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18.152 - Introduction to PDEs, Fall 2004 Prof. Gigliola Staffilani 

Lecture 5 - Distributions, Continued 

Convergence of Distributions• 

Change the definition of D by replacing “differentiable” with “differentiable of any order”. 

We say that a sequence of distributions fn converges to a distribution f if 

(fn, φ) →in R (f, φ) 

for all φ ∈ D. 

Fact: If fn f then f � f �• → n → 

Proof:• 

(fn
� , φ) = −(fn, φ

� �) ≡ (f �, φ)) → −(f, φ

Example:• 
�

1 a −a < x < a
Consider the function χa(x) = 2 . 

0 x > a| | 
χa is a distribution: 

(χa, φ) = χa(x)φ(x)dx 
R 

1 
� 

= a φ(x)dx.
2 |x|<a 

What is lima 0 χa? →

1 
�

lim(χa, φ) = lim φ(x)dx 
a 0 a 0 2a x <a→ → | |

Since φ is differentiable,

1 

�

lim φ(x)dx = φ(a). 
a→0 2a |x|<a 

In fact, 
� 

1 
� � 

1 
� 

2a |x|<a 
φ(x)dx − φ(a) =

2a |x|<a 
[φ(x)− φ(a)] dx 

=
2
1 
a 

� 

|x|<a 

�
φ (x)(x − a) + . . .

� 
dx, a → 0 

a 0
−−−→ 0. 
→

So lima 0 χa = δa. →
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•	 Definition: Support of a distribution: Let f ∈ D�. Let A = {x| (∃B(x, r)|∀φ ∈ D and supp φ ⊂
B(x, r), (fφ) = 0)}. Then supp f = Ac . 

Example: supp δa = {a}.

Fact: If supp f is compact, then we can extend f to C1(Rn) C. The way we extend is this:

let g ∈ D�

→

, g ≡ 1 on supp f . Then for φ ∈ C1(Rn) we define (f, φ) ≡ (f, gφ). This is defined 

since gφ ∈ D. 

To prove that this definition does not depend on g, let’s assume that g̃ is also identically 1 
on supp f, g̃ ∈ D.


(f, gφ) = (f, ˜ 1(Rn)
gφ)∀φ ∈ C


⇔ (f, gφ)− (f, gφ˜ ) = 0

(f, gφ− gφ˜ ) = 0

(f, (g − g̃)φ) = 0


= 0, since supp(g − g̃) ⊂ (supp f)c 

Definition: Schwartz function:• 

S(Rn) = S = {φ ∈ C∞(Rn)|(∗)}
(∗)∀α = (α1, . . . , αn), β = (β1, . . . , βn) (multiindices) 

|x α∂βφ| ≤ Cα,β


where xα = x1 
α1x2 

α2 . . . xn
αn , ∂β = ∂1 

β1∂2 
β2 . . . ∂n

βn , and Cα,β is allowed to depend on α, β.


We say that {φn} ∈ S converges to φ ∈ S iff ∀α, βxα∂βφn
x→∞ α∂βφ uniformly.
−−−→ x


Definition: A tempered distribution f , is a functional f : S(Rn) R such that •	 → 

1.	 f is linear: (f, αφ+ βψ) = α(f, φ) + β(f, ψ) 

2. f is continuous: for any sequence {φn} in S such that φn φ in S, we have that 
(f, φn) x→∞

→
−−−→ (f, φ)


The set of tempered distributions is denoted by S�, S� ⊂ D�.

Remark: If f is a tempered distribution, then it is also a distribution as D ⊂ S and φn φ 
in D implies convergence in S. 

→ 

Remark: S� = � as there is a distribution which is not tempered: �	 D
� 

x 2
(f, φ) = e| | φ(x)dx 

In fact, (f, φ) could be infinity because the “damping” of φ that decays polynomially is not

strong enough to counter the exponential growth.


If φ ∈ D then the growth at infinity is killed by the compact support of φ ∈ D.
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Remark: δa, for any a, is a tempered distribution. 

Now that we introduced some tools lets go back to the differential equations. 

The wave equation • 

utt − c 2 uxx = 0 (leave the initial conditions unspecified for now) 
(∂t − c∂x)(∂t + c∂x)u = 0 
Change variables to ξ = x + ct, ζ = x − ct 

∂ξ ∂ζ 
∂xu = ∂ξu + ∂ζu 

∂x ∂x 
∂ξ ∂ξ 

∂tu = ∂ξu + ∂ζu 
∂t ∂t 

∂x = ∂ξ + ∂ζ 

∂t = c(∂ξ − ∂ζ) 
∂t − c∂x = �� c∂ξ − c∂ζ =c∂ξ − c∂ζ − �� −2c∂ζ 

∂t + c∂x = 2c∂ξ 

4c 2∂ζ∂ξu = 0 
uζξ = 0 

u(ξ, ζ) = g(ξ) + f(ζ)⇒ 

u(x, t) = g(x + ct) + f(x − ct) 
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This says that if we consider 

both g(x + ct) and f(x − ct) are waves that travel along the lines x + ct = α, x − ct = β. 
Assume c > 0, then f(x − ct) travels to the right with speed c. t = 0, x = 0 implies a wave 
amplitude of f(0). To see f(0), we need to be at x = ct, which means we need to be to the 
right of x = 0. 

