finding loops in a CFG
 – What exactly is a loop? Cannot simply say “whatever CFG subgraph is generated by while, do-while, and for statements” – need a general graph-theoretic definition

Part 4: Finding control dependences in a CFG
 – Needed for optimizations: cannot violate dependences
 – Needed for analyses in software tools: e.g., program slicing
Part 1: Constructing a CFG
Nodes: basic blocks; edges: possible control flow

Basic block: maximal sequence of consecutive three-address instructions such that
 — The flow of control can enter only through the first instruction (i.e., no jumps to the middle of the block)
 — Can exit only at the last instruction

Advantages of using basic blocks
 — Reduces the cost of compile-time analysis
 — Intra-BB optimizations are relatively easy
CFG Construction

Given: the entire sequence of instructions

First, find the leaders (starting instructions of all basic blocks)
 – The first instruction
 – The target of any conditional/unconditional jump
 – Any instruction that immediately follows a conditional or unconditional jump

Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader
Example

Note: this example sets array elements $a[i][j]$ to 0.0, for $1 \leq i,j \leq 10$ (instructions 1-11). It then sets $a[i][i]$ to 1.0, for $1 \leq i \leq 10$ (instructions 12-17). The array accesses in instructions 7 and 15 are done with offsets computed as described in Section 6.4.3, assuming row-major order, 8-byte array elements, and array indexing that starts from 1, not from 0.

1. $i = 1$
2. $j = 1$
3. $t1 = 10 \times i$
4. $t2 = t1 + j$
5. $t3 = 8 \times t2$
6. $t4 = t3 - 88$
7. $a[t4] = 0.0$
8. $j = j + 1$
9. if ($j \leq 10$) goto (3)
10. $i = i + 1$
11. if ($i \leq 10$) goto (2)
12. $i = 1$
13. $t5 = i - 1$
14. $t6 = 88 \times t5$
15. $a[t6] = 1.0$
16. $i = i + 1$
17. if ($i \leq 10$) goto (13)
Artificial ENTRY and EXIT nodes are often added for convenience.

There is an edge from \(B_p \) to \(B_q \) if it is possible for the first instruction of \(B_q \) to be executed immediately after the last instruction of \(B_p \). This is conservative: e.g., if \((3.14 > 2.78) \) still generates two edges.
Single Exit Node

Single-exit CFG
- If there are multiple exits (e.g., multiple return statements), redirect them to the artificial EXIT node
- Use an artificial compiler-created return variable \textit{ret}
 - \textit{return expr;} becomes \textit{ret = expr; goto exit;}

It gets ugly with exceptions
- Java: e.g., \textit{throw new X()} or null pointer exception
- C: setjmp and longjmp
- We will ignore these

Common assumption
- Every node is reachable from the entry node
- The exit node is reachable from every node
 - Not always true: e.g., a server thread could be \textit{while(true) ...}
Practical Considerations [relevant for Project 6]
The usual data structures for graphs can be used
 – The graphs are sparse (i.e., have relatively few edges), so an adjacency list representation is the usual choice
 • Number of edges is at most 2 * number of nodes

Nodes are basic blocks; edges are between basic blocks, not between instructions
 – Inside each node, some additional data structures for the sequence of instructions in the block (e.g., a linked list of instructions)
 – Often convenient to maintain both a list of successors (i.e., outgoing edges) and a list of predecessors (i.e., incoming edges) for each basic block
Part 2: Dominance

• A CFG node d dominates another node n if every path from ENTRY to n goes through d
 – Implicit assumption: every node is reachable from ENTRY (i.e., there is no dead code)
 – A dominance relation $\text{dom} \subseteq \text{Nodes} \times \text{Nodes}$: $d \text{ dom } n$
 – The relation is trivially reflexive: $d \text{ dom } d$

• Node m is the immediate dominator of n if
 – $m \neq n$
 – $m \text{ dom } n$
 – For any $d \neq n$ such $d \text{ dom } n$, we have $d \text{ dom } m$

• Every node has a unique immediate dominator
 – Except ENTRY, which is dominated only by itself
ENTRY dom n for any n
1 dom n for any n except ENTRY
2 does not dominate any other node
3 dom 3, 4, 5, 6, 7, 8, 9, 10, EXIT
4 dom 4, 5, 6, 7, 8, 9, 10, EXIT
5 does not dominate any other node
6 does not dominate any other node
7 dom 7, 8, 9, 10, EXIT
8 dom 8, 9, 10, EXIT
9 does not dominate any other node
10 dom 10, EXIT

Immediate dominators:
1 → ENTRY 2 → 1
3 → 1 4 → 3
5 → 4 6 → 4
7 → 4 8 → 7
9 → 8 10 → 8
EXIT → 10
A Few Observations

• Dominance is a **transitive** relation: \(a \text{ dom } b\) and \(b \text{ dom } c\) means \(a \text{ dom } c\)

• Dominance is an **anti-symmetric** relation: \(a \text{ dom } b\) and \(b \text{ dom } a\) means that \(a\) and \(b\) must be the same
 – Reflexive, anti-symmetric, transitive: **partial order**

• If \(a\) and \(b\) are two dominators of some \(n\), either \(a \text{ dom } b\) or \(b \text{ dom } a\)
 – Therefore, \(\text{dom}\) is a **total order** for \(n\)’s dominator set
 – Corollary: for any acyclic path from ENTRY to \(n\), all dominators of \(n\) appear along the path, always in the same order; the last one is the immediate dominator
Dominator Tree

The parent of \(n \) is its immediate dominator.

