Partial solutions to problem set 6

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 58:1 $u_{t}=k u_{x x}, u(x, 0)=e^{-x},(x>0)$, and $u(0, t)=0$.

The solution is, by (6) on p. 57 of Strauss,

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}-e^{-\frac{(x+y)^{2}}{4 k t}}\right] e^{-y} d y
$$

Now,

$$
\begin{aligned}
\frac{(x+y)^{2}}{4 k t}+y & =\frac{y^{2}+(4 k t+2 x) y+x^{2}}{4 k t}=\frac{y+(2 k t+x))^{2}-4 k t-4 k^{2} t}{4 k t} \\
& =\frac{(y+(2 k t+x))^{2}}{4 k t}-x-k t \\
\frac{(x-y)^{2}}{4 k t}+y & =\frac{y^{2}+(4 k t-2 x) y+x^{2}}{4 k t}=\frac{y+(2 k t-x))^{2}+4 k t-4 k^{2} t}{4 k t} \\
& =\frac{(y+(2 k t-x))^{2}}{4 k t}+x-k t
\end{aligned}
$$

So

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty} e^{-\frac{[y+(2 k t-x)]^{2}}{4 k t}+x-k t} d y-\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty} e^{-\frac{[y+(2 k t+x)]^{2}}{4 k t}-x-k t} d y \\
& =e^{k t-x}\left[\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty} e^{-\frac{(y+2 k t-x)^{2}}{4 k t}} d y\right]-e^{k t+x}\left[\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty} e^{-\frac{(y+2 k t+x)^{2}}{4 k t}} d y\right]
\end{aligned}
$$

But letting

$$
p=\frac{y+2 k t-x}{\sqrt{4 k t}}, q=\frac{y+2 k t+x}{\sqrt{4 k t}}
$$

the two bracketed terms become

$$
\frac{1}{\sqrt{\pi}} \int_{\frac{2 k t-x}{\sqrt{4 k t}}}^{\infty} e^{-p^{2}} d p \quad \text { and } \quad \frac{1}{\sqrt{\pi}} \int_{\frac{2 k t+x}{\sqrt{4 k t}}}^{\infty} e^{-q^{2}} d q
$$

respectively. Since $\operatorname{Erf}(s)=\frac{2}{\sqrt{\pi}} \int_{0}^{s} e^{-p^{2}} d p$, it follows that

$$
\frac{1}{\sqrt{\pi}} \int_{s}^{\infty} e^{-p^{2}} d p=\frac{1}{2}(1-\operatorname{Erf}(s))
$$

since $\int_{0}^{\infty} e^{-p^{2}} d p=\frac{\sqrt{\pi}}{2}$. So the brackets become

$$
\frac{1}{2}-\frac{1}{2} \operatorname{Erf}\left(\frac{2 k t-x}{\sqrt{4 k t}}\right) \quad \text { and } \quad \frac{1}{2}-\frac{1}{2} \operatorname{Erf}\left(\frac{2 k t+x}{\sqrt{4 k t}}\right)
$$

respectively. Thus,

$$
u(x, t)=\frac{1}{2} e^{k t-x}\left(1-\operatorname{Erf}\left(\frac{2 k t-x}{\sqrt{4 k t}}\right)\right)-\frac{1}{2} e^{k t+x}\left(1-\operatorname{Erf}\left(\frac{2 k t+x}{\sqrt{4 k t}}\right)\right)
$$

Problem $58.2 u_{t}=k u_{x x}, u(x, 0)=0, u(0, t)=1,(x>0)$.
Let $w(x, t)=u(x, t)-1$, so w should solve

$$
w_{t}=k w_{x x}, w(x, 0)=-1, w(0, t)=0,(x>0) .
$$

But this has been essentially solved on Ex. 1 of p. 57 ; the solution there has +1 initial data so the solution now is the negative of the solution given there:

$$
w(x, t)=-\operatorname{Erf}\left(\frac{x}{\sqrt{4 k t}}\right) .
$$

Thus,

$$
u(x, t)=w(x, t)+1=1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 k t}}\right) .
$$

