Partial solutions to problem set 3

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 36.3

From the picture we see that the flea is distance $\left(\frac{L}{2}-a\right)-\frac{1}{4}=\frac{1}{4}-a>0$ from the closest point of the hammer when it hits the string. Since waves propagate at speed $c=\sqrt{\frac{1}{\rho}}$, they reach the flea at time

$$
\frac{\left(\frac{1}{4}-a\right)}{c}=\frac{\sqrt{\rho}}{T}\left(\frac{1}{4}-a\right) .
$$

Problem 40.1 Let $E=\frac{1}{2} \int_{-\infty}^{\infty}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x$, so $E=E(t)$ is actually a constant, independent of time, by the conservation of energy.

If u solves the wave equation with $\varphi \equiv 0, \psi \equiv 0$, then

$$
E=E(0)=\frac{1}{2} \int_{-\infty}^{\infty}\left[\psi^{2}+c^{2}\left(\varphi^{\prime}\right)^{2}\right] d x=0
$$

so for all t we have

$$
\frac{1}{2} \int_{-\infty}^{\infty}\left(u_{t}^{2}+c^{2} u_{k}^{2}\right) d x=E(0)=0
$$

Thus, the integrand being non-negative, we conclude that it is identically 0 , so $u_{t}(x, t)=u_{x}(x, t)=0$ for all x, t. Thus u is independent of x and t. Since it is 0 at $t=0$, we conclude that $u \equiv 0$ indeed.

Problem 40.5 $u_{t t}-c^{2} u_{0}+r u_{t}=0, r>0$.
Multiply by u_{t} to integrate with respect to x.

$$
\frac{d}{d t} \int \frac{1}{2}\left(u_{t}\right)^{2} d x-c^{2} \int u_{t} u_{x x} d x+r \int\left(u_{t}\right)^{2} d x=0
$$

where we used $\frac{\partial}{\partial t}\left(u_{t}\right)^{2}=2 u_{t} \frac{\partial u_{t}}{\partial t}=2 u_{t} u_{t t}$. Integrating by parts in the middle term and using $\left.u_{t} u_{x}\right|_{-\infty} ^{+\infty}=0$ (if $u \rightarrow 0$ as $\|x\| \rightarrow \infty$ as usual, which is especially clear if u vanishes for large $\|x\|$), gives

$$
\frac{d}{d t} \int \frac{1}{2}\left(u_{t}\right)^{2} d x+c^{2} \frac{d}{d t} \int \frac{1}{2}\left(u_{x}\right)^{2} d x+r \int u_{t}^{2} d x=0
$$

So

$$
\frac{d}{d t} \int \frac{1}{2}\left[\left(u_{t}\right)^{2}+c^{2}\left(u_{x}\right)^{2}\right] d x=-r \int u_{t}^{2} d x \leq 0
$$

So $E=E(t)=\int \frac{1}{2}\left[\left(u_{t}\right)^{2}+c^{2}\left(u_{x}\right)^{2}\right] d x$ is decreasing with increasing t (i.e. it is a decreasing function of t).

