18.152 - Introduction to PDEs, Fall 2004

- Well Posed Problems

Physical problems have in general three characteristics which should be reflected in the mathematical equations we use to model them:

1. Existence - The phenomenon exists \Rightarrow there exists a solution to the differential equation
2. Uniqueness - Physical processes are causal: given the state at some time we should be able to produce only one state at all later times
3. Stability - Small changes in the initial conditions should lead to small changes in the output.

- Examples of well posed problems:

1.

$$
\begin{aligned}
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =f(x)
\end{aligned}
$$

2.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\Delta u \\
u(x, 0) & =g(x)
\end{aligned}
$$

The heat equation smooths things out.
By contrast, the backwards heat equation,

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-\Delta u \\
u(x, 0) & =f(x)
\end{aligned}
$$

is ill posed.

$$
\begin{aligned}
u & =\sum_{n} a_{n}(t) \sin (n x) \\
\Delta u & =\sum_{n}-n^{2} a_{n} t \sin (n x) \\
\frac{\partial u}{\partial t} & =\sum_{n} \dot{a_{n}}(t) \sin (n x) \text { so } \\
\dot{a_{n}}(t) & =-n^{2} a_{n}(t) \Rightarrow \frac{\partial u}{\partial t}=\Delta u \\
a_{n}(t) & =e^{-n^{2} t} a_{n}(0)
\end{aligned}
$$

so for the heat equation high frequencies decay much faster than low frequencies. For the backward heat equation

$$
\frac{\partial u}{\partial t}=-\Delta u
$$

we instead have

$$
a_{n}(t)=e^{n^{2} t} a_{n}(0) .
$$

Here, higher frequencies blow up.

- Initial and Boundary Conditions

Initial conditions:
$-u\left(x, t_{0}\right)=\phi(x)$
$-u\left(x, t_{0}\right)=\phi(x), \frac{\partial u}{\partial x}\left(x, t_{0}\right)=\psi(x)$

Dirichlet conditions if $\left.u\right|_{\partial \Omega}$ is specified
Neumann conditions if $\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}$ is specified
Robin conditions if $a \frac{\partial u}{\partial n}+\left.b u\right|_{\partial \Omega}$ is specified

- Solutions as minimizers:

$$
E(u)=\int_{\Omega}|\nabla u|^{2}=\int_{\Omega}\left(\left|\frac{\partial u}{\partial x^{1}}\right|^{2}+\left|\frac{\partial u}{\partial x^{2}}\right|^{2}+\left|\frac{\partial u}{\partial x^{3}}\right|^{2}\right)
$$

Minimize energy:

$$
\begin{aligned}
0=\left.\frac{d E}{d \epsilon}(u+\epsilon v)\right|_{\epsilon=0} & =\int_{\Omega}\langle\nabla u, \nabla v\rangle \\
& =\int_{\Omega}\left(\sum_{i=1}^{3} \frac{\partial u}{\partial x^{i}} \frac{\partial v}{\partial x^{i}}\right) \\
& =\int_{\Omega}-\left(\sum_{i=1}^{3} \frac{\partial^{2} u}{\partial x^{i^{2}}} \cdot v\right) \\
\sum_{i=1}^{3} \frac{\partial^{2} u}{\partial x^{i^{2}}}=0 & \Leftrightarrow \Delta u=0
\end{aligned}
$$

Suppose u is free in $\partial \Omega$. Then the divergence theorem gives that

$$
\begin{aligned}
\int \nabla \cdot(v \nabla u) & =\int\langle\nabla u, \nabla v\rangle+\int v \Delta u \\
\text { hence } \int\langle\nabla u, \nabla v\rangle & =\int_{\delta \Omega} v \frac{\partial u}{\partial n}-\int(\Delta u) v
\end{aligned}
$$

where the Neumann condition is now used.

- Conditions at infinity

1. Schrödinger equation $-\int_{\mathbb{R}^{3}}|u|^{2}=1$
2. Laplace equation $-\int|\nabla u|^{2}=1$
3. Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+V u
$$

$\sin (\omega(t \pm x))$ are solutions to the $V \equiv 0$ case.