Problem 64.1 $u_{t t}=c^{2} u_{x x}, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x),(x>0)$, and $u_{x}(0, t)=0$. Let $\varphi_{\text {even }}, \psi_{\text {even }}$ be the even extensions of φ and ψ.

$$
\varphi_{\mathrm{even}}=\varphi(|x|) \quad \text { and } \quad \psi_{\text {even }}=\psi(|x|) .
$$

Let $\nu(x, t)$ be the solution of

$$
H(x)=\left\{\begin{array}{ccc}
\nu_{t t} & = & c^{2} \nu_{x x} \\
\nu(x, 0) & = & \varphi_{\text {even }}(x) \\
\nu_{t}(x, 0) & = & \psi_{\text {even }}(x)
\end{array}\right.
$$

where $(x, t) \in \mathbb{R} \times(0, \infty)$.
Since $\varphi_{\text {even }}, \psi_{\text {even }}$ are even, so is the solution ν (as a function of \mathbf{x}. Indeed, $w(x, t)=\nu(x, t)-$ $\nu(-x, t)$ satisfies

$$
w_{t t}=c^{2} w_{x x} ; \quad w(x, 0)=\varphi_{\text {even }}(x)-\varphi_{\text {even }}(-x)=0 ; \quad w_{t}(x, 0)=\psi_{\text {even }}(x)-\psi_{\text {even }}(-x)=0
$$

But then by uniqueness of solutions ot the homogenous wave equation, $w(x, t)=0$ (since the constant 0 is certainly a solution), so $\nu(x, t)=\nu(-x, t)$ for all x, t if ν is an even function of x.

But ν even in x, so (provided that ν is differentiable, i.e. if φ, ψ are nice):

$$
\nu_{x}(0, t)=\lim _{h \rightarrow 0} \frac{\nu(h, t)-\nu(-h, t)}{2 h}=\lim _{h \rightarrow 0} \frac{0}{2 h}=0,
$$

so $u(x, t)=\nu(x, t), x>0, t>c$ satisfies $u_{t}(x, 0)=\psi_{\text {even }}(x)=\psi(x), u_{x}(0, t)=\nu_{x}(0, t)=0$, i.e. solves the Neumann problem.

Explicitly,

$$
u(x, t)=\frac{1}{2}\left[\phi_{\text {even }}(x+c t)+\phi_{\text {even }}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\text {even }}(s) d s
$$

(If $x>c t$, this gives $x-c t>0$.)

$$
u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

i.e. the expected solution.

If $x<c t, \varphi_{\text {even }}(x-c t)=\varphi_{\text {even }}(c t-x)=\varphi(c t-x)$, and

$$
\begin{aligned}
\int_{x-c t}^{x+c t} \psi_{\text {even }}(s) d s & =\int_{x-c t}^{0} \psi_{\text {even }}(s) d s+\int_{0}^{x+c t} \psi_{\text {even }}(s) d s \\
& =\int_{x-c t}^{0} \psi(-s) d s+\int_{0}^{x+c t} \psi(s) d s=\int_{0}^{c t-x} \psi(-s) d s+\int_{0}^{x+c t} \psi(s) d s
\end{aligned}
$$

So

$$
u(x, t)=\frac{1}{2}[\varphi(c t+x)+\varphi(c t-x)]+\frac{1}{2 c} \int_{c t-x}^{c t+x} \psi(s) d s+\frac{1}{c} \int_{0}^{c t-x} \psi(s) d s
$$

Graphically, this says that the values of ψ between 0 and $c t-x$ also contribute to $u(x, t)$, unlike what happened in the Dirichlet problem.

However, note if we differentiate ν (with respect to x or t) only the values of ψ at $c t \pm x$ will be relevant, so singularities of φ, ψ still propagate along reflected characteristics!

Problem 64.3 $u(x, t)=f(x+c t)$ for $t<0, x>0$, hence this also holds up to $t=0$ (assuming u is continuous), so $u(x, 0)=f(x)$.

Also $u_{t}(x, t)=c f^{\prime}(x+c t)$ for $t<0, x>0$, so we also have, in the limit, $t \rightarrow 0$.

$$
u_{t}(x, 0)=c f^{\prime}(x)
$$

Thus u is the solution of the Dirichlet problem.

