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18.152 - Introduction to PDEs, Fall 2004 Profs. Gigliola Staffilani and Andras Vasy


Partial solutions to problem set 6


Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: 
Wiley, March 3, 1992. ISBN: 9780471548683. 

Problem 58:1 ut = kuxx, u(x, 0) = e−x , (x >  0), and u(0, t) = 0. 

The solution is, by (6) on p. 57 of Strauss, 

1 
∫ ∞ 

(x−y)2 (x+y)2 

u(x, t) =  √ e − 
4kt − e − 

4kt e −ydy. 
4πkt 0 

Now, 

(x + y)2 y2 + (4kt + 2x)y + x2 y + (2kt + x))2 − 4kt − 4k2t 
+ y = = 

4kt 4kt 4kt 
(y + (2kt + x))2 

= − x − kt
4kt 

(x − y)2 y2 + (4kt − 2x)y + x2 y + (2kt − x))2 + 4kt − 4k2t 
+ y = = 

4kt 4kt 4kt 
(y + (2kt − x))2 

= + x − kt
4kt 

So 

1 
∫ ∞ 

[y+(2kt−x)]2 1 
∫ ∞ 

[y+(2kt+x)]2 

u(x, t) =  √ e − 
4kt +x−ktdy − √ e − 

4kt −x−ktdy
4πkt 0 4πkt 0 

1 
∫ ∞ 

(y+2kt−x)2 1 
∫ ∞ 

(y+2kt+x)2 

= e kt−x √ e − 
4kt dy − e kt+x √ e − 

4kt dy
4πkt 0 4πkt 0 

But letting 
y + 2kt − x y + 2kt + x 

p = √ , q  = √ ,
4kt 4kt 

the two bracketed terms become 

1 
∫ ∞

−p2 1 
∫ ∞

−q2 √ e dp and √ e dq, 
π 2kt−x π 2kt+x√ √ 

4kt 4kt 

respectively. Since Erf(s) =  √2
∫ s 
e−p2 

dp, it follows that 
π 0 

√ 
1 
π 

∫ 

s 

∞ 

e −p2 
dp = 

1
2
(1 − Erf(s)), 

√ 
since 

∫ 
0 
∞ 
e−p2 

dp = 2 
π . So the brackets become 

1 1 
(

2kt − x 
) 

1 1 
(

2kt + x 
) 

− Erf √ and − Erf √ ,
2 2 4kt 2 2 4kt 

respectively. Thus, 

1 
( (

2kt − x 
)) 

1 
( (

2kt + x 
)) 

u(x, t) =  e kt−x 1 − Erf √ − e kt+x 1 − Erf √ .
2 4kt 2 4kt 

1 



( ) 

( ) 

∫ 

∫ 

Problem 58.2 ut = kuxx, u(x, 0) = 0, u(0, t) = 1, (x >  0). 
Let w(x, t) =  u(x, t) − 1, so w should solve 

wt = kwxx, w(x, 0) = −1, w(0, t) = 0, (x >  0). 

But this has been essentially solved on Ex. 1 of p. 57; the solution there has +1 initial data so the 
solution now is the negative of the solution given there: 

x 
w(x, t) =  −Erf √ . 

4kt 

Thus, 
x 

u(x, t) =  w(x, t) + 1 = 1  − Erf √ . 
4kt 

Problem 64.1 utt = c2uxx, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (x >  0), and ux(0, t) = 0. Let 
ϕeven, ψeven be the even extensions of ϕ and ψ. 

ϕeven = ϕ(|x|) and ψeven = ψ(|x|). 

Let ν(x, t) be the solution of 
⎧ ⎨ νtt = c2νxx 

H(x) =  ν(x, 0) = ϕeven(x) ⎩ 
νt(x, 0) = ψeven(x) 

where (x, t) ∈ R × (0, ∞). 
Since ϕeven, ψeven are even, so is the solution ν (as a function of x). Indeed, w(x, t) =  ν(x, t) − 
ν(−x, t) satisfies 

wtt = c 2 wxx; w(x, 0) = ϕeven(x) − ϕeven(−x) = 0;  wt(x, 0) = ψeven(x) − ψeven(−x) = 0. 

But then by uniqueness of solutions ot the homogenous wave equation, w(x, t) = 0 (since the con
stant 0 is certainly a solution), so ν(x, t) =  ν(−x, t) for all x, t if ν is an even function of x. 

But ν even in x, so (provided that ν is differentiable, i.e. if ϕ,ψ are nice): 

ν(h, t) − ν(−h, t) 0 
νx(0, t) = lim = lim = 0, 

h→0 2h h→0 2h 

so u(x, t) =  ν(x, t), x >  0, t  >  c  satisfies ut(x, 0) = ψeven(x) =  ψ(x), ux(0, t) =  νx(0, t) = 0, i.e. 
solves the Neumann problem. 

Explicitly, 
1 1 x+ct 

u(x, t) =  [φeven(x + ct) +  φeven(x − ct)] + ψeven(s)ds.2 2c x−ct 

(If x > ct, this gives x − ct > 0.) 

