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18.152 - Introduction to PDEs, Fall 2004 Profs. Gigliola Staffilani and Andras Vasy


Partial solutions to problem set 5


Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: 
Wiley, March 3, 1992. ISBN: 9780471548683. 

Problem 54.2a) Let ν(x, t) = ∞ 
H(s, t)u(x, s)ds, where −∞ 

2 2 2c s c 1 s k 
H(s, t) = e− 

4kt = e− 
4κt , κ = 

2 .√
4πkt 

√
4πκt c

and u solves the wave equation on the whole line: utt = c2uxx, i.e. ∂2
2u = c2∂1

2u. 

Notice that H(s, t) is the Green’s function for the heat equation with coefficient κ = 
c
k 
2 , so ∂tH = 

κ∂s 
2H, i.e. ∂2H = κ∂t 

2H. Thus, 

k∂x
2ν = 

∞ 

kH(s, t)(∂x
2 u)(x, s)ds �−∞ 

= 
∞ k 

2 H(s, t)(∂s 
2 u)(x, s)ds �−∞ c

∞ k 
= 

2 (∂sH)(s, t)(∂su)(x, s)ds �−∞ c

= 
∞ k 

2 (∂s 
2H)(s, t)u(x, s)ds �−∞ c

∞ k 
= 

2 (∂tH)(s, t)(∂su)(x, s)ds 
−∞ c

= (∂tν)(x, t) 

So ν indeed solves the heat equation. 

Problem 54.2b) Let 

∞ ∞ 

w(x, t, r) = H(r − s, t)u(x, s)ds = H(s − r, t)u(x, s)ds. 
−∞ −∞ 

(H is even in its first variable!) So ν(x, t) = w(x, t, 0). But thinking of x as a parameter (i.e. fixing 
it), w is the solution of � 

wt = 
c
k 
2 wrr 

w(x, 0, r) = u(x, r) 

(H is the Green’s function for this problem, r is the spatial variable!) Thus, 

lim w(x, t, r) = u(x, r). 
t 0→

Letting r = 0, 
lim ν(x, t) = lim w(x, t, 0) = u(x, 0) 
t 0 t 0→ →

indeed. 
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N.B. Part b) could be done directly, as in Section 2.4, but it is convenient to derive the result from 
the case of the already studied formula for the heat equation. 

Problem 329.1 � 
1 if a − x > 0, i.e. − a < x < a 

(6) f(x) = H(a − |x|) = 
0 

| | 
otherwise 

a 

f̂(ξ) = e iξxH(a − |x|)dx = e−iξxdx 
R � � 

−a �a 
= −

iξ 
1 

e−iξx �� 
−a 

= −
iξ 
1 

e−iξa − e iξa 

= 
eiξa − e−iξa 2 

= 
2

sin ξa. 
2i 

· 
ξ ξ 

(7) f(x) = e−a|x|, a > 0. � � 0 � 
f̂(ξ) = e iξx e−a|x|dx = e−iξx e axdx + 

∞ 

e−iξx e−axdx 
R 0 

1 (a−iξ)x��0 
−∞ 

−1 
e−(a+iξ)x��∞= e � + �

a − iξ −∞ a + iξ 0 

1 1 a + iξ + a − iξ 2a 
= + = = . 

a − iξ a + iξ (a − iξ)(a + iξ) a2 + ξ2 

Problem 329.2

iii) g(x) = f(x − a). Let y = x − a.


ĝ(ξ) = e−iξxf(x − a)dx = e−iξ(y+a)f(y)dy = e−iξa e−iξyf(y)dy = e−iξaf̂(ξ). 
R R R 

More generally, this is valid for functions on Rn, a ∈ Rn . 

iv) g(x) = eiaxf(x). 

ĝ(ξ) = e−iξx e iaxf(x)dx = e−i(ξ−a)xf(x)dx = f̂(ξ − a). 
R R 

Again, this is valid for functions on Rn . 

vi) g(x) = f(ax), a > 0. 

ĝ(ξ) = e−iξxf(ax)dx = e−i 
a
ξ yf(y)

dy 
=

1 
f̂  ξ

. 
R R a a a 

For Rn, with x = y
a , dx = a

dy 
n , so ĝ(ξ) = a

1 
n f̂(a

ξ . 

1 if − a < x < a 
Problem 329.8 Let χn = 2

0 
a 

if |x| > a 
= 2

1 
a H(a − |x|). 