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x} \quad x>0 \\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =c f^{\prime}(x) \\
u(0, t) & =0
\end{aligned}
$$

i.e. $\varphi(x)=f(x), \psi(x)=c f^{\prime}(x)$. We can simply substitute into Eq. (3) on p. 60 to obtain the solution for $0<x<c t$, and into (2) on p. 59 for $x>c t>0$.

That gives for $x>c t>0$:

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} c f^{\prime}(s) d s \\
& =\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2}[f(x+c t)-f(x-c t)] \\
& =f(x+c t)
\end{aligned}
$$

When we used the fundamental theorem of calculus. (Not a very surprising result!)

For $0<x<c t$ we get

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}[f(c t+x)-f(c t-x)]+\frac{1}{2 c} \int_{c t-x}^{c t+x} c f^{\prime}(s) d s \\
& =\frac{1}{2}[f(c t+x)-f(c t-x)]+\frac{1}{2}[f(c t+x)-f(c t-x)] \\
& =f(c t+x)-f(c t-x) .
\end{aligned}
$$

Alternate solution:

Below $x=c t$ the solution must be $f(x+c t)$, since it is of the form $u(x, t)=f(x+c t)+g(x-c t)$ and for $x>0, t<0, u(x, t)=f(x+c t)$, so $g(x-c t=0$. Since $x>0, t<0$ allows $x-c t$ to take any positive value, $g(s)=0$ for $s>0$. But that gives $g(x-c t)=0$ if $x>c t$, i.e. $u(x, t)=f(x+c t)$ there.

To find $g(s)$ for $s<0$, consider $u(0, t)=0$ i.e. $f(c t)+g(-c t)=0$. This gives $g(s)=-f(-s)$, so

$$
u(x, t)=f(x+c t)-f(c t-x),
$$

in agreement with the previous result.

Problem 64.5

$$
\begin{aligned}
u_{t t} & =4 u_{x x} \quad x>0 \\
u(0, t) & =0 \\
u(x, 0) & =1 \\
u_{t}(x, 0) & =0 .
\end{aligned}
$$

$\Rightarrow \varphi(x)=1, x>0$, and $\psi(x)=0, x>0$.
The solution is

$$
\begin{array}{ll}
u(x, t)=\frac{1}{2}[\varphi(x+2 t)+\varphi(x-2 t)] & x>2 t \\
u(x, t)=\frac{1}{2}[\varphi(x+2 t)-\varphi(2 t-x)] & 0<x<2 t .
\end{array}
$$

So

$$
u(x, t)= \begin{cases}1, & x>2 t \\ 0, & x<2 t\end{cases}
$$

Thus, the solution is singular (not even continuous) at $x=2 t$.
This is clear from the details of the reflection method as well: $\varphi_{\text {odd }}(x)=\left\{\begin{array}{cc}1, & x>0 \\ -1, & x<0 .\end{array}\right.$ is discontinuous at $x=0$, so the solution ν will be discontinuous on the characteristic lines through $x=0$, i.e. $x= \pm 2 t$. Of these, only $x=2 t$ lies in the region $x>0, t>0$; this is what we found above.

Problem 64.10

$$
\begin{aligned}
u_{t t} & =9 u_{x x} \\
u(x, 0) & =\cos x \\
u_{t}(x, 0) & =0 \\
u_{x}(0, t) & =0 \\
u\left(\frac{\pi}{2}, t\right) & =0
\end{aligned}
$$

We thus need to extend the initial data to be even "about $x=0$ ", odd "about $x=\frac{\pi}{2}$ ", and periodic with period $4\left(\frac{\pi}{2}-0\right)=2 \pi$. (Note: period $=2 \pi$, not π, since conditions at the two endpoints are different.) But $\cos x$ satisfies these conditions! So the solution on the whole line is

$$
\begin{aligned}
\nu(x, t) & =\frac{1}{2}[\cos (x+c t)+\cos (x-c t)], \text { and so } \\
u(x, t)=\nu(x, t) & =\cos x \cos c t \quad \text { for } 0<x<\frac{\pi}{2}, t>0 \\
& =\cos x \cos 3 t
\end{aligned}
$$

