Partial solutions to problem set 8

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 87.3 $u_{t}=i u_{x x}$ w/ Dirichlet BC.
$u(x, t)=T(t) X(x): T^{\prime}(X)=i T X^{\prime \prime}$, so $\frac{T^{\prime}}{i T}=\frac{X^{\prime \prime}}{X}=-\lambda$ (a constant, since the left-hand side depends on t and the right-hand side depends on x only).

The Dirichlet BC's give

$$
X^{\prime \prime}=-\lambda X, \quad X(0)=X(l)=0
$$

hence $\lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$, where $n>0$ integer, $X(x)=\sin \frac{n \pi x}{l}$.
Finally, $T^{\prime}=-i \lambda T$, so $T(t)=A e^{-i \lambda t}$.

$$
u(x, t)=\sum A_{n} e^{-\frac{i n^{2} \pi^{2} t}{l^{2}}} \sin \frac{n \pi x}{l}
$$

Problem 87.4 $u_{t t}=c^{2} u_{x x}-r u_{t}$. Dirichlet BC's:
Separate variables: $u(x, t)=X(x) T(t)$, so $T^{\prime \prime} X=c^{2} T X^{\prime \prime}-r T^{\prime} X$, so dividing through by $c^{2} X T$ gives

$$
\frac{T^{\prime \prime}}{c^{2} T}+\frac{r T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda \quad(c \text { constant })
$$

since the left hand side depends on t only, and the right-hand side depends on x only.
Thus, together with Dirichlet BC's, this gives

$$
X^{\prime \prime}=-\lambda X, \quad X(0)=X(l)=0
$$

So

$$
X(x)=\sin \frac{n \pi x}{l}, \quad \lambda=\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}
$$

Also,

$$
T^{\prime \prime}+r T^{\prime}=-\lambda c^{2} T
$$

so

$$
T^{\prime \prime}+r T^{\prime}+\lambda c^{2} T=0
$$

This is a constant coefficient ODE. The characteristic equation is $\mu^{2}+r \mu+\lambda c^{2}=0$, and then the solutions are $A e^{\mu_{1} t}+B e^{\mu_{2} t}$, where μ_{1}, μ_{2} are the roots of the characteristic equation (assuming they are distinct.) Thus

$$
\mu=\frac{-r \pm \sqrt{r^{2}-r \lambda c^{2}}}{2}=-\frac{r}{2} \pm \sqrt{\frac{r^{2}}{4}-\lambda c^{2}}
$$

Taking $\lambda=\left(\frac{n \pi}{l}\right)^{2}$, we get

$$
\mu=-\frac{r}{2} \pm \sqrt{\frac{r^{2}}{4}-\left(\frac{n \pi}{l}\right)^{2} c^{2}}
$$

If $0<r<\frac{2 \pi c}{l}$, then for $n>0$ integer (so $n \geq 1$), $\frac{r}{2}<\frac{n \pi c}{l}$, so $\frac{r^{2}}{4}<\frac{n^{2} \pi^{2} c^{2}}{l^{2}}$, so the square root gives an imaginary number.

We can either use the exponential solutions $e^{\mu_{1} t}, e^{\mu_{2} t}$, as above, or replace them by cos/sin:

$$
T_{n}(t)=A_{n} e^{-\frac{r t}{2}} \cos \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4}} t\right)+B_{n} e^{-\frac{r t}{2}} \sin \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4} t}\right)
$$

so the general solution is

$$
\begin{aligned}
u(x, t)= & \sum_{u=1}^{\infty} X_{n}(x) T_{n}(t) \\
= & \sum_{u=1}^{\infty} A_{n} e^{-\frac{r t}{2}} \cos \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4}} t\right) \sin \left(\frac{n \pi x}{l}\right) \\
& +\sum_{u=1}^{\infty} B_{n} e^{-\frac{r t}{2}} \sin \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4}} t\right) \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
$$

Note that the argument of each sine/cosine is real. Since $r>0, e^{-\frac{r t}{2}} \rightarrow 0$ as $t \rightarrow+\infty$; the damping will wipe out the oscillations $t \rightarrow+\infty$.

