Solutions

MATH 152, FALL 2004: MIDTERM \#1

Problem \#1 (1 5pts)
Let $u_{1}(x, t)$ and $u_{2}(x, t)$ denote the solutions of the equation

$$
u_{t}=u_{x x},
$$

with initial and boundary conditions respectively $u_{1}(x, 0)=g_{1}(x), u_{1}(0, t)=f_{1}(t)$, $u_{1}(L, t)=h_{1}(t)$ and $u_{2}(x, 0)=g_{2}(x), u_{2}(0, t)=f_{2}(t), u_{2}(L, t)=h_{2}(t)$. Assume that $g_{1} \leq g_{2}, f_{1} \leq f_{2}$ and $h_{1} \leq h_{2}$. Prove that $u_{1} \leq u_{2}$ in the set $R=[0, L] \times[0, \infty)$.
Hint: Let $w(x, t)=u_{1}(x, t)-u_{2}(x, t)$ and prove that $w(x, t) \leq 0$ in R.
Problem \#2 (20p+s)
This is an example of a heat problem with internal heat source for which the maximum principle does not hold. Consider

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}+2(t+1)+x(1-x) \tag{1}\\
u(0, t)=0, u(1, t)=0 \\
u(x, 0)=x(1-x)
\end{array}\right.
$$

for $0<x<1$ and $t>0$.
a) Verify that $u(x, t)=(t+1) x(1-x)$ is a solution for (1).
b) Find the maximum M and the minimum m of the initial and boundary data.
c) Show that for all $t>0$ the temperature distribution $u(x, t)$ exceeds M at a certain point inside the bar $[0,1]$.
Problem \#3 (15 pts)
Consider the inhomogeneous problem

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x}+f(x, t) \tag{2}\\
u(0, t)=g(t), u(L, t)=h(t) \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where $k>0,0<x<L$ and $t>0$.
a) Are the boundary conditions of this problem of Dirichlet or Neumann type?
b) Prove the uniqueness of the solution for (2) using the energy method.

Problem \#4 (2 opts)
Consider the initial value problem

$$
\left\{\begin{array}{l}
3 u_{t t}+u_{x x}-4 u_{x t}=0 \tag{3}\\
u(x, 0)=x \\
u_{t}(x, 0)=0
\end{array}\right.
$$

for $-\infty<x<\infty$ and $t>0$.
a) Of what type (parabolic, hyperbolic, elliptic) is the equation in (3)?
b) Write the solution for (3).

Problem \#5
(15 pts)
Use the coordinate method to solve

$$
\left\{\begin{array}{l}
u_{x}+u_{y}=u^{2} \\
u(x, 0)=h(x)
\end{array}\right.
$$

for $-\infty<x, y<\infty$.
Problem \#6 (10pts)
Consider the function

$$
f_{a}(x)=\left\{\begin{array}{l}
1+(2 a)^{-1} \text { for }|x|<a \\
1 \text { for }|x|>a
\end{array}\right.
$$

a) Prove that f_{a} is a distribution if we define $\left(f_{a}, \phi\right)=\int f_{a}(x) \phi(x) d x$ for all test functions ϕ.
b) Show that in the sense of distributions

$$
\begin{equation*}
\lim _{a \rightarrow 0} f_{a}=1+\delta_{0} \tag{7}
\end{equation*}
$$

where δ_{0} is the distribution such that $\left(\delta_{0}, \phi\right)=\phi(0)$ for all test functions ϕ.