From 329.1 (6), 
1 2 sin aξ 

χ̂a = = .
2a 
· 
ξ aξ 
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Thus, χ̂a(ξ) = f(aξ) where f(η) = sin η . Thus, f ∈ C∞(R); it is C∞ at η = 0 since sine vanishes η 
there. Therefore χ̂a converges to f(0) = 1 uniformly on compact sets as a 0; in particular, it →
converges weakly to the function 1 as a 0.→ 

Problem 329.9 −uxx + a2u = ∂, a > 0. Take the F.T.; use δ̂ = 1 : ξ2û + a2û = 1, so û = 1 
2 .ξ2+a

But from 329.1 (7), the inverse F.T. of 
ξ2+

1 
a2 is 2

1 
a e
−a|x|, so u = 2

1 
a e
−a|x|. 

Problem 333.1 ut = kuxx + µux, (x, t) ∈ R × (0, ∞). u(x, 0) = ϕ(x)

Take the F.T. in x. Then ût = −k|ξ|2 ̂ u. (We don’t need |ξ|2; we can write ξ2 here.)
u + iξµˆ
So û(ξ, 0) = ϕ̂(ξ). 

The ODE is ût = (−k|ξ|2 + iξµ)û, hence 

û(ξ, t) = f(ξ)e(−k|ξ|2+iξµ)t . 

Setting t = 0 and writing û(ξ, 0) = ϕ(ξ) gives 

û(ξ, t) = ϕ(ξ)e−kξ2+iµξ)t . 

Let Sµ(x, t) be the inverse Fourier transform of g(ξ, t) = e−kξ2+iµξ)t; then 

u(x, t) = Sµ(x − y, t)ϕ(y)dy. 
R 

But g(ξ, t) = eiµtξe−kts2 
, so 

F −1 g(x, t) = (F −1 e−ktξ2 
(x + µt) 

(this is 329.2 (iii) with a = −µt), so 

1 (x+µt−y)2 

u(x, t) = e− 
4kt ϕ(y)dy, √

4πkt R 

2 

where we used that the inverse F.T. of ekt|ξ|2 
is S(x, t) = √

4
1 
πkt 

e− 
4
x
kt . 

Problem 333.2 We wish to solve uxx + uyy = 0 in Rx × (0, ∞)y. 

∂ 
(x, 0) = h(x). 

∂y 

Take F.T. i − x, we get 
= ξ2 ûyy = 0, ûy(ξ, 0) = ĥ(ξ). 

The general solution of the ODE is 

û(ξ, y) = f(ξ)e|ξ|y + g(ξ)e−|ξ|y 

(the absolute values are added to make the argument below easier; one could have written a linear 
combination of eξy & e−ξy as well, and consider cases separately). For the I.F.T. to make sense, û 
needs to be tempered in ξ, so we need f(ξ) = 0, so 

û(ξ, y) = g(ξ)e−|ξ|y. 
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Then û(ξ, 0) = ĥ(ξ) gives −|ξ|g(ξ) = ĥ(ξ), so 

ˆ
û(ξ, y) = − 

h(ξ) 
e−|ξ|y. 

|ξ| 

Thus, 
û(ξ, y) = ĥ(ξ)e−|ξ|y, 

and this can be inverse-Fourier transformed easily. Namely, by a calculation analogous to 329.1 
(7), the IFT of e−|ξ|y is 2

1 
π y2

2
+
y
x2 , so 

1 y 
uy(x, y) = 

R π y2 + (x − z)2 h(z)dz 

1 ∂ 
=

2π R ∂y 
ln(y 2 + (x − z)2)h(z)dz 

∂ 1 
= 

∂y 2π R 
ln(y 2 + (x − z)2)h(z)dz 

This implies that �
1 

u(x, y) = 
2π R 

ln(y 2 + (x − z)2)h(z)dz + ν(x). 

But uxx + uyy = 0, and the same holds for the first term on the right-hand side, so νxx + νyy = 0 
as well, so ν �� = 0, hence ν(x) = Ax + B. 

Notice that such a function ν is indeed harmonic, and it satisfies the homogenous boundary condi
tion, and so the solution of the problem is not unique. We thus get 

1 
u(x, y) = 

2π R 
ln(y 2 + (x − z)2)h(z)dz + Ax + B, 

A, B arbitrary. 
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