Problem 87.5: Same as in 87.4, except now for $n=1$, the roots

$$
\mu=-\frac{r}{2} \pm \sqrt{\frac{r^{2}}{4}-\frac{\pi^{2} c^{2}}{e^{2}}}
$$

are real, though the square root is still imaginary for $n \geq 2$. Thus, the solution is

$$
\begin{aligned}
u(x, t)= & A_{1} e^{-\frac{r t}{2}+\sqrt{\frac{r^{2}}{4}-\frac{\pi^{2} c^{2}}{e^{2}}} t} \sin \frac{\pi x}{l}+B_{1} e^{-\frac{r t}{2}-\sqrt{\frac{r^{2}}{4}-\frac{\pi^{2} c^{2}}{e^{2}} t}} \sin \frac{\pi x}{l} \\
& +\sum_{n=2}^{\infty} A_{n} e^{-\frac{r t}{2}} \cos \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4} t}\right) \sin \left(\frac{n \pi x}{l}\right) \\
& +\sum_{n=2}^{\infty} B_{n} e^{-\frac{r t}{2}} \sin \left(\sqrt{\left(\frac{n \pi c}{l}\right)^{2}-\frac{r^{2}}{4}} t\right) \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
$$

Problem $90.1 u_{t}=k u_{x x}, u(0, t)=u_{x}(1, t)=0$.
Separation of variables gives

$$
T^{\prime}=-k \lambda T, \quad X^{\prime \prime}=-\lambda X, \quad X(0)=0, \quad X^{\prime}(l)=0 .
$$

Thus,

$$
X(x)=C \cos \sqrt{\lambda} x+D \sin \sqrt{\lambda} x
$$

$X(0)=0 \Rightarrow C=0$.
$X^{\prime}(l)=0 \Rightarrow \cos \sqrt{\lambda} l=0$ ($D=0$ would be trivial). $\Rightarrow \sqrt{\lambda} l=\frac{\pi}{2}+n \pi, n \geq 0$ integer.

$$
\lambda=\lambda_{n}=\left(\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right)^{2} \quad n \geq 0 \text { integer. }
$$

$$
X_{n}(x)=\sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l},
$$

so

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-k\left(n+\frac{1}{2}\right)^{2} \pi^{2} t / l^{2}} \sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l} .
$$

NB: It is easy to see that $\lambda=0, \lambda<0$, or $\lambda \notin \mathbb{R}$ doesn't give new solution.
Problem 90.3: Separation of variables gives

$$
X^{\prime \prime}=-\lambda X, \quad X(-l)=X(l), \quad X^{\prime}(-l)=X^{\prime}(l) .
$$

Thus, $X=C \cos \sqrt{\lambda} x+D \sin \sqrt{\lambda} x$, so $X(-l)=X(l)$ gives

$$
C \cos -\sqrt{\lambda} l+D \sin -\sqrt{\lambda} l=C \cos \sqrt{\lambda} l+D \sin \sqrt{\lambda} l .
$$

But cosine is even, sine is odd, so this gives

$$
-D \sin \sqrt{\lambda} l=D \sin \sqrt{\lambda} l .
$$

Similarly, $X^{\prime}(-l)=X^{\prime}(l)$ gives

$$
C \sqrt{\lambda} \sin (-\sqrt{\lambda} l)=C \sqrt{\lambda} \sin \sqrt{\lambda} l,
$$

i.e.

$$
-C \sin \sqrt{\lambda} l=C \sin \sqrt{\lambda} l .
$$

Thus $\sqrt{\lambda} l=n \pi$, i.e. $\sqrt{\lambda}_{n}=\left(\frac{n \pi}{l}\right)^{2}$,

$$
X_{n}(x)=C_{n} \cos \frac{n \pi x}{l}+D_{n} \sin \frac{n \pi x}{l} .
$$

$\lambda=0$ gives $X_{0}(x)=C_{0}$. Since $T^{\prime}=-\lambda k T$, we get

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) e^{-\left(\frac{n \pi}{l}\right)^{2} k t} .
$$

N.B.: Again, $\lambda<0$ or $\lambda \notin \mathbb{R}$ doesn't give new solutions.

