
18.152 - Introduction to PDEs, Fall 2004 Prof. Gigliola Staffilani 

Lecture 2 - First order linear PDEs and PDEs from physics 

I mentioned in the first class some basic PDEs of first and second order. Today we illustrate 
how they come naturally as a model of some basic phenomena. 

1. ut + cux = 0 Transport equation (simple transport) 

2. utt − c2uxx = 0 Wave equation (vibrating string) 

3. ut = kΔu Parabolic equation (heat equation and diffusion) 

4. Δu = 0 Elliptic equation (stationary wave and diffusion) 

5. −iut = Δu Schrödinger equation (Hydrogen atom) 

Derivation of (1):• 

Imagine putting a drop of ink in the pipe. Let u(x, t) be the concentration or density of ink 
at point x at time t. 

But how do we describe it? 

Fix an interval [0, b]. 

ink in [0, b]
��� = M = 

� b 

u(x, t)dx 
time=t 0 

Suppose the water moves at speed c, so at time h + t the same quantity of ink will be 
� ch+b 

M = u(x, t + h)dx 
ch � b � ch+b 

u(x, t)dx = u(x, t + h)dx 
0 ch 

Taking ∂b u(b, t) = u(b + ch, t + h)⇒
Taking ∂h h=0 0 = cux(b, t) + ut(b, t)| ⇒ 
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 Derivation of (2):•
A typical example of wave motion in a plane is the motion of a string with fixed end points. 

Why does it have this shape? We will see later. 

Let’s take a piece of it: 

We will ignore all the forces on the string except for its tension. We will consider a perfect 
string in which for all x we have 

T(x, t) = Tv(x, t) (1) 

for constant T and v(x, t) a unit tangent vector to the string at (x, t). 

(1, ux)
v(x, t) = 

2
�

1 + ux 

We assume two facts: 

1. The string has constant mass density ρ. 

2. The tension does not change on the longitudinal (x) component. 

Now fix an interval of the string [x0, x1] and use Newton’s law: 

T(x1, t)− T(x0, t) = ma, T > 0 
1 ���

x1 

T = 0 (2)· �
1 + u2 x0 x 

x1ux 
���
x1 

�
T = ρutt(x, t)dx 

2
· �

1 + ux
x0 x0 
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Approximation: |ux| � 1. Now consider the function f(z) = (1 + z2)−1/2 and |z| → 0. We 
can expand f(z) near z = 0: 

�� � 

� 

f(z) = (1 + z 2)−1/2


1

f �(z) = −

2�
(1 + z 2)−3/2 · 2�z, f �(0) = 0 

3 
f ��(z) = z(1 + z 2)−5/2 − (1 + z 2)−3/2, f ��(0) = −1

2


So


f(z) = f(0) + f �(0)z + 
f ��(0) 

z 2 + . . .
2 

1 
f(z) = 1− z 2 + . . .

2

so for z small we can replace f(z) by 1 and then (2) becomes 

T (x1, t)− T (x0, t) = 0 (T constant with respect to x) 
x1 

x1 

Tux = ρutt(x, t)dx (3)�
x0 x0 

Let’s assume also that T = C is also constant with respect to time (t) and differentiate (3) 
with respect to x: 

(Tux)x = ρutt(x, t) 
ρ2 2 uxx = c utt, c = 
T 

Derivation of heat flow (3): Let D ⊂ R3 be a region in space and let U(t) be the amount of• 
energy in region D. (Heat refers to a change in energy of a region.) Let u(x, y, z, t) be the 
temperature. Then we can write: 

U(t) = cρu(x, y, z, t)dV 
D 

where ρ is the density of D (mass/volume) and c is the “specific heat”, (dV ≡ dx dy dz). 
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� � 

Clearly 
d 

�
U(t) = cρutdV. 

dt D 

(Here we are assuming that the material of D does not change in time.) 