Poblem +1
Dhime $u(x, t)=u_{1}(x, t)-u_{2}(x, t)$
tu finetion w solves

$$
\left\{\begin{array}{l}
w_{t}=w_{x} x \\
w(x, 0)=g_{1}(x)-g_{2}(x) \\
w(0, t)=f_{1}(t)-f_{2}(t) \\
w(l, t)=a_{1}(t)-h_{2}(t)
\end{array}\right.
$$

Elealy $\quad \omega^{2} \leqslant 0$ on tu bamdang of R
Hen by Hu mox principle $\operatorname{Nr}(x, t) \leq 0$ for ole (x, t) in R

$$
\Rightarrow \quad u(x, t)=u_{1}(x, t)-u_{2}(x, t) \leq 0 \Rightarrow u_{1}(x, t) \leq u_{2}(x, t)
$$

for all (x, t) in R.
Problem \#2
,)

$$
\begin{aligned}
\mu_{t}(x, t) & =x(1-x) \\
\mu_{x}(x, t) & =(t+1)[1-x-x] \\
\mu_{x x}(x, t) & =-2(t+1) \\
\mu_{t}(x,+) & =x(1-x)=-2(t+1)+2(t+1)+x(1-x)
\end{aligned}
$$

He won chach the mital owd bamdang conolitions

$$
\left.u(x, \tau)\right|_{x=0}=\left.x(t+1) \pi(1-\pi)\right|_{n=0}=0
$$

$$
\begin{aligned}
& \left.u(x, t)\right|_{x=1}=\left.(t+1) x(1-x)\right|_{x=1}=0 \\
& \left.u(x, t)\right|_{t=0}=\left.(t+1) x(1-x)\right|_{t=0}=x(1-x)
\end{aligned}
$$

b) Let $f(x)=x(1-x) \quad f^{\prime}(x)=1-2 x \geq 0 \quad(z) x \leq \frac{1}{2}$

$s 0 \quad x=\frac{1}{2}$ mox preint $f\left(\frac{1}{2}\right)=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}$ mos $x=0, x=1$ min point $f(0)=f(1)=0$ min
Heape $\min _{\operatorname{MR}_{R}}(\mathrm{H}=0=m$ Whe $R:[0,1] \times[0, \infty)$

$$
\operatorname{mox}_{O R} u=\frac{1}{4}=M
$$

c) $u(x, t) \leq \mu\left(\frac{1}{2}, t\right)=(t+1) \frac{1}{4}$ for del $x_{t \rightarrow 0}[0,1]$ ond $h\left(\frac{1}{2}, t\right)>\frac{1}{4}=M$ for all $t>0$.

Pidelem $\# 3$
a) the hounday conolitious an of Dinichlet by pe
b) Let u_{1} ond u_{2} be two solections of the jnoblem. Hen $w=l_{1}-U_{2}$ sohees $\left\{\begin{array}{l}w_{t}=k w_{x x} \\ w_{1}(0, t)=w(L, t)=0 \\ w(x, 0)=0\end{array}\right.$

U olefins the enmay

$$
\begin{aligned}
E(t) & =\frac{1}{2} \int_{0}^{L} w^{2}(x, t) d x \\
\frac{d}{d t} E(t) & =\frac{1}{Z} \int_{0}^{L} R W(x, t) W_{t}(x, t) d x \\
& =\int_{0}^{L} w(x, t) K W_{x x}(x, t) d x \\
& =K \int_{0}^{t} \partial_{x}\left(w w_{x}\right)(x, t) d x
\end{aligned}
$$

$$
-k \int_{0}^{t} w_{x}^{2}(x, t) d x
$$

$$
=\left.K w_{x}\right|_{0} ^{L}-K \int_{0}^{L} w_{x}^{2}(x, t) d x
$$

$$
=-\stackrel{U}{0}_{0}^{k} \int_{0}^{L} \operatorname{w}_{x}^{2}(x, y) d x \leq 0
$$

