
Bitwise Operations

Many situation, need to operate on the bits
of a data word –
 Register inputs or outputs
 Controlling attached devices
 Obtaining status

Corresponding bits of both operands are

combined by the usual logic operations.

Apply to all kinds of integer types
Signed and unsigned
char, short, int, long, long long

135

Bitwise Operations (cont)

136

• & – AND
• Result is 1 if both

operand bits are 1

• | – OR
• Result is 1 if either

operand bit is 1

• ^ – Exclusive OR
• Result is 1 if operand

bits are different

• ~ – Complement
• Each bit is reversed

• << – Shift left
• Multiply by 2

• >> – Shift right
• Divide by 2

Examples

137

1 1 1 1 0 0 0 0 a

1 0 1 0 1 0 1 0 b

unsigned int c, a, b;

c = a & b; // 1010 0000

c = a | b; // 1111 1010

c = a ^ b; // 0101 1010

c = ~a // 0000 1111

c = a << 2; // 1100 0000

c = a >> 3; // 0001 1110

NOTE: when signed all the same
FYI: integers are really 32 bits so what is the “real” value?
 ~a has preceding 1’s and a<<2 is 0x 3c0

Bitwise AND/OR

138

‘A’ = 0x41 = 0100 0001
‘a’ = 0x61 = 0110 0001

char x = ‘A’;
tolower(x) returns ‘a’… HOW?

char y = ‘a’;
toupper(y) returns ‘A’… HOW?

“mask” = 0010 0000
Use OR

‘A’ = 0100 0001
mask = 0010 0000 |
 ‘a’ 0110 0001

“mask” = 1101 1111
Use AND

‘a’ = 0110 0001
mask = 1101 1111 &
 ‘A’ 0100 0001

Notice the masks are complements of each other
TRY: char digit to a numeric digit

Bitwise XOR

The bitwise XOR may be used to invert selected
bits in a register (toggle)
XOR as a short-cut to setting the value of a
register to zero

139

0100 0010
0000 1010 XOR (toggle)
0100 1000

Bitwise left/right shifts

Possible overflow issues
Exact behavior is implementation dependent

140

When you shift left by k bits ==
 multiplying by 2K

When you shift right by k bits ==
 dividing by 2K

*** If it's signed, then it's***
implementation dependent.

Bitwise right shifts

141

unsigned int c, a;

c = a >> 3;

signed int c, a, b;

c = b >> 3;

c = a >> 3;

1 1 1 1 0 0 0 0 a 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0 c 1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1 b 0 1 0 1 0 1 0 1

EXAMPLE: 8-bit instruction format
101 01000 // ADD 8 ALU adds ACC reg to value at address 8
To get just the instruction i.e. 101… shift right by 5
To get just the address i.e. 01001… shift left by 3, then right by 3

0 0 0

0 1 0 1 0 1 0 1 c 0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0 c 1 1 1 1 0 0 0 0

0 0 0

0 0 0

C example…

Output is:
b >> 3 is aaa
a >> 3 is 1e1e
binary = 41
char a = A

142

#include <stdio.h>
void main()
{
 signed int c, d, a, b, e, f;
 a = 0xF0F0;
 b = 0x5555;
 e = 0b01000001;
 f = 'A';

 c = b >> 3;
 d = a >> 3;

 printf("b >> 3 is %x\n",c);
 printf("a >> 3 is %x\n",d);
 printf("binary = %x\n",e);
 printf("char a = %c",f);
}

Traditional Bit Definition

143

8-bit Printer Status Register

#define EMPTY 01

#define JAM 02

#define LOW_INK 16

#define CLEAN 64

char status;

if (status == (EMPTY | JAM)) ...;

if (status == EMPTY || status == JAM) ...;

while (! status & LOW_INK) ...;

int flags |= CLEAN /* turns on CLEAN bit */

int flags &= ~JAM /* turns off JAM bit */

Traditional Bit Definitions

144

Used very widely in C
 Including a lot of existing code

No checking
 You are on your own to be sure the right bits are set

Machine dependent
 Need to know bit order in bytes, byte order in words

Integer fields within a register
 Need to AND and shift to extract
 Need to shift and OR to insert

Modern Bit-field Definitions

struct statusReg {
unsigned int empty :1;
unsigned int jam :1;
 :2; //???
unsigned int lowInk :1;
 :1; //???
unsigned int needsCleaning :1;
 :1; //???

};

struct statusReg s;

if (s.empty && s.jam) ...;

while(! s.lowInk) ...;

s.needsCleaning = true;

s.Jam = false;

Conditional Operator

Consists of two symbols
Question mark
Colon

Syntax: exp1 ? exp2 : exp3
Evaluation:

If exp1 is true, then exp2 is the resulting value
If exp1 is false, then exp3 is the resulting value

Example: if a = 10 and b = 15
x = (a > b) ? a : b
b is the resulting value and assigned to x
Parentheses not necessary
Similar, but shorter than, if/else statement

146

Conditional Operator (cont)

expr1 ? expr2 : expr3
In the expression expr1 ? expr2 : Expr3, the operand expr1 must be of scalar type. The operands

expr2 and Expr3 must obey one of the following sets of rules:
Both of arithmetic type. In this case, both expr2 and Expr3 are subject to the usual arithmetic

conversions, and the type of the result is the common type resulting from these conversions.
Both of compatible structure or union types. In this case, the type of the result is the structure or

union type of expr2 and expr3.
Both of void type. In this case, the result is of type void.
Both of type pointer to qualified or unqualified versions of compatible types. In this case, the type

of the result is pointer to a type qualified with all the type qualifiers of the types pointed to by both
operands.

One operand of pointer type, the other a null pointer constant In this case, the type of the result
is pointer to a type qualified with all the type qualifiers of the types pointed to by both operands.

One operand of type pointer to an object, the other of type pointer to a qualified or unqualified
version of void. In this case, the type of the result is that of the non-pointer-to-void operand.

In all cases, expr1 is evaluated first. If its value is nonzero (true), then expr2 is evaluated and expr3
is ignored (not evaluated at all). If expr1 evaluates to zero (false), then expr3 is evaluated and expr2 is
ignored. The result of expr1 ? expr2 : expr3 will be the value of whichever of expr2 and expr3 is
evaluated.

147

The Comma Operator

Used to link related expressions together
Evaluated from left to right
The value of the right most expression is the value of
the combined expression
Example:

Value = (x = 10, y = 5, x + y);
Comma operator has lowest precedence

Parentheses are necessary!
For loop:

for (n=1, m=10; n<=m; n++, m--)
While:

while (c=getchar(), c!= ‘10’)
Exchanging values:

t=x, x=y, y=t;

 148