The path from \(n \) to the root contains all and only dominators of \(n \).

Post-Dominance

• A CFG node d post-dominates another node n if every path from n to EXIT goes through d
 – Implicit assumption: EXIT is reachable from every node
 – A relation $pdom \subseteq \text{Nodes} \times \text{Nodes}: d \ pdom \ n$
 – The relation is trivially reflexive: $d \ pdom \ d$

• Node m is the immediate post-dominator of n if
 – $m \neq n; m \ pdom \ n; \forall d \neq n. \ d \ pdom \ n \Rightarrow d \ pdom \ m$
 – Every n has a unique immediate post-dominator

• Post-dominance on a CFG is equivalent to dominance on the reverse CFG (all edges reversed)

• Post-dominator tree: the parent of n is its immediate post-dominator; root is EXIT
ENTRY does not post-dominate any other \(n \)
1 \(pdom \) ENTRY, 1, 9
2 does not post-dominate any other \(n \)
3 \(pdom \) ENTRY, 1, 2, 3, 9
4 \(pdom \) ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other \(n \)
6 does not post-dominate any other \(n \)
7 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other \(n \)
10 \(pdom \) ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT \(pdom \) \(n \) for any \(n \)

Immediate post-dominators:
ENTRY \(\rightarrow \) 1 1 \(\rightarrow \) 3
2 \(\rightarrow \) 3 3 \(\rightarrow \) 4
4 \(\rightarrow \) 7 5 \(\rightarrow \) 7
6 \(\rightarrow \) 7 7 \(\rightarrow \) 8
8 \(\rightarrow \) 10 9 \(\rightarrow \) 1
10 \(\rightarrow \) EXIT
The path from n to the root contains all and only post-dominators of n

Constructing the post-dominator tree: use any algorithm for constructing the dominator tree; just “pretend” that the edges are reversed
Part 3: Loops in CFGs

- **Cycle**: sequence of edges that starts and ends at the same node
 - Example:

- **Strongly-connected (induced) subgraph**: each node in the subgraph is reachable from every other node in the subgraph
 - Example:

- **Loop**: informally, a strongly-connected subgraph with a single entry point
 - Not a loop:
Back Edges and Natural Loops

• Back edge: a CFG edge \((n, h)\) where \(h\) dominates \(n\)

• Natural loop for a back edge \((n, h)\)
 – The set of all nodes \(m\) that can reach node \(n\) without going through node \(h\) (trivially, this set includes \(h\))
 – Easy to see that \(h\) dominates all such nodes \(m\)
 – Node \(h\) is the header of the natural loop

• Simple algorithm to find the natural loop of \((n, h)\)
 – Mark \(h\) as visited
 – Perform depth-first search (or breadth-first) starting from \(n\), but follow the CFG edges in reverse direction
 – All and only visited nodes are in the natural loop
Immediate dominators:
1 → ENTRY 2 → 1 3 → 1
4 → 3 5 → 4 6 → 4
7 → 4 8 → 7 9 → 8
10 → 8 EXIT → 10

Back edges: 4 → 3, 7 → 4, 8 → 3, 9 → 1, 10 → 7

Loop(10 → 7) = { 7, 8, 10 }

Loop(7 → 4) = { 4, 5, 6, 7, 8, 10 }
Note: Loop(10 → 7) ⊆ Loop(7 → 4)

Loop(4 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(7 → 4) ⊆ Loop(4 → 3)

Loop(8 → 3) = { 3, 4, 5, 6, 7, 8, 10 }
Note: Loop(8 → 3) = Loop(4 → 3)

Loop(9 → 1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
Note: Loop(4 → 3) ⊆ Loop(9 → 1)
Loops in the CFG

• Find all back edges; each target h of at least one back edge defines a loop L with $header(L) = h$

• $body(L)$ is the union of the natural loops of all back edges whose target is $header(L)$
 – Note that $header(L) \in body(L)$

• Example: this is a single loop with header node 1

• For any two CFG loops L_1 and L_2
 – $header(L_1)$ is different from $header(L_2)$
 – $body(L_1)$ and $body(L_2)$ are either disjoint, or one is a proper subset of the other (nesting – inner/outer)
Flashback to Graph Algorithms