1 1 x+ct 

u(x, t) =  [ϕ(x + ct) +  ϕ(x − ct)] + ψ(s)ds,
2 2c x−ct 

i.e. the expected solution. 
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∫ 

If x < ct, ϕeven(x − ct) =  ϕeven(ct − x) =  ϕ(ct − x), and 

∫ x+ct ∫ 0 ∫ x+ct


ψeven(s)ds = ψeven(s)ds + ψeven(s)ds

x−ct x−ct 0
∫ 0 ∫ x+ct ∫ ct−x ∫ x+ct


= ψ(−s)ds + ψ(s)ds = ψ(−s)ds + ψ(s)ds 
x−ct 0 0 0 

So 
1 1 

∫ ct+x 1 
∫ ct−x 

u(x, t) =  [ϕ(ct + x) +  ϕ(ct − x)] + ψ(s)ds + ψ(s)ds.
2 2c ct−x c 0 

Graphically, this says that the values of ψ between 0 and ct − x also contribute to u(x, t), unlike 
what happened in the Dirichlet problem. 

(x − ct,0) (ct − x,0) (x + ct,0) 

However, note if we differentiate ν (with respect to x or t) only the values of ψ at ct ± x will be 
relevant, so singularities of ϕ,ψ still propagate along reflected characteristics! 

Problem 64.3 u(x, t) =  f(x + ct) for t <  0, x >  0, hence this also holds up to t = 0 (assuming u 
is continuous), so u(x, 0) = f(x). 

Also ut(x, t) =  cf ′(x + ct) for t <  0, x  >  0, so we also have, in the limit, t → 0. 

ut(x, 0) = cf ′(x). 

Thus u is the solution of the Dirichlet problem. 

utt = c 2 uxx x >  0 

u(x, 0) = f(x) 
ut(x, 0) = cf ′(x) 
u(0, t) = 0  

i.e. ϕ(x) =  f(x), ψ(x) =  cf ′(x). We can simply substitute into Eq. (3) on p. 60 to obtain the 
solution for 0 < x < ct, and into (2) on p. 59 for x > ct >  0. 

That gives for x > ct >  0: 

1 1 x+ct 

u(x, t) =  [f(x + ct) +  f(x − ct)] + cf ′(s)ds
2 2c x−ct 

1 1 
= [f(x + ct) +  f(x − ct)] + [f(x + ct) − f(x − ct)]

2 2 
= f(x + ct) 

When we used the fundamental theorem of calculus. (Not a very surprising result!) 
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For 0 < x < ct  we get 

u(x, t) =  

= 

= 

1 
2 

[f(ct + x) − f(ct − x)] + 
1 
2c 

∫ ct+x 

ct−x 
cf ′(s)ds 

1 
2 

[f(ct + x) − f(ct − x)] + 
1 
2 

[f(ct + x) − f(ct − x)] 

f(ct + x) − f(ct − x). 

Alternate solution: 

x = ct 

x − ct =constant 

f =constant 

Below x = ct the solution must be f(x + ct), since it is of the form u(x, t) =  f(x + ct) +  g(x − ct) 
and for x >  0, t  <  0, u(x, t) =  f(x + ct), so g(x − ct = 0. Since x >  0, t  <  0 allows x − ct to take any 
positive value, g(s) = 0 for  s >  0. But that gives g(x−ct) = 0 if  x > ct, i.e. u(x, t) =  f(x+ct) there. 

To find g(s) for s <  0, consider u(0, t) = 0 i.e. f(ct) +  g(−ct) = 0. This gives g(s) =  −f(−s), so 

u(x, t) =  f(x + ct) − f(ct − x), 

in agreement with the previous result. 

Problem 64.5 

utt = 4uxx x >  0 

u(0, t) = 0  

u(x, 0) = 1  

ut(x, 0) = 0. 

⇒ ϕ(x) = 1, x  >  0, and ψ(x) = 0, x  >  0. 
The solution is 

1 
u(x, t) =  [ϕ(x + 2t) +  ϕ(x − 2t)] x >  2t

2
1 

u(x, t) =  [ϕ(x + 2t) − ϕ(2t − x)] 0 < x <  2t.
2

So { 

u(x, t) =  
1, x >  2t 
0, x <  2t 
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{ 

Thus, the solution is singular (not even continuous) at x = 2t.


This is clear from the details of the reflection method as well: ϕodd(x) =  
1,  x >  0 

is discon−1, x <  0. 
tinuous at x = 0, so the solution ν will be discontinuous on the characteristic lines through x = 0,  
i.e. x = ±2t. Of these, only x = 2t lies in the region x >  0, t  >  0; this is what we found above. 

Problem 64.10 

utt = 9uxx 

u(x, 0) = cos  x 

ut(x, 0) = 0. 
ux(0, t) = 0  (π ) 
u , t  = 0.

2 

We thus need to extend the initial data to be even “about x = 0”, odd “about x = π ”, and periodic ( ) 2 
with period 4 π 

2 − 0 = 2π. (Note: period = 2π, not π, since conditions at the two endpoints are 
different.) But cos x satisfies these conditions! So the solution on the whole line is 

1 
ν(x, t) =  [cos(x + ct) + cos(x − ct)], and so 

2
π 

u(x, t) =  ν(x, t) = cos x cos ct for 0 < x <  , t >  0
2 

= cos x cos 3t. 
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