Assume, that outside the body the “space” is colder, and thus that the energy “flux” (direction 
of heat flow) will go from inside to outside and will “diffuse” through the boundary of D = ∂D 
So also we have 

d 
�

U(t) = κ(n · �u)dS, 
dt ∂D 

which is the heat transfered through the surface, and κ > 0 is the thermal conductivity. By 
the Divergence Theorem 

∂D 
κ(n · �u)dS = 

D 
� · (κ�u)dV


so

cρut =
 � · (κ�u)


If κ is constant, it follows that


κ 
ut = 

cρ 
Δu, Δ = ∂x 

2 + ∂y 
2 + ∂z

2 . 

Derivation of stationary wave or diffusion equation (4): Assume that in the heat and wave • 
equations there is no change in time. The wave and heat equations reduce to 

Δu = 0 

Definition: Any function u such that Δu = 0 is called harmonic.


Remark: In one dimension all harmonic functions are linear:


fxx = 0 fx = c0 f = c0x + c1⇒ ⇒ 

Schrödinger Equation for the Hydrogen Atom (5):• 

�2 e2 

−i�ut = Δu + u
2m r


where � is Planck’s constant over 2π, and e2/r is the potential energy of the system.


Quantum mechanics tells us that u is a possible state (wavefunction) of the electron.
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Let D be a region in R3. Then 
� 

D 
|u|2(x, y, z, t)dV is the probability that the electron is in D at time t, 

� 

R3 

z|u| 2(x, y, z, t)dV is the expectation value of the electron z coordinate at time t, 

if we normalize u such that � 

R3 

|u| 2(x, y, z, t)dV = 1. (4) 

(We can perform similar calculations for x, y.) 

The expected z-coordinate of the momentum is 
� 

∂u 

D 
dV − i� (x, y, z, t) · ū(x, y, z, t)

∂z

Remark: It is possible to normalize u in the way described above, and furthermore the

normalization of u does not change over time.


Proof:


d 
� 

uudV¯ = 2Re
� 

ut ūdV 
dt R3 R3


i� i e2


ut = i�−1(−i�ut) = Δu + u
2m � r 

2 

2Re
� 

R3 

ut ¯ = 2 Im
� 

R3 2
� 
m 

Δu udV +2 Im
� 

R3 

�−1 e

r 
u¯ .udV ¯ udV· 

� �� � � �� �
(∗) =0 

Since (Δu)ū = �u · �u, and the latter is real, (∗) is zero as well.


Exercise: Carefully derive the equation of motion for a string in a medium in which the
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resistance is proportional to the velocity: 

d
Velocity v(x, t) = (x, u(x, t)) = (0, ut)

dt
T (x, t) = cut(x, t) 

(cutux)x = ρutt 

Initial and Boundary Conditions• 

Even from the “resolution” of the transport equation we realized that in order to obtain only 
“one” solution to an equation we need to impose extra conditions. For example, at a certain 
time it should take a certain form or on a certain domain it should be of a certain form. The 
most common assumptions, which are justified by the original physical meaning of the PDE, 
are initial conditions and boundary conditions. 

–	 Initial Conditions: 
If we consider a transport equation it is reasonable to assign how the wave looks at time 
t = 0, so we write


u(0, x) = g(x).


We can do the same for the Schrödinger equation. 
For the wave equation, just specifying u at t = 0 is not enough, we also need the velocity 
at t = 0 so we add 

u̇(0, x) = f(x) 

–	 Boundary Conditions: 
For the heat equation (stationary or not) it is important to specify how the solution 
looks like at ∂D, where D is the body. There are three well known boundary conditions: 

u
��� - Dirichlet boundary conditions∗	
∂D


∂u
��� - Neumann boundary conditions
∂n∗ 
∂D 

∂u∗ + au - Robin condition∂n 

where a is a given function in x, y, z and n is the unit normal vector to ∂D. 
Definition: If the boundary condition is constantly equal to zero, then the condition is 
said to be homogeneous. If not, it is inhomogeneous. 
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