• Depth-first search in the CFG [Cormen et al. book]
 – Set each node’s color as \textit{white}
 – Call DFS(ENTRY)
 – DFS(\(n\))
 • Set the color of \(n\) to \textit{gray}
 • For each successor \(m\): if color is \textit{white}, call DFS(\(m\))
 • Set the color of \(n\) to \textit{black}

• Inside DFS(\(n\)), seeing a gray successor \(m\) means that \((n,m)\) is a retreating edge
 – Note: \(m\) could be \(n\) itself, if there is an edge \((n,n)\)

• The order in which we consider the successors matters: the set of retreating edges depends on it
Reducible Control-Flow Graphs

- For **reducible** CFGs, the *retreating* edges discovered during DFS are all and only *back* edges
 - The order during DFS traversal is irrelevant: all DFS traversals produce the same set of retreating edges

- For **irreducible** CFGs: a DFS traversal may produce retreating edges that are not back edges
 - Each traversal may produce different retreating edges
 - Example:
 - No back edges
 - One traversal produces the retreating edge 3 → 2
 - The other one produces the retreating edge 2 → 3
Reducibility

• A number of equivalent definitions
 – One of them is on the previous page

• Another definition: the graph can be reduced to a single node with the application of the following two rules
 – Given a node n with a single predecessor m, merge n into m; all successors of n become successors of m
 – Remove an edge $n \rightarrow n$

• Try this on the graphs from the previous slides

• More details: p. 677 in the textbook
Reducibility

• The essence of irreducibility: a strongly-connected subgraph with multiple possible entry points
 – If the original program was written using `if-then, if-then-else, while-do, do-while, break, and continue`, the resulting CFG is always reducible
 – If `goto` was used by the programmer, the CFG could be irreducible (but, in practice, it typically is reducible)

• Optimizations of the intermediate code, done by the compiler, could introduce irreducibility

• Code obfuscation: e.g., Java bytecode can be transformed to be irreducible, making it impossible to reverse-engineer a valid Java source program
Part 4: Control Dependence: Informally

• The decision made at branch node c affects whether node n gets executed
 – Thus, n is control dependent on c – the control-flow leading to n depends on what c does

• A node n is control dependent on a node c if
 – There exists an edge e_1 coming out of c that definitely causes n to execute
 – There exists some edge e_2 coming out of c that is the start of some path that avoids the execution of n

• Informally: n postdominates some successor of c, but does not postdominate c itself
Control Dependence: Formally

• (part 1) n is control dependent on c if
 – $n \neq c$
 – n does not post-dominate c
 – there is an edge $c \rightarrow m$ such that n post-dominates m

• (part 2) n is control dependent on n if
 – there exists a path (with at least one edge) from n to n
 such that n post-dominates every node on the path
 • this happens in the presence of loops; n is the source node of a loop exit edge
Consider all branch nodes c: $1, 4, 7, 8, 10$

ENTRY does not post-dominate any other n
1 $pdom$ ENTRY, 1, 9
2 does not post-dominate any other n
3 $pdom$ ENTRY, 1, 2, 3, 9
4 $pdom$ ENTRY, 1, 2, 3, 4, 9
5 does not post-dominate any other n
6 does not post-dominate any other n
7 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 9
8 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 does not post-dominate any other n
10 $pdom$ ENTRY, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
EXIT $pdom\ n$ for any n

2 is control dependent on 1
3, 4, 5, 6 are control dependent on 4
4, 7 are control dependent on 7
9, 1, 3, 4, 7, 8 are control dependent on 8
7, 8, 10 are control dependent on 10
Finding All Control Dependences

• Consider all CFG edges \((c, x)\) such that \(x\) does not post-dominate \(c\) (therefore, \(c\) is a branch node)

• Traverse the post-dominator tree bottom-up
 – \(n = x\)
 – while \((n \neq \text{parent of } c \text{ in the post-dominator tree})\)
 • report that \(n\) is control dependent on \(c\)
 • \(n = \text{parent of } n\) in the post-dominator tree
 – Example: for CFG edge \((8, 9)\) from the previous slide, traverse and report 9, 1, 3, 4, 7, 8 (stop before 10)
Why Does This Work? [no need to study this proof]

• Given: edge \((c,x)\) such that \(x\) does not post-dominate \(c\)

• For any traversed node \(n \neq c\), we know that
 – \(n\) does not post-dominate \(c\)
 • This is why we stop before the parent of \(c\)
 – \(n\) does post-dominate \(x\): thus, if we follow the \((c,x)\)
 edge, we are guaranteed to execute \(n\)
 – Easy to show that this is equivalent to part 1 of the
 definition of control dependence given earlier

• If we traverse \(c\) itself, this means that \(c\) post-
 dominates \(x\) (thus, part 2 of the definition holds)