So $E(t)>E(t) \leq E(0)=0$
hut alno $0 \leq E(t)$ by definition
So $E(t) \equiv 0 \Rightarrow \omega^{2}=0 \Rightarrow$ W$=0$

$$
\Rightarrow \quad M_{1}=l_{2}
$$

Poblem 14
a) $a_{11}=1 \quad a_{22}=3 \quad a_{12}=-2$

$$
a_{12}^{2}=4>a_{11} a_{22}=3 \Rightarrow \text { Hypubolic }
$$

b) He com with the epuchon os
(घ) $\left(O_{x}-2 D_{t}\right)^{2} u-D_{t t}^{2} u=0$
So if un intioducu the nen coocolimoles

$$
\begin{aligned}
& \xi=x \\
& \xi=2 x+t
\end{aligned}
$$

Her epuot on ((x) con be un then os

$$
\begin{aligned}
& \partial_{\delta 0}^{2} u-2_{\xi}^{2} u=0 \\
& \mu(\xi, \xi)=f(\xi-\xi)+g(z+\xi)
\end{aligned}
$$

Alionging rach to the olol variables

$$
\begin{aligned}
u(x, t) & =f(x-2 x-t)+g(x+2 x+t) \\
& =f(-x-t)+g(3 x+t) \\
u_{(}(x, 0) & =f(-x)+g(3 x)=x \\
u_{t}(x, t) & =-f^{\prime}(-x-t)+g^{\prime}(3 x+t) \\
u_{t}(x, 0) & =-f^{\prime}(-x)+g^{\prime}(3 x)=0
\end{aligned}
$$

Fron th first iohnti Ey u obtain oliffenti oting:

$$
(x x)\left\{\begin{array}{cc}
-f^{\prime}(-x)+3 g^{\prime}(3 x)=1 & \text { uluch couthined } \\
-f^{\prime}(-x)+g^{\prime}(3 x)=0 & \text { wire te loot one } \\
\text { gives }
\end{array}\right] \begin{array}{cc}
3 g^{\prime}(3 x)-g^{\prime}(3 x)=1 \\
g^{\prime}(3 x)=\frac{1}{2} & \text { for all } x
\end{array}
$$

If un chang variables
$g^{\prime}(z)=\frac{1}{2}$ for all z

$$
y(z)=\frac{z}{2}+c_{1}
$$

Similarly oqoin for ($\infty+$)

$$
f^{\prime}(-x)=g^{\prime}(3 x)
$$

$f^{\prime}(-x)=\frac{1}{2} \frac{1}{2} \quad$ for de x here

$$
\begin{gathered}
f(z)=\frac{1}{2} j+c_{2} \\
u(x, t)=\frac{1}{2}(-x-t)+c_{2}+\frac{1}{2}(3 x+t)+c_{1} \\
\text { but } u(x, 0)=-\frac{x}{2}+c_{2}+\frac{3}{2} x+c_{1}=x+c_{1}+c_{2} \\
\\
\Rightarrow c_{1}+c_{2}=0
\end{gathered}
$$

So

$$
\begin{gathered}
\mu(x, t)=-\frac{x}{2}-\frac{\psi}{2}+\frac{3}{2} x+\not \approx \neq x \\
\mu(x, t)=x
\end{gathered}
$$

Problem \#5
Intiodua ter hen variobles

$$
\begin{aligned}
& x^{\prime}=x+y \\
& y^{\prime}=x-y
\end{aligned}
$$

In Un aperation besomes

$$
\begin{aligned}
& \mu_{x^{\prime}}=\frac{u^{2}}{2} \\
& \Leftrightarrow \frac{\mu x^{\prime}}{\mu^{2}}=\frac{1}{2} \Leftrightarrow\left(-\frac{1}{\mu}\right)_{x^{\prime}}=\frac{1}{2} \quad \text { Iutegroting } \\
& -\frac{1}{\mu\left(x^{\prime}, y^{\prime}\right)}=\frac{1}{2} x^{\prime}+C\left(y^{\prime}\right) \text { for abtiong } C\left(y^{\prime}\right) \\
& \Leftrightarrow \quad \operatorname{le}\left(x^{\prime}, y^{\prime}\right)=-\frac{2}{x^{\prime}+2\left(\left(y^{\prime}\right)\right.}
\end{aligned}
$$