Initial value problem: 

utt − c 2 uxx = 0 
u(x, 0) = φ(x),u̇(x, 0) = ψ(x) 

Now 

u(x, t) = f(x − ct) + g(x + ct) 
u̇(x, t) = −cf �(x − ct) + cg�(x + ct) 

So at time t = 0: 

f(x) + g(x) = φ(x)

−cf �(x) + cg�(x) = ψ(x)


f �(x) + g�(x) = φ�(x)
⇒ 

ψ(x) −f �(x) + g�(x) = 
c


1
�

ψ(x)
�


g�(x) =	 φ�(x) +⇒	
2 c


1
�

ψ(x)
�


f �(x) =	 φ�(x)−
2 c 

x� 
1

�
ψ(x�)

� 

g(x) = φ�(x�) + dx� + g(0)⇒	
0 2 c 
x 

f(x) = 
�	

1
�
φ�(x�)− 

ψ(x�)
� 

dx� + f(0)
2 c0 
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� 

x1 1 
� 

g(x) = φ(x) + ψ(x�)dx� +A
2 2c 0


1 1 
� x


f(x) =
2
φ(x)− 

2c 0 
ψ(x�)dx� +B 

u(x, t) =
1 
φ(x + ct) + 

1 
� x+ct 

ψ(x�)dx� +
1 
φ(x − ct)− 

1 
� x−ct 

ψ(x�)dx�
2 2c 0 2 2c 0 

Where we have used that A+B = 0 since u(x, 0) = φ(x). 

Remark: In this calculation we used that both φ� and ψ are continuous, but often these 
conditions are not satisfied: 

Example: 

uxx + 2uxt − 20utt = 0 
Lu = 0, L = ∂xx + 2∂xt − 20∂tt 

u(x, 0) = φ(x) 
ut(x, 0) = ψ(x) 

a11 = 1, a12 = 1, a22 = −20 

a22 − a12
2 = −20 − 1 = −21 hyperbolic
⇒


L = (∂x + ∂t)2 − ∂tt − 20∂tt 

1 
ξ = (x + t)

2

∂ξ = ∂x + ∂t


L = ∂ξ 
2 − 21∂2


t 

u(ξ, t) = f(ξ −
√

21t) + g(ξ +
√

21t) 

u(x, t) = f 
�

1 
x +

�
2
1 −

√
21

� 

t 

� 

+ g 

�
1 
x +

�
1

+
√

21
� 

t 

� 

⇒ 
2 2 2 

Definition: The source function for the wave equation is the solution to the problem 

stt = c 2Δs 
s(x, 0) = 0,st(x, 0) = δ0(x) 

Since δ0(x) is not a function, we need to use test functions to find s. Define 

u(x, t) = s(x − y, t)ψ(y)dy 

utt = stt(x − y, t)ψ(y)dy 

c 2 uxx = 
� 
sxx(x − y, t)ψ(y)dy 

thus u solves the wave equation and u(x, 0) = 0, u̇(x, 0) = ψ(x). Thus by the previous 
calculation we have 

x+ct� ∞ 1 
� 

� ∞ � 
1 

−∞ 
s(x − y, t

� 
)ψ(y)dy =

2c x−ct 
ψ(y)dy 

⇔ s(x − y, t)− 
2c
χ[x−ct,x+ct](y) ψ(y)dy = 0 

−∞ 
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for all ψ ∈ D, so �
0 x > ct 

s(x, t) = 
| |

1 
2c |x| < ct 

Usually this is written using the Heaviside (or step function) 
�

1 x > 0 
H(x) = 

0 x < 0 

So s(x, t) = H(c2t2 − x2) for c2t2 =� x2 .


Why is a source function useful? The solution to


utt − c 2 uxx = 0 
u(x, 0) = 0,u̇(x, 0) = ψ(x) 

can be written as � ∞ 

u(x, t) = s(x − y, t)ψ(y)dy 
−∞ 

We already proved that u is the solution. Then 

d 
� ∞ � ∞

lim s(x − y, t)ψ(y)dy = lim st(x − y, t)ψ(y)dy 
t 0 dt t 0→ −∞ → −∞ 

= lim(st(x − y, t), ψ) 
t 0→

= (δ0(x − y), ψ) 
= ψ(x) 

using the notion of limit of distributions. 
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