clioiging boch th vaniobles

$$
h(x, y)=-\frac{2}{x+y+2 C(x-y)}
$$

but

$$
u(x, 0)=-\frac{2}{x+2 c(x)}=h(x)
$$

Chence $x+2 c(x)=-\frac{2}{h(x)}$

$$
\begin{aligned}
& 2 c(x)=\frac{2}{2\left(-\frac{1}{h(x)}-\frac{x}{2}\right)} \\
& C(x)=-\left[\frac{1}{h(x)}+\frac{1}{2}\right] \text { ond } \\
& h(x, y)=-\frac{2}{x+y-2\left[\frac{1}{h(x-y)}+\frac{x-y}{2}\right]} \\
& =-\frac{2}{x+y-\frac{2}{h(x-y)}-(x-y)}=-\frac{1}{y-\frac{1}{h(x-y)}} \\
& =\frac{\ln (x-y)}{1-y h(x-y)}
\end{aligned}
$$

Problem \# 6
Kinuanty: For ouy b, c in $\mathbb{R}, \varphi, \psi$ im \mathcal{L}

$$
\begin{aligned}
& \left(f_{a}, b \varphi+c \psi\right)=\int f(x)(b \varphi(x)+c \psi(x)) d x \\
& =b \int f_{a}(x) \varphi(x) d x+c \int f_{a}(x) \psi(x) d x \\
& \\
& \text {, imorily } \\
& \text { of produt ond } f=b\left(f_{e}, \varphi\right)+c(f e, \psi)
\end{aligned}
$$

Qoutimity: let $\varphi_{n} \rightarrow \varphi$ in D. Huis mous teat then exists on interal $[-M, M]$ st.

$$
\left.\varphi_{n}\right|_{[-M, M]^{c}}=\left.\varphi\right|_{[-M, M]^{c}} \equiv 0
$$

wher $[-M, M]^{C}=(-\infty,-M) \cup(M,+\infty)$

$$
\text { and } \operatorname{mox}_{[-M, M]}\left|\varphi_{n}(x)-\varphi(x)\right|_{n \rightarrow \infty}^{\longrightarrow} 0
$$

Hen

$$
\begin{aligned}
& \left(f_{a}, \varphi_{n}\right)-\left(f_{0}, \varphi\right)=\int_{f_{a}}(x)\left(\varphi_{n}(x)-\varphi(x)\right) d x \\
= & \int_{-M}^{M} f_{a}(x)\left(\varphi_{n}(x)-\varphi(x)\right) d x \\
> & \mid \\
\mid & \left(f_{a}, \varphi_{n}\right)-\left(f_{a}, \varphi\right)\left|\leqslant \int_{-M}^{M}\right| f_{a}(x) \mid d x \text { •Mox }\left|\varphi_{n}-\varphi\right|
\end{aligned}
$$

untrant loss of germality u can oxume thot $M>a$ so that

$$
\int_{-M}^{M}\left|f_{a}(x)\right| d x=\int_{-M}^{M} 1 d x+\int_{-a}^{a} \frac{1}{2 a} d x=C_{H, a}
$$

Her point is Thot $C_{M, a}$ is indeppendent of n ! so

$$
\begin{aligned}
& \left|\left(f_{a}, \varphi_{n}\right)-\left(f_{e}, \phi\right)\right| \leqslant C_{H, a} \operatorname{miox}_{[-M, M]}\left|\varphi_{n}-\varphi\right| \xrightarrow[n \rightarrow \infty]{ } \quad\left(f_{a}, \varphi_{n}\right) \rightarrow\left(f_{a}, \varphi\right)
\end{aligned}
$$

b) Notice thot $f a(x)=1+x_{a}(x)$ wher $x_{a}(x)= \begin{cases}\frac{1}{2 a} & |x|<a \\ 0 & |x|>a\end{cases}$

Le aheady proud in coos thor $x_{a} \xrightarrow[a \rightarrow 0]{ } J_{0}$
in tle sense of Oi stu butions, hena $f_{a \rightarrow a \rightarrow 0} 1+\delta Q$!

